FARATA

\ .

Java Programming
Unit 4

Abstract Classes, Interfaces,
Polymorphism

By Yakov Fain (a.k.a. Budam)

(c) Farata Systems, L.L.C. 2011

Casting

All Java classes form an inheritance tree with the class Object. While declaring non-primitive
variables you are allowed to use either the exact data type of this variable or one of its
ancestor data types. For example, if the class NJTax extends Tax each of these lines is correct.

NJTax myTaxl = new NJTax();
Tax myTax2 = new NJTax(); // upcasting
Object myTax3 = new NJTax(); // upcasting

If Employee and Contractor extend class Person, you can declare array of type Person,
but populate it with employees and contractors:

Person workers[] = new Person [100];
workers[0] = new Employee(“Yakov”, “Fain”);

workers[1] = new Employee(“Mary”, “Lou”);
workers[2] = new Contractor(“Bill”, “Shaw”);

Casting (cont.)

While processing a collection of different objects you may use the instanceof operator
to check the actual data type of an object. Placing a data type in parenthesis in front of
another object means that you want to cast this object to specified type.

Person workers[] = new Person [20];

// Populate the array workers here....
for (int i=0; i<20; i++){
Employee currentEmployee;
Contractor currentContractor;

if (workers][i] instanceof Employee){ // type check

currentEmployee = (Employee) workers[i]; // downcasting
// do some employee-specific processing here

} else if (workers[i] instanceof Contractor){

currentContractor = (Contractor) workers[i]; // downcasting
// do some contractor-specific processing here

}

Abstract Classes

A class is called abstract if it has at least one method that’s not implemented.
It must have the keyword abstract in the declaration line. You can not instantiate an
abstract class.

abstract public class Person {

public void changeAddress(String address){
System.out.printIn("New address is" + address);

}

// an abstract method to be implemented in subclasses
public abstract boolean increasePay(int percent);

}

The increasePay() method will be implemented in the subclasses of Person,
which may implement it differently, but the name and the number of arguments of
increasePay() will be the same. Guaranteed.

(c) Farata Systems, L.L.C. 2011

Promoting Workers. Take 1.

A company has employees and contractors. Design the classes without using interfaces
to represent the people who work for this company.

The classes should have the following methods:

changeAddress()
promote()
giveDayOff()
increasePay()

Promotion means giving one day off and raising the amount in the pay check.

For employees, the method increasePay() should raise the yearly salary and,
for contractors, it should increase their hourly rate.

abstract public class Person {

private String name;
int INCREASE_CAP = 20; // cap on pay increase

public Person(String name){
this.name=name;

}

public String getName(){
return "Person's name is " + name;

}

public void changeAddress(String address){
System.out.printin("New address is" + address);

}

private void giveDayOff(){
System.out.printIn("Giving a day off to " + name);

}

public void promote(int percent){
System.out.printin(" Promoting a worker...");
giveDayOff();

//calling an abstract method
increasePay(percent);
}
// an abstract method to be implemented in subclasses
public abstract boolean increasePay(intpercent);

Listing 7.1 shows an
abstract ancestor

public class Employee extends Person{

public Employee(String name){

super(name); Descendants implement

) increasePay() differently

public boolean increasePay(int percent) {
System.out.printIn("Increasing salary by " +
percent + "%. "+ getName());
return true;

public class Contractor extends Person {

public Contractor(String name){
super(name);
}
public boolean increasePay(int percent) {
if(percent < INCREASE_CAP){
System.out.printin("Increasing hourly rate by " +
percent + "%. "+ getName());
return true;
} else {
System.out.printIn("Sorry, can't increase hourly rate by more
than " + INCREASE_CAP + "%. "+ getName());
return false;

}

public class TestPaylncrease2 {
public static void main(String[] args) {
Person workers[] = new Person[3];
workers[0] = new Employee("John");
workers[1] = new Contractor("Mary");
workers[2] = new Employee("Steve");
for (Person p: workers){

p.promote(30);
}

The array workers has a mix of employees and contractors, but
the class TestPaylncrease?2 includes the code that promotes people in a generic way.

The proper method will be invoked based on the actual type of the worker.

This is an illustration of a polymorphic behavior

Walkthrough

mport the sample code for Lesson 7
Run TestPaylncrease?2

Review the output shown below.
know, it’s hard to understand. Ask questions.

Promoting a worker...

Giving a day off to John

Increasing salary by 30%. Person's name is John

Promoting a worker...

Giving a day off to Mary

Sorry, can't increase hourly rate by more than 20%. Person's name is Mary
Promoting a worker...

Giving a day off to Steve

Increasing salary by 30%. Person's name is Steve

Interfaces

* Interfaces are special entities that can contain only declarations of
methods and final variables.

public interface Payable {
boolean increasePay(int percent);

}

* Aclass can implement one or more interfaces
class Employee implements Payable, Promotionable {...}

class Contractor implements Payable{...}

e |f aclass declaration has the implements keyword it MUST implement
every functions that’s declared in every interface.

(c) Farata Systems, L.L.C. 2011

Polymorphic solution with interfaces.
Take 1

public class TestPaylnceasePoly {
public static void main(String[] args) {

Person workers[] = new Person[3]; Assumption:

both Employee and Contractor
workers[0] = new Employee("John"); extend Person and implement

workers[1] = new Contractor("Mary"); Payable (see Listing 6-2 and 6-3)
workers[2] = new Employee("Steve");

for (Person p: workers){

((Payable)p).increasePay(30);

Polymorphic solution with interfaces.
Take 2

Assumption:
both Employee and Contractor
implement Payable (see Listing 6-2 and 6-3)

public class TestPaylnceasePoly {
public static void main(String[] args) {

Payable workers[] = new Payable[3];
workers[0] = new Employee("John");
workers[1] = new Contractor("Mary");
workers[2] = new Employee("Steve");

for (Payable p: workers){

p.increasePay(30);

Homework

1. Study the materials from Lesson 7 from the textbook and do the
assignment from the Try It sections of these lessons.

2. Do additional reading about the Java interfaces:
http://download.oracle.com/javase/tutorial/java/concepts/interface.html

3. Invent and program any sample application that can be implemented with
interfaces illustrating polymorphism

(c) Farata Systems, L.L.C. 2011

