FARAT.

Java Programming
Unit 10

Stock Price Quotes with URL, Sockets, and RMI

(c) Yakov Fain 2014



Getting Stock Quotes From Yahoo!

1. Visit http://finance.yahoo.com, enter AAPL - the symbol of the Apple’s stock,
and press the button Get Quotes .
Note the URL. Change it to http://finance.yahoo.com/q?s=AAPL

2. To get the price quote programmatically create an instance of the URL object
and open the stream:

url = new URL("http://finance.yahoo.com/g?s=AAPL");
InputStream in = url.getInputStream();
BufferedReader buff= new BufferedReader (new InputStreamReader(in));

One way of getting the stock info from Yahoo! is to read the entire Web page:
String theWholePage;
Srting txt;
while (txt =buff.readLine() != null ){

theWholePage=theWholePage + txt;
}

...and then parse it trying to find the fragment with the AAPL price.

(c) Yakov Fain 2014



An alternative URL for stock quotes

The previous solution produces lots of text to filter out. Here you can get the
qguotes for AAPL or any other stock symbol in the CSV format:

http://quote.yahoo.com/d/quotes.csv?s=AAPL&f=sl1d1t1clohgv&e=.csv

The classes StringTokenizer or Scanner can help you in parsing the
received String with comma-separated values.

The textbook has a sample code (pg. 191 — 193) that uses
the stock symbol MOT, which used to represent Motorola.
Since the MOT stock symbol has been recently modified,
use MSI for Motorola or any other valid stock symbol, e.g.
AAPL for Apple.

(c) Yakov Fain 2014



Walkthrough 1

Review with the instructor the code of the program StockQuote.java
from Eclipse project Lesson18

Go to the Eclipse menu Run Configurations and enter AAPL in the field
Program Arguments

Run the program and observe the current price of the stock

Change the stock symbol to be IBM and re-run the program to see the
latest price of IBM stock

Run the same program through a debugger
placing a breakpoint at line 26.

Debug the program and watch the work

of the class StringTokenizer



Programming Sockets



What’s Socket

The package java.net includes classes Socket and
ServerSocket.

A socket is a connection end-point in IP networking.

The TCP/IP protocol maintains a socket connection for the whole
period of communication, while UDP is a connectionless protocol,
which sends data in small chunks called datagrams.

The socket address is a pairof IP address and port.

An instance of the ServerSocket class becomes

a server that listens to the specified port
for requests.



Sockets: the Client and the Server

The following two lines create a server that is listening to port 3000:

ServerSocket serverSocket = new ServerSocket (3000);
Socket client = serverSocket.accept();

The client program creates an instance of the class Socket pointing at the
computer/port on which the ServerSocket is running:

Socket clientSocket = new Socket("124.67.98.101", 3000);

WebSocket is an new HTML5 standard of communication over the Internet. More
details here:
http://enterprisewebbook.com/ch8 websockets.html

(c) Yakov Fain 2014



Getting Stock Quotes with Sockets

JVM 1 (the server):

1. Start the ServerSocket on some port
new ServerSocket(3000);

2. Putitin a listening mode with accept().
3. Process the request and return the result to the client via the stream.

JVM 2 (the client):

1. Connect to the server socket by instantiating the class Socket
clientSocket = new Socket(#124.67.98.101”, 3000);

2. Get the reference to the server’s stream
outbound = clientSocket.getOutputStream();

3. Send your requests to this stream.
4. Process server’s responses

(c) Yakov Fain 2014




Walkthrough 2

* Review with instructor the code of the program
StockQuoteServer and Client from Eclipse project Lesson18

* Follow the instructions from the TRY IT section to Lesson 18
to test the client-server communications using sockets.



Non-Blocking Sockets

If our stock server needs to process multiple requests, the
StockQuoteServer would need to create a new thread for each
request. Each thread introduces an overhead limiting the number

requests that can be processed concurrently.

The package java.nio includes a number of classes that support
non-blocking i/o in general and non-blocking sockets in particular.
which allows i/o communications on the socket channel without

blocking the processes using it.

You can read a short tutorial on non-blocking 1/0 by Jacob Jenkov:
http://tutorials.jenkov.com/java-nio/index.html




Remote Method Invocation (RMl)

RMI allows JVMs communicate with each other.

With sockets, the Java client was directly connecting to
Java server running on a different JVM.

With RMI, Java client will make a method call that looks
as if this method is running in the same JVM, but it’s not.
Only a proxy (a stub) of the remote method exists in the
client’s JVM.



Finding Remote Objects

RMI clients find remote services by using a naming service, which must run on a
known host and port number.

The RMI server can start its own registry that offers naming services for RMI
clients. The behavior of the registry is defined by the interface
java.rmi.registry.Registry

By default, the RMI registry runs on port 1099

The client obtains a reference to a remote object by looking up its name in the
registry. This lookup returns to the client a remote reference a.k.a. stub.

The method 1lookup () takesthe service name URL as an argument in the
following format:

rmi://<host_name>[:<name_service_port>]/<service_name>

(c) Yakov Fain 2013



RMI Client

RMI Players

3. Client looks up
server by nam

4. Server found,
stub received

5. Client call
stub method,
which communicates

with method on server

RMI Registry

1. Start registry

)

2. Register server
with registry

Your RMI
Server

L

(c) Yakov Fain 2013




Developing and Running an app using RMI

e Declare a remote Java interface

e Implement the remote interface in a Java class

e Computer A: Start the registry and register the RMI server with it
e Computer B: Start the server

e Computer C: Start a Java client that will look up the service in the
registry A to get stubs from the server B and calls remote methods.



Walkthrough 3

1. Download and import the project Lesson25 and review the code with the instructor.

2. Add the following statement at the line 12 of StartServer.java:
LocateRegistry.createRegistry(1099);

3. Add the import statement for LocateRegistry

4. Run StartServer and it should give a prompt
<QuoteService> server is ready

5.Run configuration for Client.java to specify one program argument: AAPL

6. Run the Client and you should get the random price quote like
The price of AAPL is: $1.3335365174267477

(c) Yakov Fain 2013



Homework

1. Study the materials from Lesson 18 and lesson 25 from the
textbook.



Additional Reading/Watching

Read about working with Yahoo stock quote data feed
http://www.gummy-stuff.org/Yahoo-data.htm .

RMI: http://docs.oracle.com/javase/tutorial/rmi/

Watch the video on code refactoring and testing:
http://www.java-tv.com/2013/10/23/testing-and-refactoring-
legacy-code-2/

Watch the video about automated testing:
http://www.infoqg.com/presentations/Testing-Java.
Create a project that uses unit tests with JUnit.

(c) Yakov Fain 2014



