

Enterprise Software
without the BS

An ongoing politically incorrect e-book

Yakov Fain

Last updated: June 2008

Enterprise Software Without the BS

by Yakov Fain

Copyright © 2008 Yakov Fain.

All rights reserved. No part of this book may be reproduced, in any form or
by any, without permission in writing from the publisher.

Cover design and illustrations: Yuri Fain

Editor: Joey Azoulai

April 2008: First Electronic Edition

The information in this book is distributed without warranty. Neither the author nor the publisher shall have any
liability to any person or entitle to any liability, loss or damage to be caused directly or indirectly by instructions
contained in this book or by the computer software or hardware products described herein.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries.

Windows is a trademarks of Microsoft Corporation.
All other product names and company names are the property of their respective owners.

ISBN: 0-9718439-1-0

Table of Contents

Table of Contents .. 4
Acknowledgements ... 8
What’s this book about? .. 9
Part 1: Getting into IT ... 12

Do you want your child to be a programmer? .. 13
What happened to enrollment in CS and IS .. 15
Out of college: the catch-22 situation ... 18
How to look for a job. Can you trust online postings? 19

What real estate agents and recruiters have in common 20
How to pass a technical interview with flying colors 21

Getting the interview... 21
Passing the interview .. 22
Considering the offer .. 24

Interviewing enterprise developers ... 25
Give a second chance .. 28
And he hung up during the interview ... 30
Your first Employer .. 31
An unofficial history of programming – ’95 - present 33

Part 2. Living in IT .. 37
Some recommendations to young developers ... 38
Managing your software development career ... 39

When to take a new job ... 40
Rules of resignation .. 40

Who are these IT contractors, anyway? .. 43
Work as an employee or a contractor? .. 45
Comparing the incomes .. 47

Another Brick in the wall .. 51
Polyglot programmers minus SQL ... 56
Why hire an IT contractor ... 59
Will high-paid contractors become extinct? ... 61
Living with outsourcing .. 62
Corporate IT training .. 64

Who Is Teaching ... 65
Finding quality training... 66
Enjoy your technical conference ... 68
The cost of attending a technical conference .. 69

How comfy is your cubicle? ... 72
S/he or cherchez la femme .. 75
Sexism, women and IT ... 76

Arranged marriages in IT .. 78
The honeymoon .. 78
The family life (a.k.a. corporate politics) ... 78
The family budget ... 80
Divorce is not an option .. 80

Increase your visibility .. 81
Manage your manager ... 81
Have you published your book yet? .. 81

Outsourcing ... 94
The world is round .. 94
What CIO should know about outsourcing ... 96
Ten tips on dealing with offshore developers ... 99
Dead souls from overseas ... 101
Outsourcing to students... 103
Soviet Programmers .. 106
And Pedro said, “Move over, Ravi!” .. 110
Visiting an offshore training camp for programmers 111
Lack of management in outsourcing ... 113
Me goes to America! ... 115

What a country!... 116
My H1B story ... 118
Are H1B workers abused? .. 120
Have I taken your job? .. 122

How to select a software vendor for your next project 126
What’s your salary? .. 129
Underpaid? Quit! .. 133
Overpaid? Hardly .. 135
Poor advice to laid-off people ... 136
Is life in startups any different than in corporations? 138
Why people work overtime ... 141

SOA, RIA and the Human factor .. 145
SOA Ground Up ... 145
SOA Top Down .. 146
SOA as a burner .. 147
SOA Maturity.. 147
Technical Benefits of SOA ... 149
ESB Infrastructure .. 150
To SOA or not to SOA.. 152
Making Business Users Happy ... 154
SOA+RIA ... 154

Agility is a tough sell in enterprises .. 157
Technical principles and tools .. 157
CYA .. 160

Part 3. Getting out of IT .. 162
And he was fired ... 163
Do not tell me, “’cause it hurts.” ... 165

Life After a Pink Slip .. 165
If, Else If, Else If ... 166
Moving Out? ... 166
Staying In! ... 167

Thoughts of an aging programmer .. 169
My friend is a 72-year old programmer .. 172

Conclusion .. 174

To my lovely teacher,
Dr. Alice S. Koutkova

Acknowledgements

My deepest thanks to Fuat Kircaali and Jeremy Geelan from Sys-Con Media
for all their encouragement of my writing over the years.

My deepest thanks to all bloggers that give me something to read, learn,
and think about. You guys make my day!

Thanks to my family for not being angry with me for spending endless hours
in my office working.

What’s this book about?

Several years ago I was thinking about buying a gas station in my local
town. I went to my friend Gregory Zaltsberg, a successful businessman in
this field, and asked him, "How do I start a gasoline business?" He gave me
simple but wise advice:

You know nothing about gasoline, but know a lot about
computers. Keep doing what you're doing. Just do it a little better
than others.

I followed his advice and remained in field of Information Technologies, or
to be more specific, Enterprise IT.

I was always interested in observing human relations in the IT business:

Why some people are more successful than others.
In which ways are some people a little “better” than others?
Why people fail job interviews?
Will IT outsourcing hurt your career?
What’s a reasonable salary for a person with YOUR skills living in
YOUR geographical area?
Are there underpaid or overpaid people?
How often should you change employers?
Do you even want to have an employer or would you rather work as
an IT contractor?
Do you want your child to be a programmer?
How to publish your book?
Me coming to America.
What’s one of the main motivations of innovations in the corporate
world?

Prior to this one, I’ve written technical books, which did not make me richer
financially, but definitely served my IT career. I do not expect that the book
you are about to read will be become New York Times bestseller (actually, I
lie – I do expect this otherwise why even bother?). This e-book gives you
somewhat different perspective of the day to day life of enterprise software
developers.

This is me in my home office, working on this book

I’ll be skipping here and there – can’t promise you continuity. But since this
is an electronic book and is not available in a printed edition, I have the
luxury of patching these holes with new materials in the future.

This e-book won’t give you the answers to all your career questions, but it
summarizes my observations formed during my 25+ years of wearing
different hats in the Enterprise IT. The odds are that you will not agree with
some of my observations, or find some of them cynical. But this is how I see
things today, in 2008, in the greater New York metropolitan area.

Part 1: Getting into IT

Do you want your child to be a programmer?

I do. When my older son Yuri was a senior in high school, he said that he
wanted to study classical animation in college. What would you say to this?
My wife (she’s also a software developer), and I said, “OK, not everyone has
to be a programmer. We already have two in our family”.

Now he’s graduated with a BFA in classic animation and works for various
TV shows and commercial Web projects (he illustrated this book too).

If he had chosen a career in IT, I could have helped him with every step of
the way. I know the IT industry inside out; I know the rules of the game; I
could have taught him how to write a resume and prepare for the technical
job interview; I know how to set work priorities while working on a software
development project... But he's a talented kid, who’s not interested in
learning all this, and we decided to let him do what he likes.

Once in a while I approach Yuri asking if he’d like me to re-train him to be a
programmer so he might doubled his income. He rejected. I respect his
position… as long as he pays his bills.

My younger son is in eighth grade, and I’ve had a secret hope that he’d
decide to become a programmer, but he already said that sitting in front of
the PC doing the same thing all day long is not for him.

I had this conversation with a colleague who is one of the top IT
professionals I've ever met. He does not want his kids to become
programmers. My colleague's argument was that 10 years from now all
programming will be done in India anyway, and there is no reason to send
your kid to a Computer Science (CS) school. I absolutely do not agree with
this. Animation industry also have outsourcing issues, and my older son had
really tough times finding his first job. He had to accept the first job that did
not pay any salary. But his friends, who have graduated with CS degrees, had
less problems finding well paid jobs right off the college.

http://yurifain.blogspot.com/

In terms of return on investments, I do not think that there are too many
professions that would pay annual salary of $50K to fresh graduates of a
second-tier college (not to mention how companies like Google lavish these
young kids making up for relatively modest pay for most talented software
developers). And if you hold BS in Computer Science from one of the well
known schools, your first salary will be $70K or more.

No, the low cost labor from India will not change the IT landscape in ten
years. In many cases low cost means low quality:

“Yakov, come on, we are paying only$50K to a team lead in Bangalore!”
“Mary, I’d love to check the damage to your budget by the end of the
project. Most likely, it’ll run a lot longer and cost a lot more than expected.”

The real cost of the outsourced projects is the best kept secret. Good
programmers in India are already demanding higher rates, and this trend
will continue. We’ll talk about outsourcing a bit later in this book.

What happened to enrollment in CS and IS

It's not a secret that number of students pursuing Computer Science BS or
AS degrees in colleges is on decline. There are ongoing discussions
pondering the reasons behind this trend. Usually the following reasons are
mentioned:

1. Outsourcing of junior programming jobs

2. Computer programming is not an easy trade to learn.

3. If you become a programmer, you’ll have to learn new languages and
technologies all your life.

4. My child is not too good with Math. In cases like this I sing them the same
song, "Majority of business applications do not require any special math
skills other than algebra and a simple logic: if this, do abc; otherwise do xyz".

But I’ve changed my tune after one episode... I was waiting for the bus and
there were a couple of young people standing by. She was about 25 and he
was about 17. She was talking about some event in the past:
"This happened about nine years ago, when I was 16..."
"I can't believe this. You're 25 now? Hold on..." He picked his cell phone and
started pressing the buttons. I thought he was going to call another witness
of this event for confirmation. Boy, I was wrong! He was using his cell
phone's calculator to subtract 9 from 25!

Now if someone asks me if their 18 years old kid should pick CS major, I give
them the following advice, "Ask you kid to subtract 9 from 25. If it'll take
him/her more than ten seconds, they should pick another major".

Here’s another test for your young wannabe programmer. I took this photo
on the cruise ship Adventure of the Seas of Royal Caribbean line. Show this
photo to your kid and ask him/her what’s wrong with this sign.

If you don’t hear the right answer within a minute, consider other career for
your offspring.

If the USA universities wanted to increase the number of CS/IS students, they
should invite more kids from China, Russia and India, which are still good at
arithmetic, at least today.

We keep complaining that in American colleges enrollment in Computer
Science colleges is on decline. At least we are complaining, but the College
Board of U.S. Teachers is simply making the things worse. Just read this
article in Washington Post: http://www.washingtonpost.com/wp-
dyn/content/article/2008/04/03/AR2008040303925.html .

Now, high school kids will be getting even less chances to enroll in the
advanced placement Computer Science programs. American College Board
has eliminated Computer Science AB program in schools, since it has low
enrollment. Latin Literature, French Literature, and Italian are as unpopular
as Computer Science.

http://www.washingtonpost.com/wp-dyn/content/article/2008/04/03/AR2008040303925.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/04/03/AR2008040303925.html

And the College Board just finds the easy way out, "If kids do not want it,
we’ll kill it". Sure, it’s a lot easier than making it more appealing to students.
In the unlikely event if your elementary school kid will decide to pursue IT
career in the future, you’ll have no other choice but sending him/her to
Bangalore for studying Computer Science.

Still, the scare of outsourcing goes down, programmers in the USA sooner or
later find jobs, and colleges slowly but surely revamp their programs to
accommodate the needs of the business IT. Two years degrees in
information technology make it easier to get into IT field.

Again, the topic of outsourcing deserves more attention and I’ll offer my
politically incorrect view a bit later in this book.

Out of college: the catch-22 situation

OK. You’ve graduated with a major in computer science or informational
technology, and now face the challenges of the job market.

What should my resume look like?
How do I land that first job?
Should I be picky about my first employer?
Should I work as a fulltime employee or an independent contractor,

 and how do I compare the salary of an employee to contractor rates?

Let’s start by discussing that elusive first job.

You spent all these years studying and now you’re out of college just to find
out that it’s very difficult to find your first job. You send out a nice (from your
viewpoint) résumé,, but you find that employers won’t hire you because you
lack industry experience. that you don’t have industry experience which is
why they can’t hire you.

You can’t get a job without experience, and you can’t get experience
without a job.

This is the catch twenty-two situation, so you need to have something on
your résumé that makes it stand out.

Some people find an easy way out – they lie on their résumés about their
past employers. This is bad. It also overcomplicates their first year of
employment. Because of this lie they are unable to ask questions to uphold
the statements from your resume. Most likely that the person who hired “a
liar” knew that s/he was lying, but decided to s/he could do the job…

The better choice would be to gain experience through a college internship,
or by volunteering for one of many open source projects. You can easily find
lots of open source projects – become a contributor in one of them. Join a
project to learn how real-world projects are being developed. Learn how
they are set up, what are their version controls systems, nightly builds,

milestones, and production releases. These projects will definitely add value
to your résumé and, more importantly, prepare you for your career!.

 How to look for a job. Can you trust online postings?

No matter if you are just an out-of-college kid or an experienced software
engineer, at some point in your career you’ll be looking for a job using
recruiting agencies.

There are so many excellent programmers who can easily prepare or write a
program but they have a really tough time when it comes to looking for a
job, getting interviews and so on. We’ll spend quite some time discussing all
sides of the job search process.

Some of you will remember the days of buying that Sunday fat newspaper
for the Classifieds section. In my case it was the New York Times. I would get
Sunday’s paper on Saturday night so that I could prepare and fax my resume
and the cover letter to perspective employers as early as possible. Usually,
Sunday edition of New York Times had three to four pages of
advertisements of jobs for programmers.

Things are different now, and large and small employers and majority of IT
job agencies are advertising their jobs online on web sites like monster.com
or dice.com. Spend a couple of months on these sites running searches with
the same keywords, and you’ll realize that the same ads are published online
over and over again, which indicates that many employers have long term
contracts with these online job listings in order to attract applicants whether
or not a position is actually open.

These employers may not have this exact position, but may (or may not)
have something similar. If you are desperate, send them your résumé
anyway.

Beware of unusually promising advertisements. For example, everybody is
offers fifty dollars an hour for a particular job, and all of a sudden you see an

ad from an agency that is offering seventy five bucks for a similar job. Try to
stay away from these agencies. Most likely, they don’t have these jobs. They
just want to populate their database with quality resumes, expecting that
seasoned developers will respond to these lucrative openings. The agencies
will save the resumes of these developers in their databases till better times.

You can send your resume, but be prepared to start receiving spam emails
offering you positions that don’t match your profile, geographical location
or expected compensation. Some recruiters will send your resume anywhere
in the country trying to make a buck in commissions.

What real estate agents and recruiters have in common

Simply put, what IT recruiting agencies and real estate agents have in
common is that they both work for the other side.

When you are buying a piece of real estate, you hire your own (buyer’s) real
estate agent, and the seller has his own agent. If you believe that your agent
works for you, do not kid yourself. Your agent also works for the seller
because the sooner you buy a house the sooner your agent collects a
commission. Many agents will serve their own interests before their clients.

Exactly the same things are happening on the job market. Your recruiters
will try to put pressure on you and force you to go to a job interview; they
will be sending your résumé to the clients even though you may not like
these clients or if you don’t want them to send your résumé they will send it
anyway. If you’ll get an offer, they’ll push you to accept it.

Recruiters want to close the deal.

Talk to your agents and ask them to not send your résumé to any client
without your permission. Most of the agents will assure you that they will
definitely do that and that they will let you know or we will not send your
résumé anywhere until talking to you but again three out of four agents will
send your résumé without talking to you first. Again this is just experience,
they don’t have time and they need to respond to the client quickly before

they are unavailable and they don’t want to take chances. So you need to
find that one out of four agents who is a trustworthy person.

How to pass a technical interview with flying colors

Regardless if the IT job market is hot or not, there are some rules and
techniques that can increase your interview success rate.

The process of getting a job consists of three separate tiers; let's call it an IPO
pattern:

 Getting the Interview

 Passing the interview

 Considering the Offer

I can't stress enough how important it is to work on achieving each of these
goals s-e-p-a-r-a-t-e-l-y, one step at a time!

Getting the interview

Your résumé is the most important entity of tier I. Adjust it for each position
you are applying for. (No, I'm not asking you to lie). Make sure it's short and
to the point (I've been developing software for more than 25 years and my
résumé is only two pages long).

For example, if you are applying for a Java developer’s position, nobody
needs to know the details of that 10-year old Visual Basic project. Unless you
are Bill Gates, don't even mention your work experience from the 1980s.
Keep good notes of each e-mail correspondence of tier I and always update
your résumé based on the feedback you receive from recruiters or more
experienced programmers that you might know.

Also, many people waste the summary section of their resume with some
junk like, “I’m looking for a challenging position, which would let me
improve my talents.” What a waste! Instead, elaborate on your relevant skills
according to the job requirements.

Say you’ve been specializing in Java messaging during the last two years,
but this job posting requires Web developers. Chances are you’ve developed
Web applications before, so highlight your Web experience in the summary
section. The same day you may be responding to another ad requesting
applicants who know Java messaging, modify your summary section
accordingly.

Do not be lazy, work with your resume.

Passing the interview

Remember, your interviewer has a difficult task: he needs to assess your
technical skills within 30-60 minutes, so help him! Try to get as many
technical details about the job as possible from your recruiter. If the position
you are applying for requires knowledge of Java sockets, research working
with non-blocking sockets. If they're into multi-threading, learn what the
concurrent package is about.

Do your homework and prepare a talk on some interesting and challenging
technical problems you might have experienced in one of your college or
real-world projects. If you haven’t had any super complex projects, just pick
a topic from one of multiple online programmers’ forums and research it!

For example, if you have prepared a talk on the internals of Java garbage
collector, don’t leave the interview without talking about this. Even if the
interviewer doesn’t ask you about GC, do your best to steer the conversation
your way. Interviewers will be happy because they won’t need to think what
to ask next, and you're happy because you've had a chance to talk about a
well-prepared subject.

If you're a junior developer, spend some time answering the multiple-choice
type of tests that are usually required for certification exams. You don't need
to get certified, but all these books and online mock tests will help you pass
similar tests offered by some job agencies. Find some sample interview
questions online.

Several years ago I’ve published a set of technical questions for Java
developers applying for jobs. This was the most read article I’ve published.
(http://java.sys-con.com/read/48839.htm). More than 600,000 people have
read this article. But I urge you to read the comments for this article at
http://java.sys-con.com/read/48839_f.htm – it gives me goose bumps. You
do not have to be a Java developer to get the picture. India is demanding
interview questions. And they want them now! They are actively preparing
themselves for technical job interviews.

A technical interview is a game with known rules, in many cases the
interviewers are not prepared to run the interviews. They just go by the list
of questions. Some interviewees take advantage of this and just spend
some time studying just 101-type courses, and then spending most of their
efforts on memorizing questions and answers for technical interviews.
Believe it or not – in many cases this works. I’ve gotten thank-you emails
from people stating that both interviewee and interviewer were using my
list of Java questions during their last interview. Oh well, I hope these half-
baked Java programmers are smart enough to keep studying and improve
their programming skills on the job.

In your efforts to show-off your technical prowess, don’t critique the
application architecture of your potential employer - you'll have plenty of
chances to provide technical advice after (and if) you're hired, so just focus
on getting an offer.

Be energetic during the interview and show your interest in this job. Even if
you are a technical guru, don't behave as if you're doing them a favor just by
attending this interview. Personality matters. People don't like prima
donnas.

http://java.sys-con.com/read/48839.htm
http://java.sys-con.com/read/48839_f.htm

One recruiter told me a story about the guy who was interviewing with one
of the New York companies. He did a good job during the interviews and
was about to leave. On the way out, the receptionist of this company
opened the coat closet and asked him, “Which one is yours?”
He smiled to her and said, “Just look for the best one, it’ll be mine”.

This company did not hire this guy, and I agree with them – personality
matters.

As you see, properly leaving the building is also important. As soon as you
left the building, get a notepad and take good notes about what just had
happened. Don’t postpone it till you come home. You may forget some
important details, just do it immediately until everything is still fresh. Pay
attention to the details work on the questions you’ve been asked but might
have not answered correctly. These question require your attention and
more research. Improve your technical skills after each technical interview.

Considering the offer

Tier O: you've got an offer! Now think hard if you want to accept the offer or
turn it down. You’re in the best position to evaluate an offer, not when your
employer decides to let you go or your contract ends, but when you have a
stable job, the sky is blue, and the grass is green. A bad offer always sounds
better under the pressure of unpaid bills. Have I ever mentioned that you
should look for a new job not when your employer decides to let you go or
your contract ends, but when you have a stable job, the sky is blue, and the
grass is green? This gives you a tremendous advantage: you can consider the
offer without being under pressure of unpaid bills.

Don't accept an offer just because the new job pays an extra $5,000 a year,
which translates into less than $300 a month after taxes. But do accept the
offer that will give you a chance to work with interesting technologies or
business applications even if the new job won't pay you an extra dime. Take
charge of your career and actively build it the way you want.

Interviewing enterprise developers

Now let’s take a peek at the interviewing process from the other side of the
fence as the chances are that after accepting the offer, you’ll be asked to
interview other job applicants.
When the job market is healthy, major online job search engines show
thousands of openings, and people are competing for these jobs. In 1996,
skilled Java developers are just as popular as Visual Basic or PowerBuilder
developers. There is a major difference though - back then, client/server
developers could make a decent living by mastering one front-end tool and
any major relational DBMS. These days seasoned developer has to know
about 10 different tools or technologies to find a good job and feel relatively
secure for a couple of years.

Over the last couple of years, I've been interviewing lots of Java developers –
they are in demand again. But current job requirements, people, and
resumes of Java developers have changed quite a bit, and this is what I've
noticed:

 People do not call themselves Java developers or programmer-
analysts anymore - most of them prefer the title of Java architect.
Unfortunately, only some of them really understand how J2EE
components operate and can suggest some design solutions.

 Job applicants are more senior, and I barely see any college graduates
or junior programmers in the market. Many of the junior positions are
being outsourced and the number of graduates with computer
science degrees has declined over the past several years.

 Having software certification does not make your resume stand out.

Actually, if a résumé starts with a list of certifications, most likely it's a
beginner. I'm not against certifications as they help you to learn the
language or a tool, and show that you are willing and can study. But
the fact that you have a certificate doesn't mean that you're a skilled
professional.

 With introduction of middle-tier object-relational mapping
frameworks like Hibernate, many people don't even bother learning
how exactly how the database management systems work and how
to write a well performing SQL query - they just pass a SQL statement
to some wrapper class created by local architects and get the result
sent back.

 I see a new breed of Java architects who used to be project managers.

These people usually know their business really well, can talk about
application servers, messaging and clusters, and capacity planning,
but often fall short on Java technical questions.

 Job requirements are longer these days and recruiting companies

don't even want to submit your résumé to the client if you have
"only" 8 out of 10 required skills. As a matter of fact, recruiters screen
candidates a lot better now.

 Be prepared to pass at least four interviews to get hired. While back in

1999 two good interviews would be enough, in 2001 it was very
difficult to even get an interview let alone a job!

What does a good enterprise Java developer have to know in addition to
understanding the difference between abstract classes and interfaces?
Usually employers are looking for people with at least 10 of the following
skills: Java servlets, JSP, Struts or a similar framework, EJB, JMS, any
commercial message-oriented middleware, JDBC, JNDI, HTML, XML, Spring,
Hibernate, Ant, SQL, one of the major application servers, a couple of
relational database management systems, any UML modeling tool, several
design patterns (at least a Singleton!), and familiarity with Unix.

Understanding why a particular J2EE component is being used in your
project is equally important. If the interviewer asks you, "Why did you use
EJB in this project?" please do not answer, "This decision was made before I
joined the project." Have your own opinion and explain why you think it was
a good or bad choice for this particular project.

I keep hearing the "horror stories" about questions some people get during
interviews. In my opinion, the interviewers should ask more open-ended

questions about the applicant's prior experience, going into technical details
when appropriate. I don't think it's fair to ask a person to write a Java
program processing a binary tree or implementing a finite state machine.
These are the things that can be looked up online or in books when needed.

Good knowledge of the business terminology of your potential employer is
also important. I'm not sure about Silicon Valley or Europe, but here in New
York just being a techie may not be good enough to get a senior job.

 For example, if you're applying for a Java position in a financial brokerage
company and don't know what a short sale is, this may be a showstopper. If
you are a senior developer, you should be able to hit the ground running…
Try to find out from your recruiter as many details as possible about the
business of your potential employer. Do your homework, and you'll get the
job! They are desperately looking for good programmers and you can be
one of them.

Give a second chance

Today you are a job applicant, and tomorrow you’ll be asked to interview
people. Are you ready to do this? There are periods when the job market is
bad (the seller’s market), and after a while it becomes hot (the buyer’s
market). Employers should adjust their interviewing techniques accordingly.
In a situation when development managers can't find the right candidates
and can't staff their new projects, they need to apply a different technique,
which I call "A Second Chance". Let me explain it by example. I'll use some
topics from Java, but you can easily identify similar cases in any
programming language.

After the interview, the project manager may get one of these feedbacks on
the job applicant:

"He's a good guy, knows Java and Web applications, but he never worked
with Struts. We're going to pass on him".

"She has many years in Java development, and even had a chance to work
with Swing, but the fact that she does not know the difference between the
methods invokeLater() and invokeAndWait() is a clear sign that she is not
the right person for a Swing project".

Now, tell me this, if a good Java programmer does not know Struts, how
long do you think it'll take him to learn this particular framework? A week?
Two weeks?

Or how long does it take to people living in the Google era to find the
difference between invokeLater() and invokeAndWait()? An hour? Ten
minutes?

Do not let good people go.

 Do not lose good people, give them a second chance. Call the job applicant
after the interview, and tell him/her something like this, "Joe, I see that you
have a solid knowledge of Java and understand how to develop Web

applications. We'd really like to hire you, but since our project heavily relies
on Struts, we want to make sure that learning Struts is not a big deal for you.
Please spend a week learning Struts in your own spare time and call us. We'll
spend 15 minutes talking over the phone on this subject, and after that we
may extend you an offer." This is simple and efficient way of bringing good
people on board.

Joel Spolsky has written an excellent article on interviewing programmers
(http://www.joelonsoftware.com/articles/GuerrillaInterviewing3.html).
Unfortunately his technique is not always applicable in large organizations,
but his message is clear: hire good people. You can teach a good person
some new programming techniques, but it's not easy to make a technical
geek a good person.

And finally, if you can't find the right person to hire as an employee, bring a
consultant on board with specific technical skills. Even if it's more expensive,
it's a short engagement.

Employment is somewhat similar to a marriage. You don't get married until
you find the right second half, right? But looking for the one-and-only
should not stop you from seeing other men or women.

http://www.joelonsoftware.com/articles/GuerrillaInterviewing3.html

And he hung up during the interview

I got this email from a strong Java developer I’ve known for years. He writes,
“Today was the first time in my life that I hung up the phone during a job
interview”. I asked him why. The following is his reply:

The interviewer asked me how would I timeout a URLConnection. I said that I
would simply send a ping once a second and if we did not receive a ping we
considered the connection dead.

Again,The interviewer asked me how would I timeout a URLConnection. I
said that we sent a ping once a second and if we did not receive a ping we
considered the connection dead and notified the user and blah, blah, blah.

The guy said that you should specify the timeout a URLConnection and
asked how would I do it. I said that.
 I am not sure there is a way to specify timeout in URLconnection since
originally in Java all I/O was blocked.
The guy asked me how would I timeout a URLConnection again! I said that I
would do the timeout on the software level; that I am not aware of any other
way to do it, and that in the very end I am really telling him how the system
works and if he can give me a hint to what he wants I'll be glad to answer.

The guy asked me how would I timeout a URLConnection. I am not joking,
he asked me again. I said - we did it using ping message if we did not receive
the ping within 2 seconds we considered the connection dead.

The guy asked me how would I timeout a URLConnection. I hung up.

I guess, the interviewer went by someone's list of questions and answers,
and was expecting the following answer "Just close the underlying I/O
stream and the connection will be timed out". His list did not include the
ping alternative. There are morons working everywhere, and this one
happened to be working in a prestigious Wall Street firm. However, the job
applicant’s evaluation of the potential employer is irrelevant at this stage of
the game.

During the interviewing phase, you have the only goal – pass the
interview successfully.

In this particular scenario, the best outcome would be receiving an offer, and
have the luxury rejecting it.

Your first Employer

Does it matter who is your first employer?

In my opinion it doesn’t matter at all because most likely you don’t know
what you want to do with your career, you don’t know what your strengths
and weaknesses are. Sometimes, a bad employer can help you decided what
you do and don’t like better than a good one.

Barring any heavy financial obligation, your first employer and your first
salary do not matter as much as what you take from the experience. You
should be working with modern technologies, learning how to collaborate
with teams of programmers, and learn how to communicate with non-
technical people. Obtaining these skills is the most important goal for your
first years of employment.

In the beginning of your career you should switch jobs more often. In
general, you shouldn’t work for any employer for more than five years
because your technical skills become rusty, you become complacent, and
might lose the motivation to learn new skills because the majority of your
time is spent not on writing code, but on resolving issues specific to this
particular project.

Make a move after five years if not sooner. Mastering communication skills is
as important as mastering hot programming languages. Learn how to get
what you need, who to talk to, how to talk the talk, and how to manage your
time.

There are many great programmers who just cannot deliver on time. They
get carried away, they try to solve complicated and challenging problems,
and when the project time is up, they may be behind even with simple tasks.

When your manager asks you to do something by Friday it has to be done by
Friday. Don’t try to give her more than she asked for. Deliver exactly what
she’s asked you to do. You manager is responsible for the success of the
project; please do not jeopardize it.

And do not forget about teamwork. You need to get along with other
people that were born and raised in different countries, who could have
different skill sets, different communication habits, and so on. Twenty
percent of a typical team consists of strong people, while the other 80% are
people with mid or entry level skills. You have to learn how to work with all
the people in your team.

An ideal team consists of people who do something
better than you.

Some of them are better coders, some have better communication skills,
some can generate great ideas daily, some are better analysts and can turn a
complex task into a set of simple steps. Stay in the team till there is
something to learn. If you feel that there is nothing to learn, start looking for
a better team.

To be a good team member, you need to do something
better than others too.

At this point, I’d like to sprinkle some historical facts for those who are just
entering the world of coding.

An unofficial history of programming – ’95 - present

I want back into the '90s. Seriously. Twelve years ago I didn't know Java; I'd
been using PowerBuilder and was able to program pretty much everything
in this RAD object-oriented tool. To find a job back then, all I needed on my
résumé was PowerBuilder, a single framework (PFC), and SQL. With these
skills I could have created a prototype of a rich Create-Read-Update-Delete
(CRUD) client/server application in a couple of days. However, that was the
sunset of the client/server era.

While making the deployment of client software easier (a Web browser is all
you need), the Web 1.0 pushed user-facing applications years back. Just
look at these ugly screens: several plain text boxes, a dropdown, and a trivial
HTML table. Mainframe dumb terminals had black screens with green letters,
but the interaction with the big iron was super fast. The Web offered a white
background with black letters and poor performance. But the entire world
was so happy with this new way of accessing the wealth of data and tons of
opportunities in e-commerce, that people were willing to put up with some
minor inconveniences.

In 1994, the Gang of Four released a famous book called “Design Patterns:
Elements of Reusable Object-Oriented Software”. This book was the first step
in turning programming from an art to a trade. Singleton, MVC, Factories,
Data Transfer Objects... just pick up the proper design pattern(s), and your
code will look as if it was written by an expert. Don't forget to comment your
programs explaining which design patterns were used in your code. Still,
there is a small number of programmers who get by without pattern
programming, but they'll be extinct soon.

SQL was in favor in the '90s. People knew how to delete duplicates from a
database table by applying such SQL clauses as group by and having. How
many people have read the book by Joe Celko, “SQL for Smarties”? Let me
put it another way. How many people know what SQL is? Why bother, a

persistent framework like Hibernate will let me map class attributes to the
database table columns. How nice...I'm drowning in XML now. Let's not jump
ahead though; mankind did not know Hibernate or XML back then.

The Java programming language was born. It became visible as a language
for creating applets, but its uses for the desktop were quickly abandoned for
the server side. It took Sun more than ten years to realize that desktop
programming is also important, and that is was time to create a Swing-based
RAD tool.

The end of the last century can be called the Gold Rush of Programming.
People started to spread the fear of Y2K issues. Since the dates (years) were
stored as two digits, some nuclear explosion or a less serious disaster was
expected on January 1, 2000. For example, performing year subtraction "'00-
95" would give you a negative number. Get it? Lots of people quickly
became programmers with the noble mission of saving mankind. Lots of IT
managers quickly climbed the corporate ladder working on this mission.

In the beginning of the new century, XML became popular. Yes, it was a nice
way to describe data, but at the same time it was too heavy. It did not
manage to kill the CSV format - the hype is over - but it did find its use in a
variety of applications.

Microsoft came out with .NET platform, which became a direct competitor of
J2EE. Today, most of the enterprise software development is done using
these two mainstream technologies.

Another important trend of this century is the spread of open source
software. In the past, vendors used to sell software licenses, but now many
of them give the software away for free and sell services instead: “The
documentation of our open source product may be poor, but no worries,
we'll be happy to help you with our great tool for an extra fee.” There is
nothing wrong with it – software developers have to eat too.

Many of the six million Java programmers won’t even consider using a tool
or software component if it’s not free.

What are the latest notable trends? Let me throw in a couple of buzzwords:

http://en.wikipedia.org/wiki/Y2k

AJAX is a self-proclaimed savior of Web applications. You enter a letter in an
HTML search text field, and the results come back without refreshing the
entire page. While AJAX is the right solution for prettifying your Web pages,
some enterprises got into a risky business of developing large-scale
applications using AJAX. Big mistake. Huge. I spelled it out in this blog:
http://flexblog.faratasystems.com/?p=163. But since there is a demand,
many vendors are making their tools AJAX-enabled.

Meanwhile Java developers go crazy because of this orgy of 50+ Web
frameworks that do the same thing as the Struts framework. The AJAX
developers also “enjoy’ a variety of more than 100 frameworks that do the
same thing. James Gosling, a creator of Java was interviewed at the
JavaPolis conference in December of 2007, and someone asked him, “Why
are there so many different Web frameworks in the world?” He gave a funny
answer; “There are too many creative people in the world. You should all get
stupider…Some of it is that people just like to have fun”.

On the other hand, .Net developers mainly deal with one vendor – Microsoft,
which produces quality software for writing software, and a wealth of
professionally written documentation. For years, Microsoft enjoyed the
status of the number one software development company, but this new kid
on the block Google quickly evolved from just another search engine
company to the most prestigious employer in the software world. They offer
free software as service for the masses while making money on selling online
advertisements.

The very existence of Google bothers Microsoft. These two companies make
tons of money by using absolutely different business models (selling
licenses vs. selling ads), but today’s cool-factor is on Google’s side.

During the last three to four years, lots of enterprise mission-critical systems
were moved from the Unix to the Linux platform, and this trend will
continue.

The Ruby on Rails library is heavily promoted by a group of enthusiasts that
create Web applications. They are pushing the idea of “conventions over
configurations”. It's not likely that Ruby will become a commercial

http://flexblog.faratasystems.com/?p=163
http://www.parleys.com/display/PARLEYS/JavaPolis+QA+with+James+Gosling?showComments=true

programming language, but it has a decent number of fans. It may remain
yet another good language such as Lisp or Smalltalk.

Rich Internet Applications are in favor now; I'm talking about fat clients here.
The major players are Adobe Flex and Microsoft Silverlight. Sun
Microsystems is trying to enter this market with a new language called
JavaFX. This is an interesting field to be in today.

There is something called Web 2.0. The term has been never defined but
people seem to like it. In my opinion , it’s just about giving more control to
the users of the Web applications. More control – higher number (3.0, 4.0…
N.0)

What about us programmers? We have to keep learning more and more
buzzwords/tools/frameworks/languages to become senior software
developers...oops, I meant to say architects. Why not developers? Because
only architects can possibly figure out how to put all these unrelated pieces
together.

I want back in the ‘90s. Seriously.

Part 2. Living in IT

Some recommendations to young developers

Once in a while experience software developers post advices for rookies. For
example, these are a couple of recent sets:

http://tech.puredanger.com/2008/04/20/advice-to-a-young-
developer/

http://dsoguy.blogspot.com/2008/04/more-advice-to-young-
developer.html

Giving advices is easier than following them, and here’s my set.

1. Being a software developer does not mean sitting all day long with your
ear buds creating cools widgets for the Web. Coding of cool things will take
less than 25% of your time. The rest of the time you’ll spend communicating
to other people. Be good at it.

2. You know how to do things right. Guess what, other people may have
different opinions, and they might be right. Listen, learn, and adjust.

3.While you solutions may have technical merits, there can be other reasons
for not doing it “your way”. It’s OK. Do not get frustrated.

4. These 40+ years old farts in the cubicles may not have accounts on
MyFace, FaceBook, or Twitter. But that can’t be too dumb if they’ve
managed to survive in IT for 15-20 years. May be they know something
useful for you to learn?

5. Slow down. You are typing too fast, but the most worn out button on your
keyboard is Backspace. Think first, then type.

6. You feel underpaid and being taken advantage of? Hit the job market.
You might be surprised – for some reason no one else want to hire you. This
may give you a piece of mind and ring a bell – it’s time to study again.

http://tech.puredanger.com/2008/04/20/advice-to-a-young-developer/
http://tech.puredanger.com/2008/04/20/advice-to-a-young-developer/
http://dsoguy.blogspot.com/2008/04/more-advice-to-young-developer.html
http://dsoguy.blogspot.com/2008/04/more-advice-to-young-developer.html

7. You must purchase and read at least five technical books a year. Googling
for specific solutions is fine, but you need some more fundamental
knowledge. Do not save money on books.

8. Use every opportunity to attend technical conferences. It’ll give you a
better sense of where the industry goes so you can invest your time into
learning what’s needed today.

9. Start blogging on technical discoveries that you made recently. Even if
these little findings may not sound too important for you, they might be life
savers for someone. Blogging will improve your technical writing skills and
will give you some visibility.

10. Get your Master Degree before you got married. It does not have to be
MBA – get it in the field you’ve always dreamed of. When your significant
other will come into picture, going back to school becomes a lot more
difficult. “Honey, am I right or am I right?”

Managing your software development career

Don’t wait until you need another job to look for other opportunities. Just
check the job postings on a regular basis and respond to them. You do not
have to leave your current job immediately but, it’s worthwhile to get a
good understanding where the job market is moving, and prepare yourself
for a rainy day.

I am participating in different technical forums on the Internet, and some
people add their signatures right below the postings. On one Java forum, I
noticed two people who would always help other people with questions.
One of them signed their postings, “John Smith,” followed by the statement
that he’s accepting new projects. The other person signed their postings,
“Mary Lou, unemployed programmer”, which is a huge mistake. Even
though both signatures tell me that both of them are looking for a job, I’d
rather deal with the first one who is more positive.

When to take a new job

Why switch jobs when the one you’ve got “ain’t broke”? A small bump in pay
- by American standards say, $5,000 – is not a good enough reason to leave a
job. Take a new job for the chance to work with cutting edge technologies.
Keep the long view in mind!

Rules of resignation

Resigning is a very sensitive process, and there are some rules you should be
aware of.

1. Don’t resign just because you are angry with your boss.

Immediate resignation is not a good answer if the boss was rude, or there
was some other conflict at work. Start looking for a job. Don’t resign unless
you’ve found a new job or have a substantial amount of cash in your bank
account.

2. Announcing the resignation

Give two notices -- one verbal, and the other a written resignation letter or
an email. Importantly, the resignation should be short. You shouldn’t write a
long letter explaining that you are unhappy, your contribution to the
success of the project was not appreciated, etc.. Just write one sentence, for
example,

“This is a resignation notice, and my last day at work will be October 15,
2008. Thank you for a great experience and a great time, but I’ve gotten an
offer that I cannot reject”.

This is more than enough.

Don’t explain your reasons, and never complain about anything when your
boss or a person from the human resources will be talking to you about your
resignation. They may ask, “What did we do wrong? Could you give us some
advice so we’d do better in the future?”

Do not fall into this trap. They won’ t accept their wrong doings anyway, but
your advices will irritate them. Do not forget that you may need to call this
person in a month (after resigning) asking for references. Don’t teach them
how to run their business. Mind your own business.

3. Never accept counter-offers.

This is a golden rule. Even though it might sound very flattering that now
they appreciate your work and are matching your new job offer, you need to
understand that your employer now realizes that you are ready to move on.

Most likely, he is giving you a counter offer just to buy some time to find a
replacement for you (and so you can transfer knowledge to this new
person). But as soon as the rainy day comes, and the firm won’t be doing
that great and your boss will need to make a choice, they will cut you loose.
So just leave and don’t take any counter offers.

Don’t forget about the COBRA program, which is federal law stating that you
can continue getting your medical benefits for up to eighteen months,
which maybe important because your new employer may not give you
medical insurance right away; you may need to work say for three months
until you get such coverage.

4. Don’t post negative blogs about the company you quit

It’s not nice, really. If you don’t like your firm, just leave it. When I read a
blogger badmouthing a former employer, I just lose any respect for the
blogger. It’s not professional, and besides, I’ve heard that some companies
have started suing their former employees about these bad postings online.

Here’s an example of how a person is trying to boycott his former employer:
http://www.hiveminds.co.uk/node/3751
Here we can only hear the opinion of the angry blogger, but without

http://www.hiveminds.co.uk/node/3751

knowing the employer’s story it’s hard to judge who’s right here. But I can
definitely tell you that I would not hire this blogger even he’s the best
developer for the job at hands.

Who are these IT contractors, anyway?

Contractors are people who work for a particular company for a short period
of time, but they are not employees of this company, hence they do not
receive salary and benefits (paid vacation, medical insurance, etc.) from this
company.

Contractors work for money. Period. They do not have any other objectives
such as making a career, earning a new title, or good retirement package.
They work for a firm mostly because they like the pay rate, and in some
cases, they are interested in learning technologies that are used in said firm.
Can you have peace of mind if you spend all day working on something you
do not really enjoy? In a perfect world, people will work on very interesting
and well paid jobs. But since our world is not perfect, work on the interesting
stuff after hours for free. This hobby may turn into a paid job in the future.

Most contractors work with their clients through another firm that was lucky
to get on the client’s preferred vendors list. Such firms are often referred as
pimps, which does not mean that contractors do not like them. Over the
years, experienced contractors create their private lists of reputable pimps
and maintain friendly relations with them.

 In terms of paying taxes, contractors (in the USA) can work in various ways ,
for example on W2 form, which means that the pimp pays your taxes:
you'll receive the net income according to your tax brackets. Creating your
own corporation can be more rewarding in terms of taxes, and in the
industry jargon , this way of working is called "corp-to-corp". There are some
other ways of working, for example on 1099 form, when you are a sole
proprietor (a.k.a. independent contractor). Sometimes, these independent
contractors are called freelancers.

 Here's another term: "contract-to-hire". This is also called "try-and-buy":
sometimes the client company wants to try you as a contractor first, and
then convert you to an employee if they like you. If this is does not meet

your career objective, either do not take this contract, or negotiate upfront if
working as a contractor only is an option.

People use other forms of businesses too, i.e. Limited Liability Company or
L.L.C., but this discussion is out of the scope of this book.

Some are of the opinion that working directly with the client is better than
going through the pimp. This is not necessarily true. For example, if your
direct client goes out of business, you’ll never receive your last check(s). I’ve
been in such a situation myself, and my lawyer said, “You can’t get blood
from the stone”. In this regard, pimps are more reliable parties to deal with.

 How much does a client pay to your pimp for your services? Typically, your
pimp enjoys a 15-30% markup (this number is a lot higher in offshoring
situations). The larger the pimp, the higher this number. Is this a reasonable
amount? Try not to worry about it. Your pay rate should be your only
concern. Do not like it? Try to find a better rate somewhere else. Can’t do? Sit
down and shut up. Welcome to capitalism.

Hire a professional accountant to do your taxes. Never try to save money by
filing your taxes with the help of some inexpensive software. Reputable
accountants know how to save your money based on the loopholes in
current tax laws in your geographical area.

Is it ethical to terminate your contract before it officially ends? Yes it is, but
play by the rules; always give a two-week notice to your client. The client
may not be as nice to you and can kick you out without any warning at any
moment. This is not typical behavior, but it happens.

When I was signing my very first contract with a large Wall Street firm, I did
not like the clause that I’d have to give a notice but the client could
 terminate the contract at any moment without explaining the reason. I tried
to argue, and the client’s manager pointed at their (employees?) on the
open-space floor and said, "Half of these people are lawyers. Do you think
you have a chance to win if something goes wrong? No way. If everything
goes well, we'll always give you an advanced notice". This gave me piece of
mind and I signed the contract.

If you are a contractor, your relations with the client’s team are usually pretty
straightforward. The project manager likes you, because you help him to
complete the project in time, which means that you help is his/her career.
Your peers who work on this project as an employees might envy you,
because they believe that you earn a lot more than them, without having to
put up with the corporate politics, et al. They may not consider that you may
have non-billable time between the projects, have to market yourself, pay
premium for the medical coverage. But they may respect you for your
expertise as a sort of a necessary evil.

Why do companies hire these expensive contractors? The short answer is
they need a person with a specific set of skill for a short period of time. I’ll
explain it in more details a little later in the book.

To get an idea about contractors' rates, check out the Web site
realrates.com.

Here’s a good article by Steve Friedl “So you want to be a consultant?”.
Please note the section “You must give the customer The Warm Fuzzy
Feeling “. Steve is absolutely right – in consulting, human relations often
mean more that technical abilities of a contractor. Hence, “they would
rather pay her to "figure something out" than hire somebody else who
already knew how”.

Chad Myers shares his ten rules of consulting in his blog. His main message
is “The customer is always right”. In my opinion, Chad suggest a consultant
to bend too much, but in general he’s right. If you are hired as a consultant,
you’d rather be a source of solutions, than pointing out customer’s
problems.

Work as an employee or a contractor?

Should you work as a full time employee or as a contractor? It’s hard to give
advice here, but if you are working as an employee and thinking of
becoming a contractor, have a conversation with yourself:

http://www.unixwiz.net/techtips/be-consultant.html
http://www.lostechies.com/blogs/chad_myers/archive/2008/06/08/some-consulting-wisdom-i-picked-up.aspx

“Why do I want to become a contractor?”
If the answer is “I’ve heard that contractors earn more money”,
Ask yourself, “Am I ready to maintain my marketability by spending lots of
extra hours to keep my skills up to date?”

If the answer is “Maybe”, consider just getting another part-time job (deliver
pizza or something). This will bring you extra income without the need to
lose the stability that permanent employment gives you, and you do not
need to work so hard on improving your skill level.

But if you have that burning desire to be your own boss, try it out, but first
consider various other options of earning income.

Just to recap, you can work as a full time employee of a consulting company
which acts as a middleman between you and their client. You can work as a
contractor “on W2”. You can work as an incorporated contractor or as a
freelancer (self proprietor). A full time employee is pretty much as simple
and clear as a W2-contractor getting paid based on an hourly or daily rate
but all the taxes are withdrawn by the company who pays you, you just get a
net “after-tax” pay.

You are an incorporated contractor, if you’ve opened a corporation, which is
pretty easy in the USA. The client company will pay your corporation or as
we say “on a corp-to-corp basis”. They will pay you a gross amount of
money, and it’s going to be your responsibility to keep track of your
expenses and pay taxes. In this case most likely you will still work at the same
place every day; you will have your own cubicle, and you will be working the
same hours as the other employees in this company.

Freelancers, the minority, usually work on short assignments. They may not
even go to work every day, but rather work on a well defined assignment, for
example, developing a particular software component or run training classes
around the country. To become a freelancer, you have to have good
professional reputation and connections.

So, which way to go? Which form of employment is good for you?

These are some of the reasons to work as a contractor:

 Your title is not important to you.
 You’d like to have a chance to work with different technologies.
 You like always learning and you improve your skills all the time.
 You hate corporate politics.
 You like meeting new people and working in different environments.

Work as an employee if:

 Your title is important to you.
 You’d like a chance to have a nice office with a window in a place

other than your own house.
 You want to have a plate on the door with your name on it, but you

do not feel like ordering such a plate from a mail-order catalogs.
 Job interviews are stressful for you.
 You or somebody in your family needs good medical coverage.
 there are just no contract jobs where you live.
 You are one of the first employees in the startup of the company and

you have some options that you can’t cash in just yet.
 Your spouse already works as a contractor and someone has to

ensure uninterrupted steady income.

Comparing the incomes

The next question is how to compare the income of employees and
contractors. How to compare an annual salary with hourly rates? Let’s go by
example.

Mary is single, she works full time, her annual salary is $70K, she has two
weeks of paid vacation, ten paid holidays, five “sick” days and she pays three
hundred dollars a month for her medical insurance.

Now she gets a job offer from another firm. It’s a one year project on a corp-
to-corp basis with pay rate of fifty dollars per hour and no benefits, of

course. Will Mary’s bank account be merrier if she takes this offer and
becomes a contractor? Let’s do some math.

Currently, Mary’s tax bracket is 33%. So her net annual income is $70K minus
thirty three percent, which makes it $46900 and after subtracting $3600 for
medical expenses, she takes home $43300 a year.

What if she’d be working as a contractor on a “corp. to corp. basis”? We’ll be
using her weekly pay to calculate her annual income. There are 52 weeks in a
year, but to compare apples to apples we need to take into an account that
Mary-the-employee has two weeks of paid vacation, ten paid holidays and
five “sick” days. So we need to subtract five weeks of lost pay if Mary
becomes a contractor but wants to enjoy the same number of days off work.

We’ll use 47 forty-hour weeks in our calculations of an annual gross income:

$50* 40*47= $94000.

As every U.S. corporation, Mary would need to pay additional social security
tax (7.5%), but by claiming some of her expenses as business-related, Mary
legally reduces her tax bracket to 30% and her net income becomes

 $94000* 0.7= $65800

If she need to buy a medical insurance, she won’t get a $300-a-month deal.
Mary-the-contractor will need to pay $800 a month so let’s subtract another
$9600 dollars to calculate the net income:

$65800-$9600=$56200

Mary-the-employee’s net income $43300, which is less than the Mary-the-
contractor’s $56200.

I gave you an example assuming that Mary is going to be contracted for the
whole year.. This may not be the case, and she may have some non-billable
time between contracts, which means lost gross income of $2000 a week,
which translates into $1400 of lost net weekly income. Six weeks of
downtime would lower her net income to

$56200-$8400=$45800

If you do not see any flaws in my calculations we can say that from the
financial point of view, it’s better to work as a $50-per-hour contractor than a
$70K-a-year employee. I did not take into consideration other perks that
your employer may offer like matching contribution for your pension plan,
laundry on premises and discounted tickets for the second-tier Broadway
shows.

Working as an employee or a consultant can often become a subject of
heated discussions. Jim McGovern wrote a blog titled "Are you a consultant":
http://duckdown.blogspot.com/2007/09/are-you-consultant.html#links .
Jim is employed as an enterprise architect by a major insurance firm, and he
is a popular blogger. We’ve co-authored a book together, and I can assure
you that he definitely knows what’s happening in the real enterprise world
and his insights are often interesting and thought provoking.

I’ll just take Jim’s observations about consultants (a.k.a. contractors) and will
respond with similar observation about employees:

You work very odd hours. It's difficult to maintain a relationship or a family.
You are paid a lot of money to keep your client happy. You are paid well but
your pimp gets most of the money. You spend a majority of your time in a
hotel room.

You work very odd hours without being paid for all these endless evenings
you spent in the office to keep your manager happy. You salary is OK, but
you’ve been brain washed that your total compensation package is twice as
big, because you are getting extra perks like 401K plan with no or minimum
contribution from your employer, free car wash, laundry on premises, gym
that you do not use and discounted tickets to the Broadway shows that you
do not like. You spend majority of your time at work.

You charge by the hour but your time can be extended for the right price.
You are not proud of what you do. Creating fantasies for your clients is
rewarded. You have no job satisfaction. If a client beats you up, the pimp just

http://duckdown.blogspot.com/2007/09/are-you-consultant.html#links

sends you to another client. People ask you, "What do you do?" and you
can't explain it.

You do not charge by the hour, hence it’s assumed that your time is not
worth anything. “By the way, Joe, can you join the meeting at 6AM
tomorrow so our offshore partners won't need to stay late?” If you do not
like what you are doing, you are pretty much stuck, because even if, in
theory, you can ask for a transfer within the same organization, you’d better
plan to spend the rest of your employment with your current manager. Your
only hope is that your manager will get promoted and will be transferred
somewhere else. But will the new manager be better?

 Your client pays for your hotel room plus your hourly rate. Your client
always wants to know how much you charge and what they get for the
money.

Your manager knows exactly how much you make, and wants to make sure
that he gets as much as possible for the money. He also knows that one can’t
get blood from a stone, but given your modest salary, he can live with it.

You know the pimp is charging more than you are worth but if the client is
foolish enough to pay it's not your problem. When you leave to go see a
client, you look great, but return looking like hell (compare your appearance
on Monday AM to Friday PM).

You believe that you are underpaid and it bothers you all the time. You do
not think that it’s fair to work your butt off as you do day in and day out.
Compare your appearance on Monday AM and Friday PM. Actually, you may
get a call from work on a weekend too.

You are rated on your "performance" in an excruciating ordeal. Even though
you get paid the big bucks, it's the client who walks away smiling. The client
always thinks your "cut" of your billing rate is higher than it actually is, and in
turn, expects miracles from you.

You are rated based on stupid rules invented by someone from the HR
department. All year you earn points for good behavior. The highest points

are earned if you fill and submit your timesheets with a detailed description
of your work on time. If your group actively participates in one of the firm-
wide social initiatives, they’ll allow you to come on Wednesday wearing
jeans. Your manager does not expect miracles from you, but is pleasantly
surprised when you deliver one. Hint: save your miracles till
October/November when the raise and promotion decisions will be made.

When you deduct your "take" from your billing rate, you constantly wonder
if you could get a better deal with another pimp. Every day you wake up and
tell yourself, "I'm not going to be doing this stuff the rest of my life."

When they deduct your taxes from your gross income, you constantly
wonder if you could get a better deal with another employer. Once in a
while a crazy thought strikes you; “Maybe I should try to become a
consultant myself?” But then you arrive to your comfy cube, see familiar
faces and then say to yourself, “No big deal; I have only 15 years to my
retirement. If I control my emotions and maintain good relations with my
boss, I’ll spend these years without major cataclysms”.

So, are you a consultant or a prostitute?

Aren’t we all…

Another Brick in the wall

The subject of working as a contractor vs. employee deserves more
attention. This time we’ll add some great music to make ease the digestion
of this material. Put on your headphones, turn on Pink Floyd's The Wall
(please…do not tell me you don’t have it), and keep reading...

You know by now that software developers earn their living by working
either as employees or as temporary contractors. Often, people use the term
consultant when they're referring to the employment status of a person, but
this is just not right, because the word consultant means a subject expert,
while the word contractor means a temporary worker and a separate legal
entity, which is exactly what consultants are. There is an opinion that

permanent employment provides better job security, but let's take a closer
look at two former college roommates, Alex and Steve, who graduated from
the same college eight years ago.

Alex was always dreaming of being an employee of a large corporation. He
knew that he'd be more secure there (Momma's gonna keep baby cozy and
warm) and was ready to work for such a firm for many years. He found such a
job and had to start from scratch learning the rules of the corporate world:
your phone conversations may be recorded, a designated person will
browse your e-mails, your applications will be protected by a couple of
firewalls and DMZ (Momma won't let anyone dirty get through). He had
been promised regular training classes and business trips to San Francisco to
study new Java technologies at the JavaOne conference.

Six months later…

“Sorry, but our training budget is not as good as it used to be and can’t send
you to SF (We don't need no education), but we have an exciting Six Sigma
training coming up, which will greatly help your career, and you may even
earn a green belt in a couple of years.” He learned to play politics, and got
used to working late hours to meet unrealistic deadlines that were set by
some incognito bad person from up above. Alex met all deadlines because
bonus time was looming ahead (If you don't eat yer meat, you can't have any
pudding).

Steve decided to work for himself, so he opened up a one-man company
and started his career as a contractor. Even though his contracts were
usually long term, Steve always knew that he needed to maintain good
technical skills to be prepared for the next technical interview. He was the
first to learn Aspect Oriented Programming, SOA principles, and all possible
Java application frameworks that have implemented the MVC design
pattern.

Steve was always the only person in the building who knew exactly what the
garbage collector did to the young generation. He never complained if his
next client was several thousand miles away from his hometown (Daddy's
flown across the ocean leaving just a memory).

About three years ago, by pure coincidence, Steve got a project with the
same company and division where Alex has been working all these years. He
was one of hundreds vice presidents with a six-figure salary, wearing an
expensive suit, Six Sigma brown belt, and matching shoes. These friends
were happy to work with each other, but this did not last long. The firm
decided to lay off several hundred employees and let go of most of the
contractors.

Alex was too expensive for the firm and Steve's contract ended sooner than
expected (All in all you were all just bricks in the wall). Alex received a decent
severance package that allowed him to spend the next six months brushing
up his Java skills. Steve did not get any compensation but found a new gig
pretty quickly in two months.

So what's the moral of this story?

If you're young and ambitious, spend at least some time working as a
contractor. Do not be afraid to start from a clean slate every now and then;
this is what capitalism is all about. Besides, the average length of full-time
employment for young programmers is also not more than two to four
years. As you get older, you'll experience difficulties in finding pure

programmer's jobs (Hey you! Out there in the cold getting lonely, getting
old, can you feel me).

But there are always exceptions to the rules. I’ll tell you later about a 72-year
old mainframe contract programmer (God bless America). Of course, he
can't write as many “if-else” statements per minute as a college graduate,
but he knows his application inside out, and the firm keeps extending his
contracts, and gives him the most complex assignments. I’ll tell you about
this guy later in the book.

If you prefer full-time employment, be loyal to the company you work for.
The firm's interests should take priority over your personal goals, but don't
get lazy. Keep your technical skills up to date; read professional books and
magazines; and visit Java online forums on a regular basis.

During difficult times your employer will let you go without thinking twice:
this is also what capitalism is about. Gurus will have to go because their
salaries are too high, and junior developers will be replaced by an
inexpensive workforce overseas. But this is okay as long as you are
technically sound, have a positive attitude toward life, and accept that all in
all you were all just bricks in the wall. I did not say this. Pink Floyd did.

Another Brick in the Wall, Pink Floyd, The Wall

Daddy's flown across the ocean
Leaving just a memory
Snapshot in the family album
Daddy what else did you leave for me?
Daddy, what'd'ja leave behind for me?!?
All in all it was just a brick in the wall.
All in all it was all just bricks in the wall.

"You! Yes, you! Stand still laddy!"

We don't need no education
We dont need no thought control
No dark sarcasm in the classroom
Teachers leave them kids alone
Hey! Teachers! Leave them kids alone!
All in all it's just another brick in the wall.
All in all you're just another brick in the wall.

We don't need no education
We don’t need no thought control
No dark sarcasm in the classroom
Teachers leave them kids alone
Hey! Teachers! Leave them kids alone!
All in all it's just another brick in the wall.
All in all you're just another brick in the wall.

"Wrong, Do it again!"
"If you don't eat yer meat, you can't have any pudding. How can you
have any pudding if you don't eat yer meat?"
"You! Yes, you behind the bikesheds, stand still laddy!"

Polyglot programmers minus SQL

In the mid nineties, IT job market was good. PowerBuilder or Visual Basic
plus SQL would get you employed in no time. Good old client/server days…
Lots of mainframe programmers were easily surviving knowing nothing but
Cobol and SQL (DB2). Two programming languages was all you need.
When multi-tier architecture became hot and J2EE came into picture, all of a
sudden you’d have to learn a lot more languages and technologies, for
example, Java, SQL, HTML, JavaScript, XML, JSP, EJB, JMS etc. And I’ve
learned all this jazz.

Five years ago the IT job market was really bad. Five years ago job postings
would require knowledge of ten different programming languages, and if
you knew only nine, you could not get a job interview let alone job. At the
time I’ve been working as an independent contractor, but the job market
was so bad that I couldn’t find a decent contract and became a full time
employee of a major bank, where I spent about two years. On Fridays, I’d
send out an email to everyone in our department with a little SQL puzzle.
Some of them I’ve been inventing myself, some googled up but most of
them I’d take from an excellent book by Joe Celko called “SQL for Smarties”
http://www.amazon.com/Joe-Celkos-SQL-Smarties-
Programming/dp/1558605762 . These emails were well received and people
were responding with the answers written in SQL.

SQL was still in favor. Technical job interviews would include a couple of SQL
questions. It’s hard to believe, but people knew how to find duplicates in a
database table by manually writing “group by” and “having” clauses.

How many people these days write any SQL statements? Why bother, an
ORM framework will let me map Java class attributes to the database table
columns... I'm drowning in XML now.

I never liked ORM. I trust SQL. Surprisingly, the young generation doesn’t
mind being polyglot programmers as long as the set does not include SQL.
The popularity of this language is comparable with the popularity of Latin
and Esperanto in the real world. Why? I don’t get it. SQL is a very elegant and
powerful language with an excellent ROI!

Note. In the next two paragraphs I’ll be bragging, so you might want to skip
them.

In 1997, I was hired for a PowerBuilder/SQL job by a small company that was
developing software for telecommunications giants like South Bell. On my
first week on the project, Sarah, the co-owner of the firm was absent – she
was delivering a baby. I had to wait for her as she was supposed to give me
an assignment. Someone showed me a report written as a Sybase stored
procedure. This daily report would run for an hour collecting various data
about activities of the field technicians. This report was poorly written - it
was using several cursors that were making multiple passes through the
same data set. I’ve eliminated most of the cursors by re-writing the “where”
clause in the main SQL statement and applying some characteristic
functions. The execution time of this report went down from an hour to
under a minute. Everyone was impressed. I became a proven commodity
and spent a year in this company enjoying an easy contract with high pay
check till the company went belly up without paying me the final check.
Talking about the power of SQL!

 Here’s one more interesting detail. When Sarah came back from her short
maternity leave, someone delivered the great news to her, “Yakov modified
that slow report, and now it only takes a minute to run!” She looked at me
and said, “Working with SQL was not your job, but I’m not angry with you –
I’m too long in this industry”. A couple of days later, I found out that Sarah
was the original author of that stored procedure and my bad behavior
showed here little weakness. Customer’s interests often have lower priority
than a someone’s ego, but that’s another subject.

In one of my mid-nineties jobs I met a very good programmer named
Roman D. who introduced me to characteristic functions in SQL (they were
described in this book). These functions are not easy to grasp, but when
you get it, your SQL will work a lot faster. Roman was a seasoned
consultant, and he shared with me an important technique for passing
technical job interviews. He’d explain characteristic functions to the
interviewers, they were impressed and would extend him an offer. I said,
“Roman, nobody knows about these characteristic functions, and the
chances are less than slim that someone would ask you about them during
the interview.” He smiled to me and said, “I do not wait till someone asks me

http://www.amazon.com/Optimizing-Transact-SQL-Advanced-Programming-Techniques/dp/0964981203

about them. It’s my strong point, and I always find a way to change the
subject and show these SQL tricks.” I’ve mentioned this interviewing
technique earlier.

May be one day the ORM tools will generate highly-optimized SQL, but it
won’t happen any time soon, that’s for sure. Proponents of ORM tools would
argue that their tools also allow manually write SQL statements in one of
their XML configuration files. If this is the case, and if you are capable of
writing SQL, why bother with ORM to begin with?

Let me tell you an old Jewish tale.

A poor man comes to the rabbi complaining that his family has only one
small room, many kids, and almost no money. The rabbi says, "Take all your
money, buy a goat, and keep the goat in your room. Come back in a month."
"But, rabbi, we don't have enough space even for us," the man said
"Just do what I say," the rabbi replied.

A month later the man comes back complaining that the goat smells and
breaks everything.
"Sell the goat and come back in a month," the rabbi tells him.
A month later the man comes back to the rabbi with flowers.
"Thank you, rabbi! We're so happy the goat is out, now we have more room
and some money!"

So if you are considering bringing the ORM-goat in, think twice. Or actually,
don’t – this way you may enjoy the moment of happiness when the goat will
be out, and you’ll return to SQL.

Why hire an IT contractor:

Isn't it obvious that having an employee in many cases is cheaper for a
company? So why even hire these expensive IT contractors?

 Skill set. Sometimes, it's hard to hire an employee with specific skills,
especially if your company does not offer competitive salaries. So what do
you have to do to meet the deadlines of this new project? You hire a
contractor knowing that even though you'll pay more (comparing to an
employee) for the same set of skills, it's a temporary solution that will allow
you to complete the project on time.

 Short time needs. Would you marry a carpenter if you need to replace your
kitchen cabinets? And when your toilet starts leaking, will you divorce the
carpenter and marry a plumber? You may not need a person with specific
skills for a long period of time, so why bring him/her on board as an
employee? With consultants, you do not need to go through this ugly
divorce procedure. A separation can be done in a heartbeat.

 Project managers want to sleep well at night. There are contractors and
then there are CONTRACTORS!. Some of them are hired for a routine coding,
while others just for being seasoned developers. Smart development
managers keep seasoned and overqualified consultants on billing just in
case. If something goes wrong, these contractors will fix the problem
quickly. These managers realize that they could have gotten a person for
the same job for a lot less money, but they bite the bullet just to sleep well at
night.

 A second opinion. Say, a new developer manager comes into an IT shop
with established and known superstar-developers, authorities and other
bullies. This manager wants to find out if the code of the current application
is written efficiently, using progressive technologies and design patterns.
How can this be done without alienating the team? Hire a consultant and
ask him/her to perform a code review and offer some improvements, if
needed. In the "worst case scenario", this consultant won't find anything
wrong, but a negative result is also a result. The manager will have peace of

mind. If this code review will find some pain points in the code, it'll help the
manager to address them without being a “bad cop”.

 Offshore contractors. A project manager may not have any other choice but
to hire offshore software developers, which are often hired not just because
it's cheaper, but because of his/her skills. In the former case, you'll wind up
paying more by the end of the project. While in general, I am not too happy
with the way outsourcing is handled, I’ve been working with some very
good developers located overseas. I've interviewed them for the job, I liked
them, and they did a very good job.

But the main reason why a project manager hires a contractor is to help him
in achieving his/her career goals. Correspondingly, the main goal of a well
trained contractor is to help the hiring manager in achieving his/her career
goals. Sounds cynical, doesn’t it? But I’ve warned you that this is a book
about the real-world enterprise development, didn’t I?

Will high-paid contractors become extinct?

People often ask me, "How are the rates? Are they as good as last year’s?"
They do not necessarily want to work as contractors, but are rather looking
for a confirmation that the IT market is in a good shape.

The logic is simple: if companies are willing to pay good money to
contractors, then new well budgeted projects are being created, which is
good for everyone.

While anyone can go to a free clinic, A medical patient may be willing to pay
to a famous doctor $500 for a five-minute consultation.

While there are free public lawyers, their famous colleagues charge about
$1000 an hour, and as we’ve seen on multiple occasions, they keep their
clients out of jail.

This applies to the software development as well. Employers could have
hired five contractors overseas instead of hiring this local expensive one…
Are they wasting money? I do not think so. On a slow day such contractor
may be just browsing the Internet, while ten software developers in
Bangalore are typing if-else statements at the speed of 20 words per minute.
But guess what, once in a while he can suggest a solution that will save this
employer tons of money by creating a scalable and highly available system.
And experienced project managers know this.

IMHO, high paid IT contractors will never become extinct regardless of
flourishing outsourcing or recessions. Their rates may go down 25-30% but
eventually they come back as long as they maintain skills at the high and up
to date level. Just read, write, code, attend professional seminars, learn hot
technologies and … never stop.

You can say that you know a very experienced guru Joe Shmo, and he’s out
of job for a year. There are only three reasons for this to happen:

 1. Joe’s rate is too high for this geographical area at the moment and he’s
not willing to relocate.

 2. The requested pay rate does not match Joe’s resume, but he’s not willing
to accept this and lower the rate.

 3. Joe’s skills became outdated while he was out of work.

Living with outsourcing

Initially, I named this section “Dealing with outsourcing”, but then I renamed
it to “Living with outsourcing” because outsourcing is here to stay. It
happened in other industries. For example sometime back I went to a toy
store with my son and he found a box marked “Made in the USA”. My son
was surprised and said, “Daddy, I thought all the toys were made in China”,
and he was right. Most toys are made in China and this may happen to
software as well so you just have to learn how to live with it.

First of all, I want to tell you that outsourcing is not as cheap as it sounds.
Managers are happy to fix reports to show you that they can hire three
people in India instead of hiring just you alone because their salaries are
much smaller. Of course, the cost of living there is much smaller as well but
not everybody is trying to talk about how this outsourcing requires
additional expenses such as additional business analysts. These people from
overseas may not know your business, and now we need to hire someone
who will explain to them everything about the project and about the
business.

In some cases your firm will be facing additional licensing fees as it needs to
install the required software overseas. Additional tech support is also
required. If something goes wrong overseas, what’s going to happen to your
data? The Sarbanes-Oxley act requires extra protection for data if they are
used overseas by offshore developers. It all adds up.

Outsourcing eliminates some jobs and create others. Mostly junior level
positions are being outsourced - keep your technical skills in good shape.

If you don’t want to constantly learn these new technologies that come up
every day or every month consider to switching to a different area. Maybe it
worth pursuing a career of business analyst? In this case spend more time
learning the business of your company. You will still be working with familiar
people, applications plus managing offshore teams.

Training, training and training

How to get trained? There is tons of information on the internet. Find an
online forum where people who use your language communicate. Learn
about their problems and challenges. What’s hot, and what’s not? Buy at
least five books a year and read them, study them, and if your firm offers
some internal training you must use it.

Corporate IT training

 When the moment is right, you can be ready
 from a Cialis commercials

Back in the '90s, we became accustomed to receiving thick glossy brochures
from various training companies. Five days of such instructor-led training
would cost more than $2,000. For corporate employees this was "other
people's money," and usually employees were entitled to at least one week
of such training annually.

In '98, I finished my PowerBuilder career. I was working as an independent
contractor and decided to switch to Java. I had learned the language by
reading dozens of books (yes, we used to buy technical books in the last
century). But when you switch from one language to another, the most
valuable knowledge is not in the books. I needed to know how the real-
world Java projects were designed and developed, so I paid $2,500 for a
week of WebLogic training (the most popular Java application server at the
time), and it was worth every penny. The instructor was a knowledgeable
guy and this course was an eye-opener. I figured out what had to go in Java
servlets and what went into EJBs, what is a Façade pattern, and what to
watch for.

This training worked out well, because of my motivation: I needed to pay my
bills, and when you apply for a Java position, your previous PowerBuilder
experience (other than an understanding of OOP) doesn't count.

In 2001, the U.S. economy went into a long recession. When an enterprise
goes through difficult times, its management lays off some people and
immediately cuts the training budget. The mandatory trainings like Six
Sigma or CMM will always survive, but the real stuff gets frozen. In the
beginning of this millennium, those training companies that managed to
survive reduced the tuition costs and their fat brochures turned into flyers.
Course enrollment dropped drastically. They would even run classes for as
little as three students. If the course was designed for five days, the
corporate clients would ask for them to deliver it in three.

Less expensive online training came into the picture, but it proved to be
boring and less effective than the classroom one. However, since the
economy remained in recession for three years, many people suspended
their computer education and started to whine about outsourcing.

Now, instructor-led training is back, and tuition is getting higher again.
Guess what’s the most expensive training these days? Some companies that
make free open source software, charge a premium for training: $3,000 for a
five-day course per person. Well, they need to make money somehow, but
I'm sure this won't last long; a new breed of startups that sells support of the
open source tools will balance supply and demand by offering more
reasonably priced training.

Who Is Teaching

When I was doing a contract training, it worked as follows: I was getting an
e-mail with the title of the class, airplane tickets, an overnight package with a
training manual, and a CD with code samples. Smaller training providers
don't develop their own manuals, but purchase the courseware from third
parties or the vendor of the software they teach. Once I had to deliver a one-
day, MQ Series training. The manual was poorly written, but since I was right
off a messaging project, I had lots of things to say on the subject. The
students were happy and the class was saved.

But I have to admit that I’m guilty of teaching technologies of which I have
only a book knowledge. Some instructors just read the manual and slides
aloud. Their version of the manual may include additional comments that
you don't see, so it looks as if they know more than you. Always ask about
the instructor’s credentials before you are enrolling into his class.

Here’s my story of how I became an Adobe Certified Flex Instructor.

In the Summer of 2006 I was working with Flex at full speed. In addition to
this, I wrote technical articles and co-authored of an advanced book on real-
world programming with Flex and Java. I always enjoyed teaching

programming, PowerBuilder, Java, and now Flex. And when you teach any
programming language, you need a good text book or courseware. I
decided to purchase Flex courseware from Adobe, complete all the labs and
start teaching Flex to the masses. When I contacted Adobe, they answered
that the courseware is available only for certified instructors. This sounded
reasonable, and my next question was, “How do I get certified?”

Since I was an early Flex adopter, had published numerous articles, worked
on the Flex book, knew people on the Flex team, had Java medals all over
my chest, and was teaching programming at NYU, I was expecting the
following answer from Adobe:

”Dear Yakov, we are so happy that you’ve decided to become a certified Flex
instructor! We’ll overnight you the diploma, and please start teaching Flex
now.”

The real answer was a little different:

”Yakov, get your butt on a plane and fly to Seattle next month. Sit through
the five-day train-the-trainer Flex class, then prepare and teach a one hour
training session in front of an audience using our courseware, and if we like
it, you’ll become Adobe Certified Flex Instructor”.

Well, the wording was more polite, but the meaning was the same.
And I did exactly this – took a week off at work, purchased arline tickets,
booked a hotel, and sat through a very intense class at Adobe. At the end of
the class I ran a short class covering various units using the original
courseware, and passed the test.

Is the instructor qualified to teach the next class you are planning to take?
Do not be shy and figure it out in advance.

Finding quality training

Most of the large corporations have a list of approved training vendors and
courses to choose from, and it seems that there is nothing you can do about
it.

Wrong. DO not just blindly accept the course by an approved training
vendors. Find the relevant conference or a seminar. Such seminars always
have technical sessions on your technology of choice with first-class
speakers who are practitioners, and many of them are book authors as well.
These seminars usually run training over parallel tracks so you can pick the
classes that match your objectives. These events are less expensive than
comparable vendor training, and the quality is better (just try to avoid
marketing presentations).

Pick a conference and remind your boss about all those long hours you've
spent on the project. You need and deserve quality training!

There are lots and lots of passive people who just prefer to pray that things
won’t get worse, and they'll keep their jobs forever. They do not want to
irritate their bosses by asking to send them for training.

A guy from a large corporation told me that everyone in his department was
entitled to two weeks of free training a year, but most of them did not use it!
He also revealed that he wouldn't listen to technical presentations on the
conferences, if presenters do not have giveaways like free T-shirts.

Recently I've asked a couple of seasoned Java programmers what the
acronyms AOP, and JBI mean. They didn't know. Ask your colleagues a
similar question but use the acronyms that represent a leading edge
technologies in your area. I bet most of them would not know them.

There are plenty of great programmers who just write code for their
employer day in and day out. Raise your head and look around. See what
other people with similar skills are up to. You may find a vibrant community
of software developers that share your passion. Be a part of it.

Enjoy your technical conference

Next month I’m planning to be in San Francisco1. This is an exciting trip for
me… sort of a high-end vacation.

“How dare you!”, says Joe, another JavaOne attendee, “I’m planning on
working there twelve hour days trying to absorb the technical wisdom of
Java gurus. What vacation are you talking about?”

Hey Joe, just change your attitude. Do not spoil the party. JavaOne is a place
with a super-high Java energy. Sort of a Java spa…Being in the place with
the highest possible concentration of people sharing the passion for the
same thing is like a medical procedure…Just being there will cure and
recharge your worn-out brain…Enjoy the fluids…

Light breakfast in the morning, and then not more than two brain-
massaging technical sessions. Make sure that most of your sessions are
given by the best possible masseuses.

Who is teaching is more important than what is being taught.

Then, a two-hour lunch break. Eat slowly, enjoy your food, and stop drinking
these soft killing sodas.

After lunch walk around the vendor area. Do not get intimidated. Like the
design of this T-shirt? Just stop by the booth, introduce yourself and spend
five minutes listening to the brouhaha about how product XYZ will
revolutionize your life. Get the T-shirt and move to the next table.

 Look at these nice little glowing pens! Aren’t they something? Just give
these vendors your business card and bring home a couple of pens for your
kids. You may get this annoying phone call from their salesman in a month
or so, but it's in a month... but your kids will start enjoying these pens next
week. Daddy’s back from a business trip! What did you get us?

1 I’ve written this piece prior to attending one of the JavaOne conferences

Look at this lady in red - she carries a huge bag of freebies and brochures.
Trust me, she’s not going to read them. In the best case scenario, she'll bring
them to her office after the show. But most likely she'll leave them in the
hotel room.

On a more serious note, if you are really interested in a particular
technology, you’d better spend some time at the vendors’ tables. For
example, if you are interested in Java messaging in general, stop by every
company that offers their implementation of JMS. You’ll find some strong
technical people who researched this particular technology really well. You
may not get access to them this easily any time soon, especially if you live in
a small town somewhere in Alabama.

After lunch, I prescribe up to two more technical sessions, and then blend in
again with the crowd. In the evening, get a couple of beers or other adult
beverages.

Attend a couple of keynote sessions. While the topic should be of interest to
you, the speaker’s personality is the most important criterion. If s/he was
able to get invited to give a keynote talk at a large conference, this deserves
fifty minutes of your precious time. If the keynote speaker is not that great,
you’ll be having a hard time tomorrow trying to recall what that
motivational keynote speech was about.

Bright future? Does Java need closures? Why EJB still deserves a second
look? And most importantly, did he cut his ponytail? Will he? I can’t trust my
memory anymore, and will be taking notes and blogging from the show on
a daily basis. I might get myself in trouble again, as it happened after I’ve
asked a question and published my notes at a recent conference. Oh well…

The cost of attending a technical conference

There is a number of technical conferences where software developers and
IT managers can learn about the industry trends and improve their technical
skills. For example, the number one event for more than five million Java
developers is an annual conference and expo called JavaOne. Each year ten

to fifteen thousand developers gather in San Francisco for learning,
networking and partying with similar species.

I did some math to calculate the minimum damage that attending JavaOne
may cause to your valet. In my calculations I was assuming a registration fee
of $2500 (waived for speakers). I did not take into account early bird
discounts or any other coupons that could lower the fees). I did not include
local transportation, parking, food and drink expenses, which for some
people may substantially increase the cost of attendance. So let’s see…

1. For a speaker (non-contractor) living in the Bay area: $0
2. For a speaker (contractor between the projects) living in the Bay area: $0
3. For a speaker (contractor on the project) living in the Bay area: $3000 -
$5000 of lost earnings.
4. For a regular attendee (non- contractor) living in the Bay area: $2500
5. For a regular attendee (contractor between the projects) living in the Bay
area: $2500
6. For a regular attendee (contractor on the project) living in the Bay area:
$5500 - $7700 for lost earnings +registration fees.

For US attendees living in the East coast, add from $1000 to $1500 for air
tickets and hotel to the above.

If you do not live in the USA, add an extra $500-$1000 for more expensive air
tickets, and residents of some countries may have to shell out up to an
additional $200 for the US entry visas. On a positive note, the total package
price looks a bit better for people who live in the European Union, because
US dollar is cheap comparing to the euro and each thousand dollars turns
into “only” six hundred Euros.

If you’ll add all these numbers, some people (or their employers) will spend
at least $10,000 USD to attend JavaOne. And guess what, all these expenses
won’t stop at least 12,000 people (may be more) from coming to SF this year.
They must be in love with this beast called Java. By the way, how much did
you spend on you recent vacation with your spouse/boyfriend/girlfriend?
Who do you love more: them or Java?

There is a group of people who will come to JavaOne, but will not attend
even a single technical session. They will just hang out in the nearby bars
and restaurants making new friends and contacts. For example, read this
blog entry of Hani Suleiman describing one of his days at JavaOne 2007.
Networking, networking, networking (remember, location, location,
location)…

http://www.bileblog.org/?p=331

How comfy is your cubicle?

How comfy is your cubicle? Actually do you even have a cubicle? Is it
decorated well enough?

Since I’ve spent years working as a contractor, I’ve had an opportunity to
work at different corporate cites. Some companies use an open space layout,
where everyone can see each other, which is just horrible. In some cases you
see cubes with tall divider-walls when the entire floor looks like a deserted
maze.

Joel Spolsky insists that every programmer has to have a private office. This
is a great idea, but the chances are close to zero that you, a programmer will
have your own office. My working space during the last six months consists
of two square feet area on the conference room table covered with cables,
wires, and power cords. Am I complaining? Not at all. I am a consultant,
which means that I need to help the client with solving THEIR problems, not
mine.

An absence of working space stops me from bringing any personal
belongings to work. I come with my laptop, connect to the network, put on
my headphones and start working. When I leave, no cleanup is required. It’s
as if I never even was there.

The other extreme on corporate floors is overly decorated cubes: tons of
photos, books, about a dozen of different plants, sport memorabilia, and
mugs with logos of all previous employers... When I see something like this,
it seems that people think that they will live there forever. Imagine if they
get fired - they'll need to bring a moving truck to take all these items home. I
used the word fired on purpose - these people are not planning to leave the
firm voluntarily. Ever.

Barnes and Noble bookstores offer help for people who like decorating their
cells. It's called Cube Chic.

Now you can have the Garden Cube, the Cabin Cube or even the CEO Cube. I
guess, your self esteem will go up if you turn your cube into a CEO-like office.

No, this is not for me. Let me push aside all these wires and power cords
away, so my laptop and elbows will fit.

S/he or cherchez la femme

The Wall Street Journal has published an article called “Do women hate IT?”:
http://blogs.wsj.com/biztech/2007/08/08/do-women-hate-it/
Here’s an extract from this article:

The percentage of women working in information-technology departments,
which wasn’t high to begin with, is dropping. With an IT-labor crunch
looming, it’s time to ask: What is it about IT that may be repelling half the
population?

While women hold 51% of all professional positions in the workforce, they
only made up 26% of IT pros in 2006, down from 29% in 2004, according to
the National Center for Women and Information Technology. Only 13% of
corporate officers at Fortune 500 tech companies are women. And Jenny
Slade, communications director for the NCWIT, tells in the Business
Technology Blog that women who do pursue IT careers tend to leave them
at a higher rate than men.

I’ve attended one of the popular Sys-Con Conference called AJAXWorld. The
speakers were great, but beside enjoying the presentations, I was looking for
women, or as the French say, I’ve been cherchez-ing la femme. Just look at
the picture from that conference, and see if you can spot one woman.

http://blogs.wsj.com/biztech/2007/08/08/do-women-hate-it/
http://www.ajaxworld.com/
http://www.phrases.org.uk/meanings/91000.html

When I write my technical articles or blogs, I always face the dilemma of
which gender to use while referring to a user. Often after the words "the
user", I put "he or she will do so and so" to make sure that the readers won’t
assume that most of the users are males. Then I found this nice way to put it:
“s/he”. Some authors are afraid to be proclaimed male chauvinists so they
just use “she” all the time referring to the user or a programmer. Males do no
care and will never complain about such "discrimination".

During the short breaks between the AJAX seminar presentations, the video
camera was showing the attendees moving around. Yes! I’ve spotted a
couple of women! At first, I was surprised: how come all the men were
dressed down, while all the women were dressed up in a tuxedo-like suites.
Then I realized that these women were hotel employees serving beverages
to the attendees.

Finally, I spotted two or three IT-looking women. My statistics are very
subjective, but I’d say that men/women ratio at this event was about 25 to 1
and I do not see this situation changing any time soon.

Sexism, women and IT

Some women are concerned about sexism in IT. Here’s what I think on this
subject.

First, I do not like when people curse in public . Not just because that there
are women in the audience, but it’s just plain wrong.

Second, there is very small number of women programmers. Is this because
some bad guy do not let them in? I doubt it. For some reason, women
decided to abandon this profession. Are there some idiots that believe that
men are superior? Yes, there are, but they are minority. I’ve never heard that
a woman was denied employment I n IT because of her gender.

Do women earn less money than men? Most likely. Is it because their
priorities are taking care of kids and husbands/boyfriends? Most likely.
Is it wrong?

IT managers need go-getters. Most of the women need to take care of kids
and us, men and there is nothing wrong with it. They can't stay late. Of
course, there are exceptions. But mediocre managers do not want to take
chances, and the vast majority on enterprise managers are mediocre.

I’d love to see more women in IT and wrote a section about it in this book
called “S/he or cherchez la femme”.

On the other hand, I think it’s wrong that people in the USA are AFRAID to
say a compliment to a woman, because they might get sued. My friend had
to watch a video during her orientation day in a major corporation. They
were showing several episodes. Here’s one of them.

Two men are sitting in a corp. cafeteria. A woman in a short skirt stops by a
vending machine. She bends to pick whatever she purchased. The men’s
heads automatically turn to see her yes indeed. She can files a sexual
harassment suit.

Here’s another episode. A secretary makes a compliment to her boss about
his neck tie. He can sue her for sexual harassment.

Is this insane or what?

http://yakovfain.javadevelopersjournal.com/do_you_curse_on_public.htm

I think that enterprises that force people to maintain gender-less relations
are doomed. This is not healthy and not productive. I've been working with
lots of women that were great programmers. Mary, you look so good today,
but please do not get me in trouble for saying this!

Arranged marriages in IT

As per Wikipedia, "an arranged marriage is a marriage in which the marital
partners are chosen by others based on considerations other than the pre-existing
mutual attraction of the partners."

This definition comes to mind when I see how large IT organizations
prearrange "marriages" between the application developers and architects.
I'd like to discuss potential issues between architects and developers and, to
avoid confusions, I'll keep quoting Wikipedia in italic font.

The honeymoon

I’ll be describing the situation in the Java camp, but it’s applicable to any
modern programming language.

As soon as your IT department grows to more than a half of a dozen Java
developers, the leader of the pack (the Architect) suggests a centralized
creation of reusable components. This is an easy sell: your group is agile and
still not too large and, if one of these components needs to be changed, the
architect is right on the premises and s/he works for you and on your
schedule. Developers know on which shelf the Singleton and Data Transfer
Objects reside and where the date transformation utilities are located, and
they are reusing them as the need arises. At this stage we can call relations
between developers and architects consensual.

The family life (a.k.a. corporate politics)

Time goes by, and older Java species bring in the younger ones. The
population increases. Management moves the architects from several

application development units into a new group where they can increase
reusability of the objects and frameworks across the enterprise.

When a new development project begins, you (the application developer)
are told to use only the objects and frameworks recommended by the
architecture group. Basically, you don't have a choice.

Noble families, especially reigning families, long used arranged marriage to
consolidate their strengths and to join their kingdoms. The parents, who
often arrange the marriages, are trusted to make a match that is in the best
interest of their children; though there are times when the choosers select a
match that serves their interest and not the couple's.

Yes, your architects create new components and frameworks, but don't they
have to compete with outside third-party vendors? If Jakarta Commons has
a generic Pool object, why are you not allowed to use it in your project and
have to use the homegrown pool instead?

Arranged marriages can also be very flexible. In one scenario, the parents
introduce their son or daughter to several potential mates, while giving two
the final decision, given some time.

Here's a typical conversation of a Java couple over the morning coffee:

 - Darling, I need a generic Java class that would run SQL queries that are
given in an XML file.
 - No problem, honey. Now I'm working on a very exciting project: a global
logger that will allow reading of any log file on any specified corporate
workstation. But I'll definitely look into your request next month.
 - But I have my deadlines... Remember, you promised that my wish would
be your order...

Architecture groups often turn themselves into small kingdoms where mere
Java mortals are not allowed (they might have picked up this infection after
multiple unsafe relations with Oracle DBAs). Their main business is now the
evaluation and purchasing of third-party tools and the introduction of new
software layers between these tools and business applications. They know
how to talk the talk, and the CIO rests assured that software architecture is

taken care off. Meanwhile, experienced application developers start to
quietly develop their own components to meet their deadlines. Their weak
attempts to offer these completed useful components back to the
architecture group are not always well received.

Proponents of arranged marriages claim that arranged marriages are more
successful than other marriages. They hold that the spouses in an arranged
marriage begin without any expectations from each other, and that as the
relationship matures, a greater understanding between the two develops.

The family budget

Who pays the architects' salaries? The architects usually cut slices from the
approved budgets for business application development. I am not against
such deals as long as the architects don't forget whose funds help them to
make their living. They can really save the firm's money by suggesting
solutions leading to efficient utilization of existing server licenses, idling
hardware, use of open source products, parallel computing, performing
code reviews, mentoring of junior developers, delivering technical training
(not the one that exists in the approved list of courses), and suggesting the
best practices that are immediately applicable to business systems.

Arranged marriages operate on the notion that marriages are primarily an
economic union or a means to have children.

Unfortunately, not every marriage produces children.

Divorce is not an option

It has also been said that in some cultures where divorce is forbidden or
uncommon, arranged marriage would work out nicely because both
husband and wife would accept the marriage, producing their best efforts to
make it a success instead of breaking up at the slightest conflict.

Needless to say that application developers must also put their best foot
forward and stop blaming architects when something doesn't work right.
The chances are that you didn't spend enough time learning how to use
these components. Maybe they're not that bad?

Oh well, it's time to take a shower, go to bed, and have relations with my
spouse...oops...I meant to say it's time to go to a meeting with the enterprise
architecture group.

Increase your visibility

Manage your manager

Being a good software developer is an important part of the game, but you
should not ignore something called “managing your manager”. If you are
good, you manager has to know about it.

For example, you may get a two-week assignment and report to you
manager in time saying that you did it. The manager will thank you and will
move on with his business-as-usual stuff.
But how about these three technical challenges you had to overcome while
working on this assignment? You have to make sure that your manager
knows about it. Keep track of these challenges and solutions and write an
email to your manager explaining what you had to do to overcome these
technical obstacles. You manager must know that it was not an easy
assignment, but you’ve completed it nevertheless.

Any manager looks for people s/he can depend on, and s/he’ll respect you
more knowing about your achievements. Do not just quietly do what you
are told to. Do not be shy – manage your manager.

Have you published your book yet?

Most of us have purchased books online. But visiting a real bookstore can
be a much better experience. This is how it goes. You slowly move your eyes

along the bookshelf...Stop, let me open this one. No hurry. I believe in
chemistry between books and readers: you either like the book or you don’t.
This very moment. Without even reading it.

No rush. Do you know that books are not put on the shelves randomly?
Books on hot topics and books by well-established publishers like O'Reilly
are always sitting on the shelves at your eye level. When some languages or
tools are hot, books start their "career" movement up the store ladder, or
rather up the shelf. Three-four years ago, Java books dominated, and then
.NET started fighting for space. All of a sudden books on Ruby and AJAX
popped up at the level of my belly. Then some other hot software suddenly
moves from the floor level to the top shelf...

Each book has its history. Who are these people, the book authors? Why do
they write books? Is it for the money? Fame? Are there any other practical
reasons? What’s the process between having a book idea and seeing your
book on the shelf of a brick and mortar bookstore?

I’ll tell you my story, since I had to answer all these questions for myself in
the past. I’ve written several books some of which were self-published, while
others were published by professional publishers.

First, I’ll share with you my self-publishing experience. This is rather detailed
section where are share with you my personal experience in publishing. But
I really hope that this will encourage you and stop you from giving up on
your dreams.

In the year of 2001, I was one of millions of Java programmers. But besides
my 9-6 job, I’ve been teaching programming in different languages to
different categories of people. Back then I’ve been helping adults switch
their careers. They’ve been retrained into programmers from being electrical
engineers, hairdressers, even a coal miner. In the US, you do not have to
have any formal education to work as a computer programmer. If you are
good technically and have some relevant industry experience, you are in. For
example, right now one of my colleagues is a former US marine who never
went to college. He’s an interesting person and very good self-taught
software engineer.

In the end of nineties and in the beginning of this century while teaching
Java, I was preparing handouts for my classes. The students liked the
handouts; they liked the way I explained the materials for the classes and the
exercises. Some of them asked me, “Why don’t you publish these handouts
as a book, a Java tutorial?” Initially I didn’t pay attention to these
suggestions, but at some point I said to myself, “Maybe I should try”.

Java was pretty popular in 2001, and it was well covered in the press. There
were more than a thousand books published on Java and Java-related
technologies. This huge book pool also included dozens of Java tutorials
written by well known authors.

And here I am, with my big idea of writing yet another Java tutorial. Who am
I to write it? But why not to try? This is America, the land of opportunities,
isn’t it? It sure is, but this does not means that everyone else in America has
to work on making your dream come true.

Anyway, I decided to write Java tutorial number 159 or so and started
sending emails to various publishing houses offering the outline of my
future Java tutorial. And acquisition editors (people who are evaluating book
proposals) were responding to my letters in a similar fashion, “Thank you
very much for your proposal, but we are not planning to publish a Java
tutorial at this time. But we’ll keep your proposal on file, and should the
need arise in the future…”

One rejection after the other. But, as the old saying goes

Every rejection brings you closer to your goal

So I said to myself, “If they don’t want to publish me, I’ll publish the book
m ve any slightest idea of yself with my own funds.” At that time I did not ha
what I’m about to start and what it takes to write, publish and sell a book.

I started writing my tutorial. Talking about programming is a lot easier than
writing about it. Add to this the fact that English isn’t my first language...

Writing a book is only one small part of the publishing business, which I had
to learn too. I had to learn each step of this business – how to do editing,
formatting, layouts, book cover, printing, promoting, selling, and shipping
the books.

So I purchased a book “Dan Poynter’s Self-Publishing Manual”, which helped
me learn some basics of this process. This book had some good ideas, some
useful contact information, and it explained to me how to run such a project.
In some cases this book would offer non applicable advices, but this is a
common problem of many people who are trying to give you an advice.

By the time they give an advice, they have already achieved a lot, they know
the right people, and what seems to be easy for them just isn’t that easy for
some guy who is just a programmer trying to publish and promote book.

But that book was definitely a useful read for me, and if you are about to self-
publish a book, start with Dan’s manuscript. At the very least it will put your
thoughts on this business in some kind of a structure..

I knew what to put in my Java tutorial because of my classroom experience,
and the reactions of my students.. So I created a book outline and a table of
contents. This book would consist of two parts: the basics of the Java
language and J2EE stuff (Java Servlets, JSPs, EJBs, and Java messaging). I am
a strong believer that all examples in any programming class have to be
from the real world. I don’t like explaining business programming using
examples of a bird’s life, trees or apples and oranges. I prefer to giving the
examples from the field of the business where my students will be working
in the future.

In the first part I was planning to give lots of different examples; and in the
second part readers were supposed to build an application from a financial
industry, which is a useful knowledge for programmers who are looking for a
job in New York City and many other financial centers in the world.

I started writing my book. The first question was what software to use to
write a book. I didn’t want to pay any money for expensive publishing
software so I used Microsoft Word as an editor. This is not the best solution

when it comes to laying out a book. But it’s not publishing software, and I
can’t blame it for not doing something it was not created for.

While writing this book I’ve learned that there is a huge difference between
explaining or just teaching a class and writing about the same material in a
book. If you know what to say, that’s one part of the deal but, when you start
writing it and then re-reading it, it’s a completely different story. All these
little mistakes and omissions that would be forgiven when you talk pops
right at you when written in the book.

I’m sure I make mistakes while speaking English but I am not the only one.
Even native English speakers suffer from this. But, in writing people don’t
forgive mistakes that easily, and many years after the book was published,
one of the buyers on Amazon gave me two stars out of five saying that the
book content was great but the editing was poor. So it’s very important to
hire a professional proof reader, which I did not do.

I didn’t plan to spend too much money; I didn’t have too much money for
this project. I did some evaluations of how much the book would cost and
what items should be included in my expense list.

I decided to save money on proofreading and figured that my kids could do
this. English was their first language. This was a mistake number one.

Then besides this expense I had to find a printer to print so many copies of
the book. How many copies? I had no idea. I realized that the more copies
you print, the cheaper the cost of each copy is. I decided that two thousand
copies would be a reasonable number to lower the printing cost and keep
me in business.

The next step was diagrams. I had to create all these diagrams, which were
not an expense as I drew them myself.

The next part was the book cover. I had to think of what I was going to put
on the book cover and again I didn’t want to hire any professional cover
designer. Cheap bastard!

My older son was in high school, and he was a good artist even back then.
Later, he became a professional artist/animator. I asked for him to draw the
cover. Now I understand that the cover could have been better, but hey, I
saved money once again!

Then I had to decide about the size of the book. Is it going to be seven by
nine inches or eight by eleven or maybe five by seven? Typically computer
books are seven by nine or around this size, and the size of the book cover
(front, back and the spine) should be able to hold three hundred of pages of
book.

By the way, what do you put on the back cover of the book? I didn’t come up
with anything smarter than a picture of my smiley face with some
information about myself, the book contents and a bar code. Oops…where
to order the quality image of the bar code?

The book by Dan Poynter suggested that it would be nicer to put some
quotes from well known people in the industry but I didn’t know any well
known people in the industry. How could I even approach anyone asking for
a quote about my book? That was out of the questions.

To order the barcode I had to apply for an International Standard Book
Number (ISBN). I found a place to apply for the ISBN numbers and they don’t
sell you one ISBN number they sell you chunks of at least ten numbers a
piece for about $250. Why on earth would I need ten ISBN numbers? This
was the only book I was planning to publish! I just didn’t have a choice and
bought these ten numbers.

ISBN is a unique identification number that every book should have if you
are planning to sell them through the book stores in the USA. I got that part
done and found a firm that knew how to create a barcode image based on
ISBN. This was a small expense - ten dollars.

Now I had to find a printing company. After some preliminary online
research, I found the least expensive company for printing the book, the
cover and for shipping the books to my house.
Remember, I was expecting to receive two thousand copies of the book. Do
you even have space in your house to store this number of books for years?

This was not a Harry Potter book and for a self-publisher, it take years to sell
all the copies. I lived in a house with a basement so the storage was not an
issue.

These days there are so called print-on-demand companies that can print
smaller quantities of your book on an as-needed basis. It’s a more expensive
per-copy solution, but can work for people who can’t invest several
thousand dollars into a risky enterprise.

Finally, I got these books in the flesh. This was a very memorable day in my
life. I did it! They said that it couldn’t be done but I did it anyway! I stacked
the books in the basement…and now what? Did anyone want to sell them?
Not really.
It’s time for the second round of rejections. I started approaching possible
sellers for my book. I was sending out free copies of the book to multiple
small and large stores around the country. The cover letter read something
like this: “Dear bookstore owner, here is a copy for you to review and if you
are interested I am willing to send more copies.”

I already knew that there was a list price of the book and an actual price that
you will get from the book stores or from the wholesalers, and I knew that
these guys would take roughly 55% off the list price of the book. And this is
what I was offering to all these small stores on campuses assuming that
many colleges are studying Java and students might be interested in buying
this book. This was another mistake.

Students buy books recommended by their professors. Book stores on
campuses order books recommended by college professors. Other small
book stores just work with a limited numbers of publishers and order books
from them. They do not want to deal with small publishers.

Eventually, I figured out that all my review copies were simply sold by these
book stores and they did not bother to contact me again. That was a stupid
idea to send review copies to small stores because in the USA all business
distribution channels are well organized, and it would take huge efforts to
make them change their processes.

I needed to figure out a way to get my book to the big guys. My first target
was Amazon.com, the largest super mega book store online. After browsing
their Web site, I found out that they have a small publisher division. I
followed the procedure, filled out some forms and sent them a review copy
of my book. In two-three months they responded positively – they
ALLOWED me to send a couple of copies of my book so it could be sold on
Amazon.com. They also pay the publishers (at least the small ones) 55% of
the list price of the book so when you see all these big discounts like 30%
off, 35% off, 40% off on Amazon you shouldn’t worry about them too much
because they still make profit.

But Amazon doesn’t want to store too many copies of your book, and they
let me send just two copies. Hey, I was in a good mood – having 1998 books
in my basement is better than 2000!

I sent them these books, and the book started selling… slowly. At the same
time I approached Barnes and Noble. Same story, Barnes and Noble also had
a small publishers division. I read about the procedure, wrote them a letter
and sent them a review copy. Their process took three months or so, and
they responded positively. I received a letter from them, that they were
willing to offer it for sale in their store. They wanted to purchase 30 copies of
my book. This was one of the happiest days in my life.

I was about to start packing the book but, unfortunately that letter had
another page explaining that they do not purchase books from small
publishers. There was a list of the nationwide wholesalers that B&N dealt
with. Now I had to have to find one of the wholesalers willing to carry my
book. Piece of cake – I already have a respectful book store confirming that
they were ready to purchase 30 copies.

I started writing letters to these wholesalers. Dear wholesaler, here I am, and
here’s a commitment from Barnes and Noble, and would you be kind
enough to be my middle man between myself and B&N. Guess what, I
started receiving another round of rejection letters from wholesalers stating
that I was too small of a publisher even for them! Finally I’ve got one positive
response and Barnes and Noble started selling my books.

After selling the first thirty books they started ordering more and more. I
started visiting my nearby B&N store enjoying the view of my book standing
on the shelf among the big guys like O’Reilly or Wiley.

But even if your book is sitting on the store’s bookshelf doesn’t mean that
people will start buying it unless they know the publisher or the author. In
my case, they did not know either. I decided to invest in self-promotion and
become more visible by approaching technical magazines. I started writing
technical articles that would include my BIO, which mentioned that I was the
author of the “Java Tutorial for the Real World”.

I submitted abstracts of various articles to Java-related publications, and
Java Developer’s Journal (Sys-Con Media) responded positively. It was an
article about the difference of using abstract classes and interfaces in Java -
a technical area that not a lot of people understand too well. JDJ was the
most readable Java publication in the world, so I considered myself lucky!
After waiting for several months I got back an email from the editor in chief
of the magazine, Allan Williamson. He apologized for not responding earlier,
and asked me to send the article in. Allan made my day!

In a month, my first article was published in print and it was well received by
Java developers. Well received means that thousands of people have read it
and no one said that I am an idiot. Trust me, this is a very good result in
today’s world, where it’s so easy to leave a negative feedback online.

I wrote a second article, and then got an invite to become one of the
technical editors of JDJ, and I accepted the invite. Technical editors are
people who are experts in a particular area and are willing to read other
peoples submissions to see if they have technical merits. Technical editors
also say yey or nay. After approving an abstract of an article, I would start
working with the author on the first draft. I’d read and commented the
article and sent it back to the author, then another cycle, and eventually I’d
submit it for publication.

I also wrote my own articles, which definitely helped in selling my first book.

The fact that I’ve authored a book, allowed me to join a mailing list of
computer book authors. One day, James McGovern, a published author

posted an invitation to Java authors to join the team working on the J2EE
Bible to be published by Wiley Publishing House. He did not say that self-
published authors could not apply. I sent a copy of my Java tutorial to James
and he let me in!

I wrote five chapters of the J2EE Bible book. This was a completely different
experience and writing a book for a well known publisher is a lot easier. First,
they gave me some money upfront -an advance. But I’m not going to snow
you here, writing technical books isn’t a profitable business. It won’t make
you rich. When you write a book, you literally work for about a dollar an
hour. You spend most of your evenings and wee hours writing this book.
Your family is not happy about that. When you read in an acknowledgement
section, “Thanks to my family for support”, this actually means “Thanks for
not divorcing me”.

Working for a professional publisher was a totally different experience. We
had proofread editors and requisition editors. I did not have to worry about
the book cover, the selling price, storing the books in my basement. The
publisher took care of all this. But marketing… not really. When you are
being published by a book publisher don’t expect that when your book is
printed they’d put some extra effort into marketing YOUR book.

So that book was my second book, then it was 2003, and my younger son
who was about ten years old came to my office saying, “Dad, I want to learn
how to program games. Can you teach me?” I surfed the Internet trying to
find a book on programming for kids, and to my surprise there was nothing
available for this audience. Kids who are under five years old would be
reading Doctor Sues kinds of books. “Hey little buddy, this is a computer, this
is a monitor, this is a mouse and a keyboard”.

A whole generation of young people who are ten to eighteen years old was
not considered as a market for books on computer programming. It’s
assumed that when the time comes, these kids will become college students
and read adult books on programming. When I figured out that there was
nothing to purchase for my son, I decided to write such a book myself.

But a book on Java programming for kids was supposed to be written in a
different manner - an easy reading (yeah, right) with good illustrations. My

older son Yuri was getting better and better in drawing, and I asked him to
come up with a cartoon-like characters as original illustrations for the book.
They should be funny and colorful.

He did the drawings and came up with the characters and they came out
well. I wrote that book, and it was originally called “The Java Tutorial for
Kids”, but then I’ve added “…Parents and Grandparents” because when the
book was written in a very simple language and could be useful for many
people who are new to programming. Eventually, many adults sent me
“thank you” email confirming that it was an easy reading if that is at all
possible when it comes to programming.

The book (PDF) was ready, and so was I for the next round of rejections. This
time I rejected to print it in black and white (this book was for kids,
remember?) The publishers rejected printing it in color (too expensive), plus
it’s a new market for them.

This time I decided to sell it as an e-Book in PDF format, and I did it for three
years. Now it’s available for free download at www.faratasystems.com.

This web site is belongs to our company, Farata Systems, and I co-authored
yet another book with two great programmers Victor Rasputnis and Anatole
Tartakovsky. This book was about programming with Adobe Flex and Java.
We rightly predicted that this technology would be hot. Our thanks to Sys-
Con Media that quickly agreed to publish this book (“Rich Internet
Applications with Adobe Flex and Java”).

We spent a year on writing this book, which was the most difficult process so
far. This was an advanced book and we are very pleased with the outcome.

The choice of publisher was also right. Even though it is advised to publish
books only with specialized book publishers, we’ve chosen Sys-Con Media,
which is mainly publishes technical magazines and organizes technical
conferences (see www.sys-con.com). In terms of promoting the book, they
had huge advantage comparing with traditional publisher. They’ve
published excerpts from the book on their Web site, sent out newsletter
announcing the book, and let us promote the book at their conferences. As
the result, this book has purchased by software developers in more than 60
countries.

Every time I finish a book I say to myself, “Enough, this is my last book”,
which is a lie. This year I’ve rejected a couple of offers to write another
technical book, and wrote this one instead.

Why did you have to read this rant about Yakov, the great book author?
Because I want to encourage you to write your book too. It is not easy but
doable, and after completing such a project you’ll bring yourself to a
different level. In most cases, being a published author or co-author looks
good on your resume. Be prepared though, that in some cases you may have
hard times during technical job interviews, because some interviewers will
give you a special attitude, “OK, you wrote a book, let me see if you know
everything…”

Luckily, most of the people are not like that. They respect you for the hard
work and long hours you spent researching, writing and publishing a book.

http://www.faratasystems.com/
http://www.faratasystems.com/
http://www.faratasystems.com/
http://www.sys-con.com/

Write your book. If nobody wants to publish it, publish it yourself. Can’t
publish? Create a Web site. The chances are that your book may change your
professional life for the better. Go for it.

Outsourcing

In the perfect world, you can find local resources for your project. But in the
USA selecting programming as a profession is not as appealing as it used to
be 10 years ago, and you may have to hire an offshore team.

When a budget of the next project is approved, Frank, the manager has to
staff it. The budget is small, the leftovers of American programmers are
either expensive or just not available. Frank starts looking elsewhere. The
largest pool of people who can write if-statements is in India. Of course it’s
better to have programmers in flesh in the office, but…no money, no honey.
The major part of software development in Frank’s project was outsourced.

The world is round

In a typical US enterprise Jimmy’s manager does not fly to India to pick
developers for the next project. He’s given the name of one or two
consulting companies to choose from, and hopefully, a chance to interview
future team members over the phone.

Sure enough, someone from your firm visited India to establish the
partnership with one of the major body shops there, which similarly to
American ones are made up of 20% good and 80% poor to mediocre
programmers. Sure enough, India’s IT giants impressed your firm’s
executive by putting together a well done PowerPoint presentation,
showing well equipped offices in a hi-tech building in Bangalore, and
applied some other techniques.

Business Times writes about donkeys that complicate morning commute to
the work of programmers in India (see
http://www.businessweek.com/magazine/content/07_12/b4026001.htm):

“When foreigners say Bangalore is India's version of Silicon Valley, the high-
tech office park called Electronics City is what they're often thinking of. But
however much Californians might hate traffic-clogged Route 101, the main
drag though the Valley, it has nothing on Hosur Road. This potholed, four-

http://www.businessweek.com/magazine/content/07_12/b4026001.htm

lane stretch of gritty pavement—the primary access to Electronics City—is
pure chaos. Cars, trucks, buses, motorcycles, taxis, rickshaws, cows, donkeys,
and dogs jostle for every inch of the roadway as horns blare and brakes
squeal. Drivers run red lights and jam their vehicles into any available space,
paying no mind to pedestrians clustered desperately on median strips like
shipwrecked sailors.”

Thomas Friedman, the journalist from New York Times the author of a
bestseller “The world is flat” was very impressed by visiting Infosys, a large
offshore firm in India.…

Thomas Friedman has seen all this, but he was very impressed by visiting
Infosys offices in Bangalore. They showed him “a global conference center –
ground zero of the Indian outsourcing industry’ It was a cavernous wood-
paneled room that looked like a tiered classroom from an Ivy-League law
school. On one end was a massive wall-size screen and overhead there were
cameras in the ceiling for teleconferencing”.
Now Mr. Friedman believes that it does not matter where you are, you can
work on a global project without leaving your country.

His host named Nilekani, said, “So this is our conference room, probably the
largest screen in Asia – this is forty digital screens [put together] “ Nicekani
proudly explained, pointing to the biggest flat screen TV I had ever seen.
Infosys, he said can hold a virtual meeting with the key players from its
entire global chain for any project at any time on that supersize screen”.

This gets Mr. Friedman excited. I’m wondering though, how a large TV
screen can impress a New Yorker? Has he ever been to Times Square located
within a two minute walk from the New York Times building?

Several times Thomas exclaims in his book, “The world is flat!”, meaning that
these days there is no difference which part of the world you are getting
services from. No, Thomas, “The world is still round!”

A Large screen TV is the last thing that comes to mind of Jimmy-the-
programmer, who has to deal with miscommunication and
misunderstanding of functional specs and coding assignments and delays
caused by time and cultural differences.

In this section I’ll try to explain why outsourcing does not work and why at
the same time it’s unavoidable. I fully understand that it takes two to tango,
and if something does not work out between offshore and US teams, it’s the
fault of both parties.

In May of 2008, I had a chance to visit India – I was invited to speak at a
conference in Bangalore. One day I’ll include a new section in this book
summarizing my IT discoveries, but meanwhile you can read my raw travel
notes in this blog.

I know lots of good programmers from India, Russia and China, but the
purpose of the following pages is to show that outsourcing is not as rosy
and fluffy as journalists-dilettantes often present. Let’s see how it works in a
real enterprise IT.

What CIO should know about outsourcing

Jimmy’s manager Frank started the meeting by saying that the budget for
the new project had been approved, but half of the project will be
outsourced to their long time partner from overseas. Can you imagine, their
rates for Java programmers can go as low as $20 an hour! We can hire a team
leader for $50K a year!

“No, we're not losing anyone from our team, and you should take it as an
opportunity to work as team leaders, helping our new partners to hit the
ground running. No, this wasn't my decision; it came from above".

Three Months Later

Mary, “I've asked them to add two fields to a JTable on the Invoice screen.
The data is being retrieved from our database so they'd need to modify an
SQL query as well. I've sent them this e-mail yesterday, but it was night time
over there, so they've responded today asking me to send them the
modified SQL and write the name of the Java class and method where this
new code should reside. I could've done this by myself in two hours”.

http://yakovfain.javadevelopersjournal.com/my_trip_to_india_complete_edition.htm

Frank, “Just be patient, it's a new application for them. By the way, I'd
appreciate it if you could stay a little longer today. We're having a meeting
with our colleagues from overseas, but there's a time difference, you know…
No worries, they're willing to come to work early, so we're starting our
meeting at 7pm”.

Six Months Later

Frank, ”The system has to go to UAT in two weeks. We've all worked hard;
our remote colleagues put in lots of overtime. John, you're our Java expert,
and you've spent the last two weeks doing the code review of that module.
Why does it work a little slow?”

Jimmy, “Well, that module isn't written in Java. I mean, they were using Java
syntax, but it wasn't Java programming. There are chunks of unused code
fragments, the code isn't object-oriented, they used the wrong Java
collections, and there's unnecessary synchronization all over the place. But I
can re-write the entire piece in three weeks”.

Frank, “OK, let's do it - but quietly”.

After spending many nights in the office, the project was saved. Frank got
promoted for delivering the project almost on time and showing "strong
leadership in managing cost-saving external resources." But the team's
morale went down the drain; two local resources (a. k. a. Jimmy and Mary)
got small bonuses and started looking for new jobs.

Post-Mortem Analysis

Unfortunately, more and more CIOs believe that computer programming is a
commodity skill that can be bought cheaply when needed and replaced
easily like a receptionist, mailman, or any other clerk. They don't believe that
having a pool of knowledgeable and talented developers adds any value to
the organization.

This wouldn't be the case if the development managers (the Franks)
explained to them the price that's paid for the success of such projects. But

most of these managers never do this, because of conflict of interest: Frank's
only goal is his smooth movement up the corporate ladder. Moreover, to
increase his importance, Frank inflates the resources needed for the project
on purpose.

The CIO doesn't have the budget for several additional $70K-a-year
developers, so he settles on the same number of $30K developers from
overseas with similar résumés. Realistically, the "cheap" labor is actually an
additional expense on top of the salaries of local employees.

Another hidden expense is the extra time spent writing super-detailed
functional specifications and validating the overseas work. Here's one more:
for security reasons, you may have to create and maintain a separate
encrypted version of your database for the offshore team.

Having said all this, I can't blame the overseas developers. Their countries
are experiencing a golden IT rush, so young kids are ready to dive into
muddy Java waters after spending several months in vocational school. (If I
were in their shoes I'd do the same thing).

They put in long hours trying to learn programming and the business of
their rich clients (not to be confused with "fat clients") on the run. As a result
of this IT boom, the turnover rate in offshore teams can be as high as 100%.
You can often see it just by looking at the source code. Sometimes you get a
feeling that a 200-line Java program was written by 10 different people of
different qualifications. Forget about naming conventions, design patterns,
or any programming style.

Hey, Frank, if you need seven people for a project, have the guts to say seven
and not 10. Yes, you won't have a chance to manage an international (or as
they like to say global) project, but you'll definitely sleep better at night.
Before giving a chunk of your project to a company overseas, talk to your
developers and ask them if they really need this help. Your developers are
human beings and not just nameless resources.

On the other hand, outsourcing works fine for small businesses because
both parties know that the owners of such businesses count their money

and won't pay for poor-quality jobs. It also works when you hire an offshore
team of senior people who know the business you're in.

No, their rates aren't cheap, and don't have to be! But such teams usually
consist of professionals, who take pride in their work, deliver on time
without putting an extra burden on your own developers, and even mentor
your staff. This is the outsourcing I vote for, but I'm not the CIO of your
company.

Ten tips on dealing with offshore developers

Below is a list of tips for a rookie development manager that has to work
with offshore software developers.

1. If your outsourcing partner offers you a pre-staffed offshore team, most
likely you are screwed. A typical team in any country (USA included)
operates under 80/20 rule – only 20% are delivering. Do not accept a team
just because it’s ready. Build the team yourself.

2. Put every candidate through at least the same vigorous interview
process as you practice with your local candidates. You’ll be surprised, but
some US firms would go easier on the offshore team members just because
the team was given to them from above.

3. Do not leave your office until you know what the offshore team will be
working on tomorrow.

4. Do not let the local geek manage an offshore team – geeks are
interested only in cool techniques and coding. They do not really care that
spending a week on finding the most elegant solution jeopardizes the
project deadlines.

5. Cut the losses quickly – if you hired a new offshore member and he did
not deliver within the first two weeks, cut him loose. Cutting the umbilical
cord sooner saves money (actually a lot of money).

6. Unless you really know the remote developers, use offshore teams for
fixed-price projects only. This will allow you to better predict the final cost of
the project, and if the project will not be delivered to your specification, you
do not have to pay for the poor job. So called “Time and Material” projects
pay per hour or per day. This is a good option if you just want to keep a
particular individual around because you know that s/he has good skills, (for
example, production support, multiple small projects).

Fixed-price projects require more work from your side during the initiation
of the project – you’ll have to actually take the time and think what you are
planning to develop, create a functional specification that reflects the final
product. If you made a mistake and want to change your spec down the
road, the offshore team can hold you liable and ask for a budget increase or
scope reduction.

7. Do not use the same team on the new project just because you’ve
worked with these people in the past. Their technical skills may not match
your new requirements. Remember, the offshore team is a consulting firm,
they are not your employees and you do not have to use them for all new
projects.

8. When you give an assignment, make sure that the other side
understands exactly what has to be done and by when. You may get the
“Yes, Sir” answer, but when the delivery time comes, you’ll realize the other
party did not even understand what had to be done. The “Yes, Sir” answer is
typical for the Indian culture, where people are used to respect --parents,
older people and higher-ups. They tend to avoiding saying “No”.

Another scenario is when you give an assignment, the other party decides to
do “more” than you asked for, which leads to increased project scope and
missed deadlines. This is what you may expect while working with
programmers from the former Soviet Union. Many of them are still writing
their own compilers on a regular basis. Time management is an issue there.

9. Make a habit to have a quick 10-min morning conference call with that
remote team of telecommuters. (You, on the other hand, can just dream of
working remotely. Find out what are their issues. Do not postpone these
meeting to the end of the week – too much time will be lost.

10. If your outsourced project failed, and you are trying to find who is to
blame for it, look in the mirror. Do not blame the offshore team.
Hiring an offshore team is just the beginning and requires extra hard work
on your side. Do not just hide your head in the sand – the problems will only
worsen.

Dead souls from overseas

Here’s another caveat of managing offshore teams. To make this discussion
a bit more interesting, let’s go back in time into the first half of the 19th
century.

The novel “Dead Souls” by the Russian writer Nikolai Gogol was published in
1842. At that time, landowners paid taxes based on the number of people
registered with their properties. Often, landowners were taxed even for the
dead souls after people would pass away.

Guess what? One entrepreneur named Chichikov started visiting
landowners offering to purchase dead souls from them, as this would lower
their taxes. Why Chichikov would need to have legal rights to these dead
souls? C’mon, it’s elementary, Watson! He wanted to inflate his importance
in the society by showing the large number of souls he owned, so he could
take a large loan against them.

By a magic wand, we are back in the 21st century. You are a team leader (a
technical guy) on a project that includes both local programmers and an
offshore team of Java developers. The boss said that the management has
decided to hire a large and well known offshore corporation called Shmata
Consulting. Your firm can hire three Shmata’s programmers for the salary of
one American with the same skills.

Things may not be as rosy as they look on paper, but here’s yet another
twist to it. While technical leaders work harder as they need to find a
substantial chunk of additional time EACH DAY explaining to the offshore
team how to write code and fix errors, the managers of Shmata Consulting
do not forget to submit their time shits (did I spell it wrong?) to Frank, the
manager for approval. By now, you should be able to guess who these dead
souls may be.

Jimmy believes that three programmers from overseas are coding for your
project, but Frank might be receiving (and signing) timesheets (yes, this is
the correct spelling) of 5 people, and each of these souls were working their
dead asses off putting in 80 hours a week. Talk about cheap labor. Talk about
Chichikov of the 21st Century. Two centuries ago Mr. Chichikov has founded
the Dead Souls Movement, without even realizing how to do these kind of
things on a large scale. There was no Internet in Russia circa 1842, so his
“crimes” sound like an innocent joke of a kindergarten boy.

Anyway, what’s the bottom line? Is there anything you (the tech lead) can
do about it? Yes just follow the ten advises from the previous section. These
simple rules should prevent your project from being yet another failure with
“cheaper” (but still inflated) cost. You may not like this kind of job, but at
least you’ll know that you are in better control of live souls, and if some little
dead soul sneaks in, kill it again. You can’t get convicted for a murder of
someone who was already dead.

Outsourcing to students

I’m teaching software programming part time at New York University. While
this and other universities offer graduate-level programs with many
interesting courses, the situation is different in the undergrad world.

Some schools keep teaching how to multiply matrices in Ada or work with
algebraic expressions in Prolog. Half of the courses are preparing

professionals who will be operating on another planet. Information systems
programs look a little more down to earth. Meanwhile, many college
graduates are having a hard time finding their first jobs because many entry-
level programmers jobs are being outsourced overseas, and it'll stay this way
as long as it makes financial sense for businesses. Unfortunately, student
loans have not been outsourced...

Remember that Catch 22 that so many recent graduates face upon facing
the job market – can’t get a job without experience; can’t get experience
without the job?

I have a plan: instead of outsourcing projects to developing countries,
businesses should offer them to the local colleges. I'm not talking about
simple pilot or proof-of-concept projects; I mean the real ones. This plan
requires commitment and the cooperation of academia and businesses.
These are some thoughts that come to mind:

 Colleges have to include more classes on software engineering and
modern technologies in their undergraduate programs. Here are
some of the candidates: Application Servers, Service-Oriented
Architecture, Applying Design Patterns, Data Modeling, Business
Intelligence, Web 2.0.

 Colleges form teams of programmers starting from the students'
junior year. Faculty members lead these teams. Information about
these teams (résumés, previous projects, GPAs) has to be published
on the Internet and be publicly available, and businesses need to
publish their project descriptions so student teams can bid on these
projects.

 Colleges make their labs, networks, and support personnel available
for the teams. If needed, businesses can lease additional hardware to
the college for the duration of the project.

 Most of the students study Java programming during their freshman
and sophomore years. Many Java components are available for free
or through open source licenses: IDE, version control systems, project
build tools, bug reporting systems, application servers, etc.

Businesses will purchase any additional required software for a
fraction of the cost using heavily discounted academic prices.

 Business managers pick and interview teams for their projects based
on the college reputation, available skill sets, location, and other
criteria.

 Corporate lawyers prepare a contract with a selected team that
defines the obligations of each party, deliverables, cost of
development, and potential penalties.

 The turnover rate is usually high on the projects that are outsourced
to developing countries, which won't be the case with student teams.
On the other hand, there is a risk of not having developers during
midterms and final exams. However, since the exam schedules are
known in advance, the "freeze time" can be planned accordingly.

 Most of the business managers dealing with developers from other
countries complain that cultural differences are a huge problem.
Guess what? This won't be a problem if you outsource the project to
students who live in the same country and speak your language.

 Even though students will get a minimum salary for this work, they
should also earn academic credits and get graded while working on
such projects.

The funny (or sad) part is that the students themselves are already
outsourcing their college assignments. There are Web sites where you can
hire a coder for any assignment in various programming languages. No job
is too small. People from around the world can bid on these projects, and
since the offered prices go as low as $10 USD per hour. It's clear that only
programmers from the developing countries (India, Russia, China, et al)
would be interested in these jobs.

Academic outsourcing may be even more damaging than industrial
outsourcing, because rich students can improve their grades and earn their
degrees without having a good knowledge of their required subjects.

Spending more time working as teams in the labs under the supervision of a
faculty member or business manager will help minimize academic cheating.

There is one more secret key to the success of commercial projects
developed by students: pizza! Each day the client company can send a
couple of pies (half plain and half pepperoni) to the labs where the students
work. They are going to work for food...and experience. It's a win-win
situation for everybody.

Soviet Programmers

The word "outsourcing" is being associated with India. No wonder -- these
guys are street smart, they were raised in a democratic country, they are
mobile, know what’s hot on the market, they speak English and are ready to
start working tomorrow anywhere in the world sharing an apartment with
five other programmers.

In the USA, all people who speak the Russian language are called Russians
regardless if they are Russian, Ukrainian, Jewish, or of any other descent. On
the same note, if you are a US citizen, you are American regardless of where
your ancestors from. We’ll follow the same convention, even though the
proper way to categorize them would by Soviet programmers for all who
came to the USA before 1991 and Russian, Ukrainian et al. thereafter.

I used to be one of the Soviet programmers in the 80s. After the collapse of
the Soviet Union, society started its painful transition to capitalism. During
more than 70 years of dictatorship, people learned the rules of the game,
they knew when to keep their mouth shut, how to put scarcely available
food on the table, but they lost the spirit of entrepreneurship, which started
to change when the Soviet Union ceased to exist.

While Western people were differently-rich, Soviet people were equally-
poor. They had pretty much the same income, small but free apartments,
good education and OK medicine. Professional emigration from the former
USSR was minimal.

All this started to change in early 90th. Now computer professionals who
had enough money and wanted to work abroad could do it. While Russians
are considered one of the top coders, they are lagging behind Indians in
the outsourcing arena. I see several reasons for this:

1. For years, English is the primary language in Indian colleges, while
Russians were under impression that sooner or later the rest of the world
would learn the Russian language. Also, in the USSR the language of a
“potential enemy” was German, so English as a second language was not too
popular. This is changing now, but it takes time.

2. People in India do not think that they are the best nation in the world,
while many Russians still do.

3. Many years of dictatorship have encoded the following rule in the minds
of most of the Russian population: "There are only two opinions: right and
wrong". This was applied to any aspect of lives including computer
programming. I remember teaching programming classes for Russian
immigrants, and the faces of some of the newly arrived programmers were
turning purple should I’ve said something they did not agree with.

4. Some Russians programmers do not trust the programs written by
others. They are ready to reinvent the wheel on a daily basis. For example,
some of them would rather create their own libraries of reusable objects
than use someone else’s (see item 12 from the humorous post about
Russian programmers at
http://www.softpanorama.org/Bulletin/Humor/russian_programmers.shtml
).

5. On the other hand, I had and still have the honor of working with
extremely bright software engineers from Russia, whose skills are top notch.

Slowly, but surely the situation is changing. Programmers living in Moscow
and St. Petersburg earn a lot more than their colleagues in the rest of the
country. I do not have official numbers, but based on online posts on
Russian Web sites, the annual salary of a mid-level Java programmer is $20-
$25K. Senior programmers make $40-$50K. But the skill set of a $50K
programmer living in Russia, is comparable to the skill set of a $100K US

http://www.softpanorama.org/Bulletin/Humor/russian_programmers.shtml

programmer (and, adjusting for the cost of living, so are their salaries). Many
programmers living in large Russian cities can read English. Speaking skills
are improving too.

But the Russian outsourcing model has to be a little different comparing to
the Indian one. You can get the best value by dealing with high-end
software developers. I know the CEO of one of the most successful Russian
IT companies that builds its business not by selling cheap low-level
programming to the West, but by focusing on specific business verticals.

They’ve established their own tuition in one of the best universities to attract
and "breed" the most talented people. You can’t hire three of their
employees for a salary of one American programmer, but these people are
just brilliant.

The United States of America is still one of the leading world economies with
high living standards, and it remains a desired destination for people who
are not afraid of the challenges of living in a foreign land. On the other
hand, the majority of Russian programmers would not leave their country,
enjoying modest living standards in familiar environment.

The world’s leading technology firms feel themselves at home in Russia. IBM
is pretty happy there , one of the insiders from Sun Microsystems told me
that they consider Russia as one their most important markets (Brazil is also
on Sun's radar).

To finish with the Soviets, I’ll tell you an one more story - I saw Lenin in
September of 2006 in Seattle, WA, USA. Seeing this huge Lenin monument
casually standing on one of the streets of Seattle, was a real surprise for me
to say the least. People who are as old as Internet may not know who Lenin
was, so this is especially for you: would you be surprised to see a 7-ton
monument of Fidel Castro standing on the street of New York? Just take a
look (this is Vladimir Lenin):

Here's the story. This 16-ft statue was erected (if you do not know the word,
think of Viagra) in Slovakia back in 1988, and in 1989 it was toppled and was
just laying face down on the ground. An American entrepreneur Lewis
Carpenter ran into it and like it a lot. I mean really liked it, so he even
mortgaged his house to buy and transport the statue to Seattle. This statue
is a bit unusual, because it shows the leader or the world proletariat not just
holding a book or surrounded by smiling pioneers (a communist-crafted
boy/girl scout organization), but standing in flames and guns. Anyway, for
28 Grand Lewis brought it to the USA. Unfortunately he died in a car
accident in 1994 leaving his wife with an unpaid mortgage and Lenin.

Vladimir Lenin was standing in a flea market for a while with a price tag of
$150000, but now it's on sale for $250000 (inflation, you know).

I hope one of these New Russians will be able to shell out a quarter of a mil
and bring the Grandpa Lenin back to Russia, where he belongs. Lenin
succeeded in building a society of equally poor people, and it should be
pretty upsetting for him standing in a city of unequally rich American
people.

If 90 years ago one of the poor people returning from Moscow would say "I
saw Lenin" , he'd be the only game in town. People would invite and treat
him just to listen to some stories about this idol. So here I am, back from
Seattle proudly announcing: "I SAW LENIN!"

And Pedro said, “Move over, Ravi!”

What first comes to mind if someone mentions Mexico? Beautiful beaches in
Cancun with loaded Margaritas and hardworking people working in the
USA in construction, landscaping and other non-attractive jobs. What comes
to mind when someone mentions Brazil? Football, Copacabana, and that
garota de Ipanema.

I was pleasantly surprised when a friend of mine working for a Fortune 100
firm told me that they used to outsource software development to India, but
now they switched to Mexican programmers. Why? Cheaper. Way to go,
Mexico! Good for you!

Brazil is yet another emerging supplier of programmers.

But is it right to work with a country just because it offers the cheapest
prices? I do not think so. The software development outsourcing may be
efficient only if you cherry pick the best of the best as opposed to hiring
teams for cheap. Work with individuals, not with teams!

Let's apply the 80/20 rule one more time for an offshore team of five that
charges $100 a day for a programmer. The daily offshore payroll is $500.

http://www.youtube.com/watch?v=DSJ5xZci9mI

Such a team needs a local full-time manager here in the US, which earns, say
$600 a day. We've got $1100 a day just for the payroll. Four out of five
offshore programmers will definitely under-perform to say the least.

The better model is to hire one excellent offshore programmer for $200 a
day, which will need two hours a day of the local manager's time (another
$200). In this case the daily payroll is $400, and the chances of delivering
your project on time will dramatically increase.

This formula won't work if your IT shop is run by a mediocre manager who
does not ant to innovate and goes by the flow of the offshore partner given
from above.

Visiting an offshore training camp for programmers

I wrote this while sitting in a training camp called Genghis Khan, a school for
the rookie offshore programmers. The camp is located in the remote
mountains of northern Mongolia. Many wannabe offshore developers come
here for training. Since I am a popular personality among the Mongol Java
crowd, they let me sit in the class where Baichu, the guru of offshoring was
delivering a presentation called “Dealing with Overseas Employers 101”.
These are my notes from this class.

1. America is rich, we are poor. It’s not fair, they have to share.

2. In the beginning, their manager will try to scare you by promising that
he’ll check up on the status of your assignments daily. Do not be afraid – a
status report is just a formality, and they’ll take whatever you write.

3. One of your major problems will be "what to write in status reports".
Never write “I could not do it ” there. Americans like positive statements. For
example, let’s say you’ve got an assignment to create a reusable component
that will identify the number of failed database requests. You do not even
have a clue what are they asking for.
The first week you spend on Google in hopeless attempts to find such a
component. The status report for the first week should read “Comparing

various approaches of creating reusable db-failures component to find the
most efficient and effective way for its development”. During the second
week invent something similar. Hopefully, on the third week something
more urgent will come up and you’ll get another assignment.

4. Be prepared to spend the first couple of weeks waiting for the logon id
and password to your employer’s network. After obtaining these credentials,
you’ll find out that you still don’t have access to a dozen of the servers,
which require Unix logon. Your remote manager will promise you to resolve
it as soon as possible, but because of the service level agreements (a.k.a.
SLA) with the Unix support team , you won’t get access for another week or
so. Typically, it’ll take about a month just to get you connected.

5. Never say “I do not know”. Accept all assignments – one of two things
will happen – either you’ll figure out how to complete the assignment, or
it’ll get cancelled.

6. In conversations with your overseas teammates, always require detailed
written specifications for each small program modification. Ignore their
statements “I’d fix it myself faster than writing detailed specs for you”. They
have no choice and must work with you to show that your team is useful.

7. Use the time difference to your advantage. For example, if you want to
send an email asking for some clarifications, do not send it in the morning,
because you may get an immediate answer. Do it in the evening (your time
zone), before leaving the office – you’ll get the answer next-day.

8. If you have a choice, avoid fixed price projects. Hourly-based pay will
allow to put a couple of extra hours here and there, and having a couple of
extra tugriks or rubles never hurts.

9. Experienced offshore programmers - usually do not try to obtain US
working visas to work onsite. They’d be working a lot harder in the foreign
land. It is not worth the trip.

10. Always be polite – it’ll get you far. Insert “Excuse me”, “Thank you”, “Yes
sir” in every other sentence. Always smile - even during phone conversation.

(Then he showed this popular movie about an offshore tech support:
http://callcentermovie.com/ .)

11. Change your local employer every three months. You are gaining
experience daily, and even if the new job offers just a one percent salary
increase, go there. It’s a golden IT offshoring era – use it while it lasts! Or as
they say, it's time to make a quick buck!

For some time I was speechless after hearing all these advices. Baichu spent
at least half an hour after the class answering specific questions from
students. I also asked him, if he really believed in his teachings. He smiled at
me and said, “Welcome to the real world, ma’man!”

Disclaimer. This did not actually happened in Mongolia, this was just a fruit
of my sick imagination - it happen somewhere else.

Lack of management in outsourcing

Some time ago, Information Week Magazine published an article
“Outsourcing to Win: 4 steps to An Effective Strategy” .
They write, “Campbell says most companies lack the necessary management
structure to effectively manage a team of outsourcers. With businesses
spreading work around to more and more external contractors, they need to
elevate vendor management to the executive level and hire the equivalent
of a chief sourcing officer, she says. "There are not a lot of individuals within
a company that have the multidisciplinary skills required for that sort of
role." This is probably the only useful advise that the article gives – the rest
is the typical gibberish of standard phrases taken out of real world context.

Liz Campbell hit the nail on the head. In my opinion, the lack of
management is one of the two MOST IMPORTANT things that make
outsourcing fail (I’ll mention the second one a bit later). Of course the roots
of this lack of proper management issue lay in the fact that in many cases
the project manager has no say in WHO are their outsourcing partners. They
are given from above and have roots in golf courses and fancy restaurants.

http://callcentermovie.com/
http://www.informationweek.com/news/showArticle.jhtml?articleID=197801492

OK, the project with outsourcing begins, the project managers quickly
understand that the low Bangalore hourly rates is a joke, given the fact that
because of the typical corporate infrastructure issues (here in the USA), an
offshore team of five $20p/h spent two weeks doing nothing but
exchanging emails trying to get access to the proper servers. Let’s do the
math: 5*$20*8*10 = $8000. This money just evaporated from the project
budget during these two weeks of doing nothing.

Interestingly enough, the upper management will never know about it
because…and here comes the second main reason of why outsourcing is
much more costly – CONSPIRACY. Project managers will cover up such
losses because they do not want to disappoint their managers – their own
yearly reviews and bonuses depend on success of their projects, so they’ll
quietly absorb these losses by asking their local team members to work
more and tie up loose ends. The local team members have their own
reviews too, so they’ll work a bit harder as well.

The article suggests to get familiar with the contract laws and religious
adherence to standards. This does not come from the real world.

The next advice of this article is to move to team-based outsourcing
projects. I think it’s dead wrong. The majority of the software developers do
not produce much. My advice is to work with the individuals that your team
leaders personally pick. Introduce the competition within the offshore firm.
Provide PERSONAL incentives for individuals. Some of the offshore teams
are sand castles. People there can easily quit their jobs if someone extends
them an offer with 2% salary increase.

And if your outsourced project failed, stop blaming Indians – just look at the
roots of this failure at home.

Me goes to America!

The world is not flat, the quality of life is different in each country. While
some people are happy with what they have, and if the economic conditions
in their home country turn gray, they complain but try to survive. Other
people start looking for better opportunities for themselves and their
families elsewhere. They can relocate within the same country going places
with better job options, and some people are not afraid to leave their own
countries in search of that promise land. One of the most desirable
destinations for people of all around the world is the United States of
America.

A line by American poet Emma Lazarus describing the Statue of Liberty,
appears on a plaque at the base of the statue, which ends with the statue
herself speaking:

Give me your tired, your poor,
Your huddled masses yearning to breathe free,
The wretched refuse of your teeming shore.
Send these, the homeless, tempest-tossed, to me:
I lift my lamp beside the golden door.

And here I am, knocking at this golden door.

What a country!

A Ukrainian-born U.S. comedian Yakov Smirnoff has a number of jokes that
can fall under umbrella “What a country!” I’m not trying to be funny here,
but has my own list of things that were unusual to me in the USA.

I have arrived in the USA in January of 1992 from a grim society, which is
now called “the former Soviet Union”. Sarafanov’s family gave me a place to
stay and the food for free, and I’ll be always grateful for that.

There is a big difference between foreign programmers who live in the USA
and those who don’t. How do I know this? Because I’ve started my career in
the USA as a foreign programmer myself! The next several pages are not
exactly about programming, but rather about my observation of American
lifestyle.

I’m a USA citizen for many years. I always wanted to live in this country and
thought I knew a lot about it, but there were things that seemed unusual
during my first years here. This is my list.

 “How are you?” is not a question and you do not have to answer it.

 You can spice up any word by breaking it in the middle and inserting
the word f..king there. The classical example from Pretty Woman is
Cindef..kingrella.

 They have kneeling buses that can lower the door – disabled
passengers are not second class citizens here

 Having good looking teeth is very important

 People can have different opinions on the same subject and remain
friends

 If you see audio speakers at WallMart for as low as $10 this does not
mean that the speakers cost as much as $800 are good. There are also
speakers for $8000 and for $80000. What a country!

 Computer programming is the best profession in terms of return on

investment: six to twelve months of training can secure you job
paying $50K+ a year

 If a patient is diagnosed with a terminal disease, he’ll be the first one

to know about it, not the relatives

 Divorce is extremely expensive for men

 America has way too many lawyers per person

 Having an American passport is not enough to prove your identity
while applying for a renewal of a driver license - it’s only four points,
but you need six to get the license

 If you are driving a car and someone hits you from behind, it’s a good
thing

 Buy one get one free deals: If you buy what you don’t want, we’ll give

you what you don’t need for free

 If an interviewer asks you to evaluate your skills on the scale of 1 to
10, add two-three points to your honest assessment – the person
who asks will subtract them thinking that you’ve overestimated your
skills

 If someone greets you with “How are you”, the only right answer is
“Great”

 If someone greets you with “What’s up?”, the only two right answers
are “Nothing” or “Not much”.

 The word “friend” is not actually a friend. The “close friend” is a friend

 Men change shirts every day (it may not be a fresh shirt, but it must
be a different one)

 You can’t and shouldn’t try to bribe the policeman that is writing you
a ticket for traffic violation

 All toys are made in China

 Americans call soccer what the rest of the world calls football

 In America, an English speaking country, you have to press 1 on the

phone if you want “to continue speaking in English”

 The American dream is not to buy a house, but to have money for the
down payment for a house and then being able to make monthly
payments

 In December, you can see a Christmas tree next to Hanukah candles

in every store – business is business

 People are the same in every country, but Americans are lucky to be
born in the society and smart enough to maintain the society that is
very close to the needs of a regular Joe

 Henry Ford said,

If you think you can do a thing or think you can't do
a thing, you're right

This is my favorite quote.

My H1B story

I arrived to the USA with good experience in programming. I knew C and
C++! Pretty quickly I got an offer, but my prospective employer would hire
me only if I’d have a work permit.

There are several visas that allow you to work in the USA. So-called H1B visa
is by far the most popular among software developers “temporarily” coming
to America, which is short in enterprise IT talent. Visit a corporate cafeteria
in one of the largest American cities, and you’ll get a feeling that you are in
India, even you are of Indian descent.

If you’ll take an IT group of ten developers in New York, San Francisco,
Chicago and the like, it’ll consist of six Indians, two Chinese, one Russian,
and, possibly, one person who’s first language is English. You may accuse
me of profiling, but this book is called “…without BS”, remember? Welcome
to the real world! The situation in the mid West is different, but the majority
of IT shops are not located there anyway.

At least a half of these people are either still working under H1B visa, or have
already received their permanent residency in the USA. The government
tries to deal with the shortage of people in different professions, and H1B
visa holders can work for six years unless they convert this visa into a
permanent residency (a green card) or become US citizens in some other
way.

After spending about three months in the USA I passed a technical job
interview at a New Jersey company called InterAccess. They liked me and
said that now I had to get my visa. I applied with a lawyer and after about
three months of living with my fingers crossed, I got it. This is a long
process: the prospective employer had to place an advertisement in the
local newspapers that they were looking for people with my skills and that
they should somehow prove that I was one of the best candidates for this
job.

There is something called “prevailing wage”, which means that that
employer is supposed to pay me the salary with what is similar to what they
pay other people with my qualifications. I do not know what my lawyer did,
but if you’ll watch this video
http://www.youtube.com/watch?v=TCbFEgFajGU it may give you an idea
how this process works internally. It’s not kosher, as most of what lawyers
do, but their main goal is to get the job done for their clients.

http://www.youtube.com/watch?v=TCbFEgFajGU

I got my visa, and my first salary 1992 was $33,000 a year, which back then
was a huge amount of money for me and my family who just arrived. I didn’t
have any money at all – some cash from delivering pizza. In fact, when my
wife and son arrived, I had seven thousand dollars in debt, which I borrowed
from friends and relatives. My wife got an H4 visa, which did not allow her to
be employed. She started cleaning houses of rich people in Staten Island,
NY. During the first eighteen months of my day programming job, I was also
delivering pizza on Friday nights and Saturdays.

My long term goal was to became a citizen of this great country, and the first
step toward this goal was starting a “green card process” that should have
been done by my employer. My first employer was a small company and
they did not have much experience with green cards, so I found a large
consulting firm called Trecom Business Systems that transferred my H1B
(this visa allows you to work only for a specific employer). This firm paid me a
salary of $45K a year, which was meant a major improvement in my life style.
This is the last time I quote my income. Why? I’ll explain this a bit later in the
section “What’s your salary”.

After six months my new employer applied for the green card and this
process took two and a half years. All of these years I have been working
hard for this company. I knew that people with my skills were getting better
pay, but this didn’t bother me at all, because I felt that this was a fair deal. I
wanted a green card sponsored by my employer, and they wanted my skills
for a bargain price. This was a fair game.

In 1996 I became a permanent resident of the USA. My dream came true!
As soon as I got my green card I created a one-man corporation and started
to work as an independent consultant. Sorry Trecom, but we’ve been
helping each other for three years, and it’s time to move on.

Are H1B workers abused?

Most of the H1B visa holders are not the people who occupy the leading
positions at Google or Microsoft. They usually work for consulting
companies, which send them to their clients to work on various projects.

Often (but not always) these consulting firms pay H1B workers a smaller
salary. Today’s prevailing wage for the H1P Visa candidates is probably
about $55,000 a year, which is close to the lower side of the programmer’s
wage range.

If an employer gets a good guy for $55K a year and charges the client $90
per hour, it does not take a rocket scientist to figure out that there is a
markup there. Sure, consulting companies pocket a big chunk of cash on
H1B Visa developers, but as I said above, it’s a fair game. I’ve been there, but
I did not feel abused.

Now let me put on a different hat – these days I often hire people. I try to get
the best possible person, with the best skills for the amount of money that
make sense to our firm. But I also try to find them interesting work. In the
beginning, these people don’t deliver. In the beginning I may need to teach
this person a technology that we are interested in at the moment, and I want
to keep him on board longer to return our investments in this new hire.

Will this guy stay working for our company? If he is an H1B Visa holder, the
chances are a lot higher that this guy will stay working for me for several
years then if I’d hire a green card holder or a US Citizen. You maky not like
what I write, but this is a decent deal for both parties for newcomers who
want to stay in the country and for employers who want to get the job done
and make a profit.

There is a need in H1B software developers, and it’ll just grow. There is a
programmer’s guild (http://www.programmersguild.org/) that calls for
limiting the amount of these visas given to foreigners. They publish videos
and horror stories showing how rotten the system is and the “unfair” things
that lawyers do.. There were different attempts by the government to
compensate Americans for every foreign worker that they brought into the
country. The government forces every employer who is inviting an H1B
worker to pay a certain amount of money (I believe it’s above $5K) to the
government for retraining American citizens. I don’t think that any of these
measures will change the overall picture as long as the company that is
hiring an H1B workers makes a profit. These hefty fees will not help
Americans in retraining unless they really want to get retrained.

http://www.programmersguild.org/

No, foreign programmers are not being abused by capitalist sharks. If you
are an H1B software developer, do not behave as girls who were brought
into the USA with a promise of dancing on Broadway, but now dance on the
stages of Go-Go bars. With H1B workers, each party knew the rules of this
engagement upfront and is moving toward achieving their goals.

Have I taken your job?

The green card allowed me to work for any employer, and I was on the
market as soon as I got it. The IT job market is very competitive. If you are
good at what you are doing, you’ll find a better deal. If your skills are a little
rusty - sit down and shut up.

Once in a while I run into an article citing people who had lost their jobs and
could not find the new ones. These people were born in America and
accumulated lots of year of work experience. One of such articles published
a story of a guy who was working in IT for thirty five years, and after sending
about a hundred résumés couldn’t find a job.

I feel sorry for him, but there are other reasons why such people can’t find
jobs. If you spend thirty five years in the industry, you are over fifty. Of
course the age factor plays a role in the search for employment but in the
United States enterprise IT industry this is not a showstopper as long as you
perform.

I have seen job ads in Russian media, which explicitly state that you have to
be under thirty five years of age, which is industrial-strength stupid. As if
before thirty five your brain works fine and if you are any older your brain is
fried and does not perform. This is absolutely wrong, but is none of my
concern since I don’t live in that country and am not planning to.

In the USA, if you are good software developer your age doesn’t matter.

The articles with complains don’t usually mention that people who lost their
jobs do not want to move from their home towns because they have roots.

What a BS! If you can’t provide food for your family, forget about roots, pick
up your butt and relocate to the area which has a demand for people like
you in two weeks.

Are you moving where the job exists or you’d rather find several “valid”
reasons why you can’t go there? If this is the case, do not complain that I
took your job. A Free and open market is one of the main values of the USA.
Let’s compete.

There are lots of people who are working under H1B and are ready to rock
and roll! They are ready to start working on any project literally tomorrow at
any point on Earth. Many software developers from India live in so called
guest houses. Their consulting companies are renting an apartment and put
there two or three people in a room. They also share a living room, kitchen
and bathrooms and are OK with it. They buy inexpensive cars and car pool to
work. Technically they can go anywhere they want; they are very mobile.

Don’t like these intruders? Then build a fence around the country and do not
let anyone in, but be prepared to take all these low-paid jobs that
programmers from guest houses do. And stop calling yourself a free nation
with an open market economy.

These articles don’t usually reveal that people often just stay in large firms
for decades assuming that nothing would ever happen to their employment
regardless of competitiveness of their skills. I remember working on a
project for a large telecommunications firm. One of their aging
programmers was literally doing nothing at work. He had a strange screen
saver: large 3-D digits would rotate on the screen showing a different
number each day: 254…253…252…

When I asked about the meaning of these numbers, he readily explained
that this is how many days left to his retirement, and after working in the
same place for more than thirty years, it would be more expensive for the
firm to fire him with a large package for doing nothing, than turning a blind
eye to his lack of productivity..

I work as a consultant for various corporate clients. Recently, I had to re-
engineer an old mainframe-based system to a more modern service-

oriented one. I spoke with software engineers and managers and one of my
questions was if they were willing to get retrained and learn new
technologies. People were not too keen on doing this. One of them gave me
the following answer, ”For this new project we will hire offshore consultants
and we’ll manage them”.

How do you like this attitude? I am happy with what I have, I have this cozy
nice little place at work, leave me alone and don’t tell me to get re-trained. I
am fifty years old for crying out loud! I want to manage offshore developers,
and I want it now!

They do not realize that the situation may change rather quickly, and these
people from overseas may take their jobs and kick them out of their comfy
cubicles and offices. If you do not want this to happen, compete with them.
You spent fifteen years in this company? Great, this means that you have
excellent knowledge of the business, and this is something that offshore
guys don’t have – this is your edge. Keep your technical skills up to date and
no one will beat you! Before blaming all these guys from overseas, ask
yourself, “What did I do to secure my job?”

America is a great country, and who made it great? Immigrants. Even if you
were born in this country, your parents were immigrants coming for a better
life. By the way, stop complaining about these illegal. Your ancestors came
here legally a hundred years ago... just because America was accepting
everyone legally back then. It’s neither yours nor their achievements.
Mexicans who are coming to America illegally do so to help their families to
survive.

The first generation of immigrants in the US were fighting for survival, they
were super achievers. Yes, I’m a first generation immigrant. I’ll stay focused
and will work harder, because I started in this country from scratch being an
adult and need to catch up.

I do not know who was the first to make this statement, but it’s correct.
Enterprise software developers create applications for business users “to
make their lives easier”. What a cliché! First, someone decides that there is a
need to make the users’ lives easier and finds the money to fund this exiting
process. Then, the users need to explain software developers what exactly
makes their life difficult. This explanation should be done in a form of
functional specification a.k.a. functional spec.

This is when the process of pulling teeth begins. The problem is that often
business people can’t formalize the existing process so we, developers can
show them the way to the bright future. The other problem is (especially
with legacy applications) that sometimes it’s not easy to find a person who
knows the entire workflow of the application. This person is either quit,
retired or died a couple of years ago. The third problem is that business
users are busy or want us think they are. We can’t bother them too much
because it distracts them from fulfilling their duties.

If you are a software architect or a team lead you start with asking questions
so you can understand what the users think they want from this stupid
computer. Then you might even suggest your users conveniences they did
not even think of due to lack of understanding of capabilities of these smart
computers.

That’s why having a good interviewer with deep understanding of
technology is one of the main ingredients of the success of the project.
When the project finally goes live (I’ve yet to see one that goes live on time) ,
this application is not exactly what the users initially wanted as per that
short functional spec. “Oh, by the way, can we also squeeze in this little
feature?”

How to select a software vendor for your next project

If you are a development manager of an enterprise IT team, once in a while
you’ll have to deal with IT vendors – consulting companies that you hire for a
specified period of time just to help with a particular project. Our company,
Farata Systems is such a vendor company. We consult on various projects for
large and small enterprises. At this point you may think that I’ll start
bragging about how great we are. On the contrary, I’ll tell you about our
failures and the lesson learned.

During the last year our company has lost bids on a couple of consulting
projects, and we’ve noticed a pattern there. Here’s one of these cases.

A large company approached us asking to bid on a large project. We knew
how to do the job, we’ve estimated the time and resources and came out
with the numbers: $200K over six months. In about two weeks we were
notified that they’ve decided to go with a different vendor that offered them
to do this job for $60K. We shrugged and moved on with our business.

Six month later, we’ve got a call from them asking if we could help with that
project. By that time they paid already $300K to the vendor-winner, and the
project was not finished yet.

Since we’ve seen similar scenarios in the past, it seems like a sales pattern –
some vendors are giving unrealistically low estimates just to get the foot in
the door. Then, little by little, they present valid reasons that require
additional budget. The client is on the hook because someone’s career is at
stake, and they have no choice but sign the next invoice and keep dragging
the project until it either produce at least something that works or comes to
a full stop.

A little lie during the job estimates seems to be a trick of the trade of many
salesmen across the industry.

When an enterprise IT department gets the budget for a new software
development project, they ask several vendors to bid on the project. Some

http://www.faratasystems.com/

of them will come up with beautiful PowerPoint presentations on the
current state assessment of your system, the future state assessment, and a
roadmap to this bright future, which can be fairly technical.

More agile vendors hate this BS paperwork - they present you a two-page
write-up containing a technical solution addressing your functional
specification. The third type of vendors is prevalent, and they will present a
decent slide deck and some technical meat.

Then the cost comes into picture. Vendors’ marketing people will estimate
the cost of the resources. If you are a newcomer in the enterprise IT, you
might not know that “resources” are actually people. Salesmen do not call
software developers people, they call them resources. In one of the
corporate meetings, I've heard an account manger saying, "A father of one of
my resources died so this resource will not be available for a week". Could it
get any worse? Actually it could, for example, "An ancestor of one of my
resources died so temporarily it won’t perform its functions".

If a cost estimate of one vendor is substantially lower than others, they are
either not telling you the whole truth or will be using dirt cheap resources.

So how you, the development manager can pick the right vendor that will
deliver the project in time (or close to the deadline)? Here’s a solution: give
each vendor two weeks and ask them to come back with a working
prototype of the system to be developed. Important: you have to pay for this
two-week job to each vendor.

I want to make it crystal clear – they should come back to you not with a
nice-looking diagram of the system, not with the wire frame created with
some prototyping tool, but with a working application that is built using the
software approved for the project. Of course, this application won’t be fully
functional, it’ll run locally on a laptop with lots of dummy pieces of code, but
IT HAS TO WORK.

Say, you have five vendors bidding on your project. The odds are that after
such a two-week offer at least two of them will quietly withdraw their
proposals. The remaining vendors will present their working prototypes on
time and, all of a sudden the job of picking the right vendor becomes easy.

Yes, it’s cost you a little bit of upfront money, but it was the money well
spent.

This was our lesson learned, and now we often offer our perspective client to
try us out on this mini two-week project. It’s fair to our clients, and it’s fair to
us.

What’s your salary?

In the USA, your salary is the most confidential information. Should you even
answer the question about your salary? Never. People who are entitled to
know this number already know. Only your boss, HR and, sometimes your
spouse know this magic number. There’s an unwritten law: never ask your
colleagues or even friends how much they make. There is another law: do
not brag about your salary trying to impress people. There are a several
reasons why this is never a good thing to do. Let’s consider some use cases.

Use Case 1. Joe and Larry are colleagues working for the same company,
they have great relations and perform similar duties. After having a couple of
beers at the corporate party, Larry says, “Joe, you did a really good job at this
tough project with unrealistic deadlines. I hope they’ve compensated you
for all these long hours.” Flattered Joe says, “Yes, I got an extra $10K as a
bonus”.

Larry response, “Wow, this is really cool”…and gets upset and pissed off.
Two months ago he’d been working really hard on a similar project, but did
not get anything other than “Thank you”. Larry thinks that it’s unfair. The
climate in their team slowly gets worse and Joe and Larry do not go for a
beer any longer.

Use case 2. Many years ago Sandy and Max have graduated from the same
college. Now they work for different firms but their families have friendly
relations and often spend time together. During one of such gatherings, Max
asks, “Sandy, we are both programmers with similar skills. I’m thinking of
making a move with my career. What’s the realistic salary I should ask for?”

And Max makes a big mistake by saying, “Well, you know my skills, and I’m
making $80K working on a time tracking application for our Human
Resources department.” Sandy spent years doing his Ph.D. research and
works now on complex algorithms in a lab funded by the government. He
makes $60K a year, which is good enough to make ends meet.

After the party, Sandy’s wife Mary found out about Max’s eighty grand a
year. From that day she could not sleep at night. How come? Max has hardly
graduated, while my Sandy was always a genius…Sandy and Mary got
divorced in a year.

Use case 3. A firm puts an ad with a job description that fits your profile
advertising a salary range $70-$80K a year. Your current salary is $68K, you
feel that you are underpaid (even though there is no such a thing as
“underpaid” people) and decided to apply for a job. You meet with an HR
person of this company, and they ask about your current salary. You should
answer: ”I’m looking for a more challenging job, and the position you’re

trying to fill is exactly what I want, I’m qualified for this job, and will be
happy to work for you for $80K a year”.

Do not reveal your current salary. If you need to fill out a job application
form, leave this field blank. Most likely you’ll be able get away with this. If
not, oh well, look somewhere else. Most likely they won’t pay you eighty
after figuring out that you’re making sixty eight. This employer knows the
qualifications required for this job, they are well aware of prevailing salaries
paid for similar jobs by other firms, so their only concern should be if you
can do this job and not how much money you made before.

Use case 4. You are looking for a job, and your recruiter sends you to a client
company for a job interview. He knows your salary requirements. The
potential employer asks you about your salary… Do whatever it takes but
don’t not answer this question. I do not know who said this first, but it’s a
golden rule of salary negotiations:

The first person to mention the number loses

Remember, salary is just a part of the compensation package. Here’s your
mantra: “I’m open for any fair offer. If you decide to hire me, I’ll gladly
consider the entire compensation package rather than arguing about the
base salary”. Usually, your agent will be able to negotiate a better deal for
you. Let him do his job based on his good relations with this client.

Use case 5. You are a successful software developer, your salary grows faster
than average in the nation. You’ve managed to increase your salary from
$60K to $120K within the last five years. This is quite an achievement. You
feel important and want to teach other people how to manage their careers.
Your body was craving for a couple of Wows, and you’ve shared you success
story with your neighbor. He said, “Wow”…smiling to himself as he was
consistently making $150K during the same period of time. Luckily, your
neighbor would never reveal this number. Your self esteem is saved.

Use case 6. Alex and Lisa were going out for two years, and finally Alex
decided to propose. By some idiotic rules young men often purchase
expensive diamond rings to impress their wife-to-be and her friends. Alex

has purchased a $15K diamond ring, and proposed to her. She was so happy
and said, ”Yes”. In a couple of months, she asked Alex about his salary. She
caught him off guard and he said,”$60K a year”. Lisa was a student majoring
in accounting. She quickly put two and two together and decided that she
couldn’t live with a man who can spend $15K on a ring having such a
modest salary. I do not remember if she has returned the ring though.

Use case 7. Marsha is leading a small team of software developers. Marsha is
in her 40s, and she's been with the company for 10 years. Ashish, 27 is one of
these sharp god-like gurus who programmed 80% of the project. When
Ashish found out that Marsha's salary is $90K and his is only$60K, he decided
that it's not fair and immediately started looking for a new job. He did not
know that only because of Marsha's connections within the firm was your
group given this project in the first place, and because of her Ashish always
had the green light when the business analysts input was required. Yes,
Marsha was not as good of a coder as Ashish. So? Often team members tend
to overestimate their contribution to the success of the project. And you as a
project manager better make sure that they do not start comparing their
compensations.

Use case 8. Somehow Gordon figured out that Frank is making more money
than him. During the annual review, when he found out that his salary will
increase only by 4%, he said to his manager, "How come, I am not worse
than Frank but he makes more than me".

Yakov, the manager, said that he'd take a look at this situation. In about a
month, he invited Gordon in the office and said, "Our department is not
doing that great, we've had a series of budget cuts, and even though you are
a great asset to our group, I'm going to have to let you go. Sorry, man!" Of
course, this was not the real reason: Yakov did not need this bad egg on his
team.

Never use someone's salary in negotiations of your raise

You think you are underpaid? Update your resume and hit the job market.
Can't do better than now? Sit down and shut up. It's a bit rude, but welcome
to the real world.

Americans neither ask nor answer questions about salary. But if you run into
a newcomer who may ask you directly
“What’s your salary?”
Just say, ”Even my wife does not know this number”, and give them an
American smile.

Underpaid? Quit!

Is there such a thing as underpaid people? The short answer is, ”No”. Each
person is getting paid what s/he deserves at this moment.

You may think that they should pay more for your hard work. I have bad
news for you: you are always getting the right compensation.

You feel that you worth more? Hit the road, Jack and see if there is anyone
else who also thinks so. Try to find greener pastures.

Let’s say your current annual salary is $70,000. You just got an annual review
and a raise to $74,000. An extra four grand of your gross income translates
into twenty seven hundred a year of after tax money $225 a month.

If you are not too happy with this kind of raise, try one of the following two
strategies.

Quitting strategy #1. Do not argue with your boss. Just hit the job market.
There are two possible outcomes. Outcome number one: you’ll find out that
even $74K is way too much for your skills today, and the best offer you can
get is $69K. But the negative result is also a useful result. Keep your current
job, improve your technical skills to match the market demand. Just sit tight,
study to get your technical skills current and six months later try to hit the
market again to see if you can get a better offer.

Outcome number two, you’ve got an job offer for $80K. Accept and quit
your current job.

Quitting strategy #2. If you believe that you can make more, explain to your
boss why you think so. Give her a chance to re-evaluate your compensation.
Wait for a couple of months, and if nothing happens, use the quitting
strategy #1. If someone makes you a better offer, quit without thinking
twice.

The chances are that when you give your two week notice (the industry
standard), your current employer will offer you to match or even beat your
new deal. And remember the golden rule: don’t accept a counter offer.

Can't find a better paid job in your town? Move to a different one. Can't or
do not want to? Then do not complain - there is no such thing as underpaid
people.

Overpaid? Hardly

The Information Week magazine has published an article “Down to Business:
Is Exec Pay Excessive?” The author answers, "Hardly". I agree with him
because I believe in the open market.

If you are wondering why a policeman earns $50K annual salary while risking
his life, the author explains,"...it just means that employers can find more of
them at the pay they now earn". Do you think it's fair that a 20 year old
basketball player whose vocabulary is "Yo, man" and 500 more words earns
ten times more that the President of the USA? I think it's fair because
thousands of people are willing to pay big bucks for a game ticket when this
Yo-Man is playing. He earns his salary. Big time! Do you think that his agent
is overpaid? Hardly. Without his agent this superstar would still be playing in
his neighborhood playground on weekends.

Or take the tennis champion Maria Sharapova. Does she earn her pay check?
Absolutely! She's pretty and technically she does not even need to play
tennis. Maria can just wear these sexy Nike outfits, walk around the tennis
court and scream periodically. Trust me, men will keep purchasing tickets.

Do you think that your boss earns too much? I do not think so. Do you think
that without you the project would fail? Do not think so. Why your boss is
getting paid a lot more without knowing Java or C++ like yourself? You boss
has much more responsibility than you do. Your boss is responsible for all
the mistakes you make. Your boss wears a Blackberry, and only stupid
people can think that this is a privilege. Your boss is on a leash 24x7. Ask
yourself, do you think it's going to be better if you get a new boss? Still do
not like your boss? Quit, and see if the new one is better.

Do you think that they pay you too much? Hardly. You worth every penny
you make today! If someone will pay you more tomorrow, you’ll be worth
every penny too. But that is tomorrow…

http://www.informationweek.com/showArticle.jhtml?articleID=196900692
http://www.informationweek.com/showArticle.jhtml?articleID=196900692

Poor advice to laid-off people

I like reading blogs. People have opinions and I have opinions. Some of the
blogs may change my opinion or two. But this time I ran into a blog that just
gives poor (IMO or IMHO) advice on things that a person has to do on the
first day after being laid off. At this point, kindly switch to Jason Kester’s blog
and read it. Done? My turn.

Being laid off is one of the most serious cataclysms in anyone’s life. Stronger
that this could be moving to a new house (been there) and American
divorce (no practical experience here, just the horror stories from people
who went through it).

If any person will tell you “I was laid off, but received good severance
package. So I do not really care”, s/he lies to you. S/he’s very upset. Everyone
should be upset receiving a sudden punch in the face.

Jason suggests to book a flight and see the world because “you will never
have a better chance to see the world than right now”. I love travel, but I
prefer to do so when it’s convenient for me, and not because someone
kicked me out of the house as an Indian cow that stopped producing milk.
It’s kind of weird analogy, but I just came back from India , and I went there
not because of being laid off.

Then, Jason makes another cute statement, “You have a pile of savings and a
severance package”. My sincere congratulations to the author, but I can tell
you a little secret, most people (in the USA) neither have a pile not a
package. The only thing they have is a burning painful thought, “How long
can I last till they kick me out of the house”. Because these days American
dream has converged from having a house to making money for a down
payment to a house.

One more gem, “You’ve got 6 months to a year before your skills start
getting rusty”. If they are not rusty, why not getting another job, and see the
world when it’s going to be your choice, not their?

http://www.expatsoftware.com/articles/2008/05/laid-off-one-thing-you-absolutely-need.html

Moving along…Jason recommends to fly to Thailand, and this is not a bad
idea, if you go there when the sun is bright and the grass is green, which is
not the case on the first day after the layoff. Contradicting to himself
(remember the pile of cash?), the author states that Europe is crazy
expensive, and you may even consider going to South Africa, where you get
a room for $0.75. After years and years of travels, I’ve learned one thing:
hotels cost pretty much the same everywhere in the world if you’ll compare
apples to apples. Go online, take any hotel chain you like: Hilton, Sheraton,
Four Seasons and pick any country in the world. You may be surprised to
learn that the prices are the same.

Of course, college kids happily travel in Europe staying in Paris hostels for
$10 a bed. But there is a big difference between the state of mind of happy
campers whose main goal is to quickly get drunk and get laid (without off)
with a different person each day, and a laid off guy/gal with a little pile in
their hands.

Then Jason starts bragging, “Did I mention that I take about 9 months
vacation a year”. Congratulation again, but the rest of the world are just not
like that. Poor thing, he “start missing work after about six month away”. I
feel for him. Staying in $.75 rooms for six months in a row must be worse
than being an inmate in one of the American prisons. Jason reveals that he
spends $1000 a month staying away from developed countries. Thirty five
bucks won’t get you far, but you may try one of the Frommers guides like
Scandinavia on 40 Dollars a Day (get it for a penny at Amazon) . Oops, it’s
been published in 1987…Sorry. With today’s weak dollar, even Rachel Ray
stopped telling her stories about $40-a-day travel and switched to a safer 30-
min meals show.

To keep your skills up to date, you should take your laptop with you. I
wonder if these $.75 rooms offer safe deposit boxes that can accommodate
your laptop while you are out enjoying $3 lunch?

I can keep commenting, but the bottom line, that blog gives a BS advice.
Hopefully this book will help you to manage your career and be ready for
layoffs, which suck. Really.

Is life in startups any different than in corporations?

Vacations are meant for reading. This time I’ve picked an e-book “Eric Sink
on the Business of Software”. This section is not a review of this good book,
but rather my own thoughts and comments inspired by reading what Eric
thinks about running a small software development company.

Below are some quotes from Eric’s book with my comments

 “I like the smell of a freshly killed bug.” Very well said. I’d take it one
step further and submit to Wikipedia the following definition of a
geek: “Software geeks are people with a smell disorder. Most of all
they love the smell of a freshly killed bug”.

 “Good communication is not 50% listening and 50% talking, It’s more

like 80% listening and 20% talking”. It’s very true. Can you listen to
someone other than your boss or wife without interrupting for more
than three minutes? If yes, you have good communication skills.

 “Your ideas are worthless”. Exactly! This is long and winding road

between your great idea and a PRODUCTION QUALITY software
product.

 “The purpose of 1.0 is to help pay for the development of 2.0”. This
means that you should not try to put too many features into the first
release of your product – get it out the door and start making some
money.

Eric’s message about not using your house as collateral for your business is
not strong enough. My message is this: “Do not even think about it!”

One day you came home telling your wife, husband, or a domestic partner
that you’ve got an idea about developing a software product that will
change your life and make you rich. But to implement this idea, you need
some cash – let’s take a second mortgage to get this cash from our house.

The only proper reaction from your wife, husband or a domestic partner is
showing you a middle finger.

No, there can’t be any special circumstances that would justify a chance to
lose your house, if you made a mistake. If this idea is that great, why don’t
you try to convince anyone other than your wife, husband or a domestic
partner to shell out some cash for implementing it? It’s not easy? I know. But
maybe this means that your idea is not that great?

Fine, if you still believe that this software product is your future, go ahead –
start spending extra 5-6 hours daily (after your day paying job) developing
your product, or get a second job if you need to hire a software developer.

I had and still have lots of ideas, but over the years I came up with the
following cold-shower technique. Let’s say, you have an idea of THE software
product. Assume that you’ve already created it. Fast forward the time
machine and visualize the day when you’ve completed development of your
one-of-a-kind-state-of-the-art software program. Congratulations, but what’s
next?

What are you going to do with it?
Can you sell it to at least one person? Price does not matter.
Can you make anyone pay even $10 for your creation?
How are you planning to advertise it?
Do you have even a slightest idea about marketing of your product?
Do you have the budget for marketing? Your Web page explaining the
revolutionary effect of using your newborn baby will go unnoticed unless
you will be constantly promoting it.

Eric’s book is about creating a small Independent Software Vendor (ISV)
company that creates profitable software. He mentions that there are
companies that do both – develop software and offer consulting services,
and this is how his company has started.

I’m also partner in a company that does exactly this – we develop software
components and offer consulting and training services as well. This business
model allows us not to carry all our eggs in the same basket. This model has
the following advantages over a product-only ISV:

1. Having two sources of income (consulting and product sales) is better
than one. This is a no-brainer.

2. Both of these business activities complement each other dearly:

 a) the money earned by consulting or training gigs can be used for the
development of a software product. Such internal investment is a lot more
attractive than asking for venture capital (VC) elsewhere.

 b) it’s a lot easier to get consulting gigs if you are also an ISV. The fact that
you can develop advanced software adds a lot of credibility to your
consulting services. This really helps us to stand out from other consulting
body shops that bid on the same project.

3. If our software product sales won’t be as good as predicted, we won’t
need to turn off the light in our business. Armed with the knowledge gained
during product development our technical skills (so needed in the
consulting business) are always up to date, and it’s pretty easy to
demonstrate.

Startups may have different problems than larger corporations. Employees
in startups often work harder and have to wear multiple hats during a day,
their compensation is lower and the dreams of capitalizing on a product
they develop comes true for only a tiny number of ISVs. But hey, you never
know…Maybe the startup you work for will become the next Youtube or
Facebook.

A small ISV just can’t afford hiring the wrong people (both employees and
contractors). Wrong people are the ones that are either not technical
enough or do not have proper communication skills. For example, we’ve had
a technically sound worker who did not like answering emails. After several
attempts to get the status of his assignment, we had to fire the guy. A larger
firm would never do something like this, but a small ISV just can’t afford to
have such a person. Yes, it’s a pity that we’ve invested some time into this
worker, but we can’t make success of our company dependent on the mood
of one programmer (even if he’s has good technical skills).

We had to let go of another person after about two months of employment
– he was not good enough technically. Hiring this guy was a mistake in the
first place, we’ve lost several thousands of dollars on him, but we must cut
our losses quickly, learn from our mistakes and move on. Large corporations
have lots of dead wood, which burns large chunks of their profits. Small ISVs
should not tolerate this.

Eric does a good job explaining the difference between programmers and
software developers, and he makes a very important statement, “a small ISV
should not have any programmers”. This statement might sound strange,
but it’s not if you realize that programmers are the people who just write
code and do nothing else. Not to be confused with people called software
developers, which do many other things like talking to users, making
decision, perform testing and ARE CREATIVE.

Our small ISV company has people working in different countries, which
makes having programmers (not developers) even a bigger no-no. Unless
you can afford writing crystal clear specs for programmers, which small ISV
can’t, having programmers is expensive even if you pay them relatively
modest salaries. They may not understand (and care) why they were asked
to write this piece of code.

The time difference adds to the problem: you give them an assignment
TODAY, and TOMORROW they respond that they did not understand it. It’s a
bummer. You’ve lost a day, which may affect your deadlines, and the salary
paid to this person for yesterday’s work was paid for nothing.

My short vacation was over, and I’ve completed half of Eric’s book. I like the
book, and may finish it one day. But I will follow his own advice – do not read
one book on the business of software – read ten.

Why people work overtime

It’s 7PM, and you can hear from your cube that people are still typing. Why
they do not go home? Are they forced to stay late? Are they getting paid for
these long hours? Why?

First, let’s briefly touch upon the small startup culture – these people have
some "idea", and who knows may be their little company will become the
next Youtube or Facebook. These shops are either self-funded or operate
under the scrutiny of VC. So when you hear that a company XYZ received
$10M in venture capital funding, this does not mean that anyone in this
company became richer.

This means that they earned the right to continue working on this
idea/product envisioned by the founders of the company. People in
startups work long hours, wear multiple hats, and hope that N number of
options they have worth nothing today will turn into a fortune some day.
Welcome to California! The startup spirit lives there. People think not just
salaries, they think options (shares). If I’ll just stay for two years with this
company, I might exercise some portion of my options. This is the Silicon
Valley’s way of getting good software developers working long hours for
sub-standard wages. Let’s leave this group of people alone and wish them
good luck. I understand their motives.

The East Coast is different. Unless you are in Boston, you don’t know much
about startups and options, and just work for one of the larger enterprises.
We’ve already covered two ways of earning income: working as an
employee or a contractor .

Contactors work for money. Period. If someone tells you “I prefer working as
a contractor because it gives me more freedom”, this is BS unless there are
some special circumstances (i.e. you’ve enrolled in a PhD program or can
work only a small number of hours per week).

Since contractors work for money, they like working overtime and they are
getting paid for these hours. Some employers try to save a little bit and
insert a clause in the contractor agreement stating that a contractor works a
professional day at so-and-so hourly rate. Some smarty pants from HR came
with this idea called “professional day”, which means that the regular 8-hour
day may be occasionally stretched to ten hours . If you’ve signed the
contract that pays $80 p/h and on Wednesday need to work for 11 hours,
you are getting 8x$80 plus another $80 for the eleventh hour, which is
considered overtime.

Contractors have very simple and healthy relations with their clients. You
need me for six months? No problem - $80p/h. You need me for two weeks?
No problem. $100p/h. Why is it getting a lot more expensive? Because
employers must pay for the convenience of having a skilled worker just
when they need him on a very short notice and for a short assignment. You
click on the button, and Joe is here. Seasoned employers understand that
Joe-the-contractor will have some non-billable time after these two weeks
and this higher rate should make up for the lost earnings. Besides, hiring a
full time employee is like getting married, the wedding is expensive (you pay
the recruiting agency hefty finder’s fees) and divorce is getting even more
expensive. Let’s leave this group alone. I understand their motives.

Moving to the most complex case – full time employees working overtime.
Let’s single out the managers – these people are there to make careers, and
they have to work long hours. These endless meetings steal their time and
they have to stay late to get anything accomplished. Their higher-level
incompetent managers give them unrealistic deadlines, and, if they are
incompetent themselves, they just pass the pressure to their software
developers, business analysts and testers, which start staying late once in a
while. This is fine as long as it’s happening once in a while. But all of a
sudden, you found yourself working 10-12 hours every day without getting
paid even for one extra hour.

Why people do this? I see several reasons:

1. Your technical skills are not up to date and you are afraid of losing this job,
especially if you have no discipline in spending. Why did you purchase that
car that you could not afford? Did you really need that apartment in Miami
with zero down?

2. You are promised B-O-N-U-S at the end of the year, and if you won’t be
nice, you r B-O-N-U-S will become even smaller. October and November are
the most important months for making bonus decisions, so you better
behave. When you get this bonus, do a simple exercise: Add your salary and
bonus and divide it by actual number of hours you’ve spent in your cubicle.
You may be surprised by the results!

3. You are a workaholic and just like to work.

4. You have family issues and would rather stay at work than go home.

5. Your company pays for your college, and you have to show your
appreciation by working overtime.

6. You are a smart kid, and working overtime gives you a chance to better
learn the business you are in and improve your technical skills. You are
planning to move.

7. Your technical skills are very poor, and staying overtime is the only chance
to get even simple assignments done.

8. You or someone in your family have a disease and you need to have good
medical insurance and changing jobs is not an option.

9. You need to have daily meetings with your offshore team in India, and
because of the time difference you have to start working at five in the
morning. Leaving from work earlier than your boss is not an option, so you
routinely put extra hours.

The bottom line: be good at what you are doing, and
then you won’t need to say “Yes, Sir” every time when
your manager decides that you are a second-class citizen
and your main goal is to support his/her career
promotion.

If you are good at what you are doing, you are allowed to say “No” and still
keep the job. Pretty simple recipe, isn’t it? You’d better put these extra
hours taking some extra classes in your local college or self-study. You do
not need to change your profession.

Do the same things as other people do, just do them a
little better.

SOA, RIA and the Human factor

This section of the book is a little bit more technical then the others, but it
delivers a message about important motivations for implementing any new
technology in the enterprise.

While making a presentation on Service Oriented Architecture (SOA) I've
asked the audience the following question, “What do you think is the
driving force for implementing any technology or architecture in a decent
size Enterprise?”

The answers were typical – better code re-usability, accessibility… But I was
looking for a different answer that has nothing to with technical merits of
any technology. Based on what I see in the real world enterprises, the main
reason of implementing SOA or any other IT initiative are career goal of
individuals working in this organization.

People want to become more visible and move up the career ladder.
Implementing SOA across organization can make enough noise to move
them to the next level.

SOA Ground Up

The SOA in your firm can evolve from the ground up. For example, an
ambitious architect attends conferences, goes through training, reads white
papers, and now he truly believes that SOA is the right way to go. He’s
aggressive and influential and manages to convince the CTO or CIO to
allocate funds for this.

If you are not an architect but just a software engineer, you may try to start
convincing your application manager, but an average application manager

does not want SOA. He’s busy with business as usual: do not forget to call
into the change management meeting, fix yesterday’s production bug, deal
with an offshore team, attend 5-6 meetings a day… An enterprise IT
manager is a firefighter. Imagine a firefighter that is putting out a fire…Here
you come in a clean white suit offering to sell some new bells and whistles
for a fire truck…

The chances of a software engineer to start SOA movement are very slim,
really.

SOA Top Down

Another reason for SOA is this: your CIO went to a conference and attended
a presentation of an energetic speaker, who clearly explained the benefits of
SOA over any existing architecture. This is the worst case. Subordinates will
not resist - they also have career goals…

Your CIO will come up with an SOA project plan based on available funds
and resources, which means that this project is doomed. Your CIO will never
admit that it was a mistake, which makes things even worse.

All application groups will roll up their sleeves, will work hard and meet the
deadlines. But let me remind you a quote from a must read book by Fred
Brooks called “The Mythical Man-Month”:

An omlette, promised in two minutes , may appear to be progressing nicely.
But when it has not set for two minutes, the customer has two choices – wait
for it or eat it raw. Software customers have had the same choices.
The cook has another choice; he can turn up the heat. The result is often an
omlette nothing can save – burned in one part, raw in another.

SOA as a burner

The third reason for implementing Enterprise SOA is to burn some cash: we
(IT) have $2M – let’s service-enable all of our applications by the end of this
year. Why $2M? It’s elementary, Watson!

You need to burn $2M this year, otherwise you won’t get
funding next year.

Get some high-price software products. Who cares that no real feasibility
study was made? Just go with a well known vendor and get expensive
software/hardware - your developers will figure out how to plug in that
Enterprise Service Bus into your SOA.

SOA Maturity

As a consultant on SOA projects, I had to interview technical managers to
figure out if SOA is a realistic solution for their company, and how the
CUSTOMERS of this particular silo application will benefit from
implementing SOA in the firm.

All these managers are working hard to fulfill their current obligations, to
make sure that their applications are up and running in production, that
support calls are answered in a timely manner, the offshore team is
delivering, and on and on and on. And here I come in a white suite asking all
these smart questions:

”How do you run business today?”
“What parts of your application are candidates for being converted into
services? No, SOA is not the same as Web Services”.

And these polite but tired people are looking at me, listening to me, they’ve
seen already other architects trying to change the way they do stuff in their
organization. Several similar initiatives have failed before, and here we go
again…

I can’t forget one technical manager – this lady was having hard times even
finding time for meeting with me. During the appointment she was polite,
but looked tired and worn out. She’s a professional and was trying to answer
my questions anyway, but her phone rang off the hook, he right hand was
moving the mouse over the MS Outlook screen. “I’m so sorry, I need to take
this call…” And I’m thinking to myself, ”What am I doing there? Does she
really need SOA?”

Is your organization ready for SOA?
Does your company have the right skills, infrastructure, SLA, SDLC in place?
What methodology are you planning to use to identify services?
Do you have lots of third-party shrink-wrapped applications?
You know how to wrap up your CICS application into a Web Service, but are
your mainframe developers willing to get re-trained?
What about the governance?

Some architects start with purchasing expensive software and hardware
assuming that the main part of the SOA initiative is accomplished. No, you
can’t buy SOA.

Someone has to do a feasibility study for your firm (preferably external
vendor) – but this has to be an honest opinion of a qualified group of

people. This study has to be convincing, it has to show if implementing SOA
is the right choice at this time for your firm.

SOA maturity assessment is extremely important too.

Technical Benefits of SOA

If someone will create an inventory of all applications of a large organization
and the data exchange between these applications, it may look scary.

An app A provides data to app B. It would be nice if app A would be able to
easily send the same information to applications C and D as well, but this
would require some data transformation. Currently, your people would just
create and deploy a new ETL (extract-transform-load) processes for A2C and
A2D data exchange.

But SOA can offer you a more elegant way by implementing an Enterprise
Service Bus that would take care of the data routing and transformation.
Someone said that the main reason for implementing SOA is reusability?
Let’s look at the before-after SOA diagram:

The bottom diagram looks much better than the top one, but how much is it
going to cost your firm to switch from the first diagram to a second one?
How much would a reusable service cost you compared to just writing new
ETL scripts for each new connected pair? Is it worth the money?

Why would reusable components would be expensive? Let’s talk about
infrastructure, which is an enterprise level group that owns shareable
software and hardware.

ESB Infrastructure

ESB (Enterprise Service Bus) requires a centralized supporting group with
proper skills. How this group will be funded (a slice of each project’s budget,
internal consulting, a hybrid)? SLA must be in a place that would require this
group to accommodate every application the team needs in a timely

fashion. The quality of service has to be clearly defined (is it 24x7 or what’s
the max time the service can be down).

Do not forget about service versioning, which is not the same as application
versioning. Some service consumers may be happy with the version 3.2 and
you’ll have to support both 3.2 and 3.3.

Coming back to the human factor - do you have good relations with the ESB
group? Personal relations will always get you farther than any SLAs
combined. By the way, Joe Smith who runs the ESB group has his own career
objectives and ambitions

The ESB group has to accommodate the application group’s needs in a
timely fashion. You need to make sure that Joe finds time in his busy
schedule and allocate his resources to your project’s needs.

If you keep your ugly point-to-point ETL way of connecting silo applications,
you do not need to create this infrastructure and introduce yet another
moving part into your rather complex enterprise architecture. Again, human
relations between you and Joe Smith become crucial for the success of your
SOA project.

Now you need to get trained and spend some time preparing your data for
input into the ESB in the proper format, specify the right output format for
every new application and document it according to your firm’s SDLC
process. How quickly the infrastructure team will write and test the
conversion script for your recipient application?

Yes, every new connection between the applications that you introduce
adds a bit more spaghetti to the diagram, but you could have done all this
with your own resources in a controlled timely manner without missing
deadlines and jeopardizing your career. By the way, Joe Smith from
infrastructure has his own career objectives. If your project fails, your yearly
review suffers, now you need to find common ground in achieving yours
and Joe’s personal goals.

To SOA or not to SOA

This does not mean, at all, that I do not recommend implementing SOA in
your enterprise, it just means that you need to be prepared and armed when
it comes to dealing with all these issues. SOA is definitely a way to go in
green field situations when you start automation of your enterprise from
scratch.

I wonder if you are familiar with this diagram:

This is Minard's Diagram of Napoleon's March on Moscow of 1812. The
width of the line shows the size of the army on the way to Moscow and back.

Napoleon was expecting greetings from Moscow authorities, but entered
the abandoned and burnt city with no supplies and food for his huge army.
His retreat was also a deadly enterprise because of an extremely cold winter
(−36 ° F), no grass for horses (most of them were eaten by the French
soldiers anyway). You can read more about it in Wikipedia.

http://en.wikipedia.org/wiki/Minard

My message to you is this: “Do not repeat Napoleon’s mistakes in your SOA
endeavor. Do not start it unless you have the right expectations and your
infrastructure will definitely be ready.

Making Business Users Happy

Oh man, I almost forgot about your business users! Will they happily greet
you at the gates of their cities? How did you convince them that they should
shell out a substantial chunk of money for implementing your SOA
initiative? Do they actually know about this initiative or you managed to get
funding because you play gulf with the CEO of your firm?

If this is the case, I have bad news for you – you can’t avoid contacts with
business user while immersing your enterprise into SOA waters.

Do they give a damn about what architecture you use to give them the
data? Not really. They will definitely ask you a simple question, “OK, I’ll give
you X amount of dollars and allocate resources for a year for your SOA
project. Will I run business differently a year from now? Will you provide me
more analytical data in a more convenient form? Will my customer-facing
sales force become more productive which will translate to more sales?”

SOA+RIA

To make end users more productive, we need to shift gears a little bit and
recall that user experience really matters. Think of an iPod. How many
people know the name of its competitor? What do you prefer – Apple’s iPod
or Zune from Microsoft?

Zune has a bit more functionality, but iPod looks nicer and the user interface
is cleaner. InformationWeek has published an article listing 8 alternatives to
iPod. Have you even heard of them?

Lots of people purchased a new Apple gadget called iPhone. $500? Not a
problem. They want it now. Let me stress, it’s still a phone with the ability to
browse the Web and a modest disk space for storing music. From the
services perspective is not a revolution, it’s the User Experience that make it
stand out and this is the main reason why people want it.

You may ask what all this has to do with SOA? People like nice looking
gadgets, and they like nice looking program interfaces too! It’s easier to sell
SOA to your business users if the SOA client applications are convenient and
slick. This is especially true for the customer facing applications. If your sales
representative comes to a prospective client with a rich-looking application
clearly showing your products, their job becomes a lot easier. If you offer
your firm’s financial analysts rich GUI interface with live chart and graphs to
easily compare performance of two mutual funds, analysts will really
appreciate it. You still need to program the services that will go and get the
data, but having a great presentation layer is extremely important.

When you create or modernize your application, do not just think about
powerful multi-processor servers, multithreading, and ESB. Start redesigning
the users experience – it has to be available everywhere (at home, on the
road and in the office), it has to be responsive, and it has to look better than
client server application written ten years ago in Visual Basic and
PowerBuilder.

Ten years ago we were thinking screens not servers. And this was not a bad
idea. When Java was born, client programming became complex, besides,
Sun Microsystems and IBM wanted to sell server licenses, which has moved
most of the Java development to the server side.

Now we can talk about the rich Internet applications (RIA) that can and
should be used as consumers to the services. The RIA term was coined by
Macromedia back in 2002. I’m not sure if there is a formal definition of this
term, but you can think of RIA as desktop-quality applications delivered over
the Web with no (or close to no) installation required.

Let’s turn on the time machine and go back 20 years. Mainframes with their
dumb terminals dominates. The client portion of the application is a black
screen displaying green and red text. Then, in the early nineties client-server
application came about. The clients were not dumb anymore, rich looking
GUI that utilized the processing power of the PC.

In mid 90th, Internet became popular. Plain looking pages had an ability to
get all kind of information from a plethora of remote servers. From the GUI

perspective, it was a pushback. Mainframe had black background with green
letters, while Web pages had colored backgrounds, static pictures and the
same text fields, buttons and rudimentary HTML tables.

Now the rich GUI is coming back again in the form of RIA. These are not
page-by-page typical Web sites, but full-fledged applications with rich
controls, audio and video, with state stored on the client. Now the user get
this nice looking application delivered to their PC without the need to go
through a complex install process.

There is a number of technologies that can be used for the creation of rich
looking consumers of the services in your next SOA project. Leading
enterprises started using professional designers for wire-framing next
generation Web applications.

If you are an architect of an enterprise SOA project, do not just think servers,
clusters, and grid computing. Think of your business users. Give them
something nice, and they’ll be helping you with your SOA-SHMOA efforts
and will enjoy the new system as they already enjoy iPods and iPhones. SOA
must improve the user experience of your business clients – do not
underestimate the human factor.

Agility is a tough sell in enterprises

One day a group of smart software engineers from various companies
locked themselves in the room and came out with great principles of
developing software projects and published Agile Manifesto:
http://www.agilemanifesto.org/ :

 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

While I wholeheartedly agree with these principles, in large enterprises
each of these principle is violated. As you know by now, the careers of the
individuals are the main driving force for pretty much any project. Success of
any IT initiative always depends on the following two aspects:

 technical principles and available tools
 motivation of the decision makers

Technical principles and tools

Ten years ago I was been programming using a fourth generation tool called
PowerBuilder and my mentality was different: first, I was the best friend of
business users, and second I did not really worry about what's under the
hood. I could do stuff quickly, or using the modern jargon, I was an agile
programmer without even knowing this.

I'd ask the business user Joe, "How do you usually run your business, what
would you like to have on this screen, what step do you do after this
particular one?" Sometimes, Joe could not give a clear answer, but I'd still
give him a wide American smile: "No problem, I'll come back tomorrow and
will show you something".

http://www.agilemanifesto.org/

Mary, yes you, what's the most important word in my last sentence? No,
Mary, not "I'll come back", but TOMORROW. Not next week, not next month,
but tomorrow.

With PowerBuilder’s DataWindow and other controls it was easy. I did not
have to pull Joe's teeth, I was able to create a working prototype in a day,
show it to Joe next day, his glassy look all of a sudden would become
friendly and understanding. Now Joe was back in control: "No, Yakov, you
did this part wrong, I want it differently".

No problem, Joe, I'll see you tomorrow. Mary, what was the most important
word in my last sentence? Good girl, Hasta mañana!

I did not really know how DataWindow worked, but I trusted this
component. PowerBuilder used event-driven programming model, which
was clean and simple. An object A triggers an event XYZ on object B, and
this event can carry a payload - the data that the object B needs to operate.
Using the modern jargon it's called Inversion of Control or Dependency
Injection design pattern. Whatever. What's important is that the object B
does not know about the object A. Loose coupling in action.

Then I became Java programmer, and my mentality has since changed big
time. I realized that the user's screens are not that important, because I had
an intimate knowledge of how programs worked internally. Screw users. I'll
spend the majority of my time designing a multi-tier system that does not
really depend on any specific screen and is universal. Joe kept still asking
me, “when is our next meeting?” In a month. Mary, do not raise your hand. I
see that you know the most important word here.

Why in a month? Because I could not do a decent working prototype sooner.
We started to make fun of PowerBuilder or Visual Basic programmers who
were thinking screens, while us, cool Java gurus, knew how the motor
worked inside! These guys were enjoying a ride and counting cup holders,
while we were thinking spark plugs and combustion chambers. We were
enjoying the process of programming in and of itself.

A famous stand-up comedian Mickhail Zhvanetskiy from Odessa once said,
"Who cares about the soup, when so much is going on in the kitchen!"

Now, with tools like Adobe Flex I started to care about the soup again,
because I can. I can change the prototype twice a day, and Joe does the
same with his business requirements. No six-freaking-sigmas
documentation.

Napkin on the knee is back and it works

I'll give the final OK to my server side Java team only after Joe is 100% happy.

Besides, with Flex I can have the best of both worlds: the source code of the
Flex framework is available, I can learn how it works inside and override it
(not always it's as easy as it should be, but it's doable).

Working Flex promotes agile development.

Dear user, I'm your friend again! What do you want me to change?

CYA

If you are not familiar with this acronym, look it up at
www.acronymfinder.com. Ok, if you are not online at the moment, I’ll tell
you: CYA stands for Cover Your Ass.

For many project managers this is the main motivation in making any
decisions.

James McGovern published a blog on How IT managers prevent hiring top
talent. He names fear of losing power as one of the main reasons and
suggests having less consultants and more people from the military.

I do not agree with these statements. These are some quick random
thoughts on the subject:

1. Managers do not hire top talents because they can't afford to hire them.

2. Managers are not being afraid of losing the power, because top talent is
not seeking power but rather an interesting environment and appreciation
of his/her work.

3. If managers already work with a top talent (can be either an employee or a
consultant), they often resists innovative ideas that come from these smart
people. Why? Because the main goal of almost every manager is to move up
the career ladder and not revolutionize software development. The
innovative ideas of smart technical people put their career at risk. Yeah, the
existing technology may not be of a bleeding edge, but everyone knows its
features, and slowly but surely we'll get the project finished close to the set
deadlines. This new technology sounds very interesting, but why take a risk
being among the early adopters? Thanks, but no thanks.

http://www.acronymfinder.com/
http://duckdown.blogspot.com/2008/02/random-thoughts-on-how-it-managers.html#links

4. For some reason, James does not like contractors that much. He does not
want to admit that typically contractors are more innovative than
employees. They need to keep their skills up to date and learn on the go,
while some employees get too comfy in their cubicles over the years. I vote
for inviting more contractors in on a short-time basis. I often work as a
contractor myself. Currently I am working on three projects at the same
time: two days a week on one, two on the other and Fridays on the third one.
The managers who hired people from our company for short mentoring gigs
made the right decision. My role is to mentor other people and make sure
that the project goes in the right direction. Keeping me onsite for five days a
week would be more expensive and unnecessary. I also prefer short
assignments to long running projects.

5. Hiring people from the military may or may not work.

Pros: military people are often goal oriented, and if they decide to become
good software developers/architects, they'll do it. Be all that you can be..
Recently I met a former marine in one the IT floors. He’s a very respectful
person, who does not have formal education in software but is one of the
leading developers on a complex project.

Cons: military people may not have any talent in computers, and hiring them
just because they are from military is wrong, in my opinion. Hire good
software developers regardless of their past.

There is a very respected person, Carl Blum, whom I’ve known for years.. All
his life he was recruiting software programmers and has turned this process
into art. Now he’s made the goal of his life helping people who are returning
from the military service. I wish Carl success with this noble mission, but this
is a little off the subject.

Part 3. Getting out of IT

And he was fired

I've got a call from a Java programmer I knew for years. He said, "I've got a
problem. I was fired". Here's his story.

Joe was working for a mid-size financial company for several years. He knew
Java and his application pretty well and felt safe there. On the other hand,
since the Java job market was good, he started interviewing with some other
companies, and was considering two offers. That day he left his USB drive at
home and sent a piece of his code to his own personal Yahoo email account.
He never received this email.

The next day, an HR person and his boss met with Joe and asked why he
sent the email. Joe answered that he was planning to work from home, but
never received this email. The boss said, "Please open your Yahoo email
account now and delete this email if it’s there". When he opened his email,
they saw all his correspondence regarding new job offers and such… He was
immediately suspended and next day received a letter stating that he was
fired for an attempt to steal the proprietary software and the company may
exercise their right to sue him in the future for breaching the non-disclosure
agreement that Joe signed several years ago.

Most of us can work from home, and some of us have our employer’s
software installed on our laptops and home PCs. In my opinion, Joe is just
plain stupid: he should not be sending this code using his employer’s email.
Every single e-mail in financial companies is being read by people from the
information security department. It’s not a secret, and has to be taken
seriously.

I doubt that Joe’s former employer will take any further actions, but Joe may
have issues with his new employer. It all depends on how they check
employment history. Joe may start working for a new company, and a
month later get fired again if they find out about this story…

 It’s a sad story, but each of us should learn from it.

1. Do not use your employer’s email for sending anything that is not job

related. If you are looking for a new job, use your personal email
account.

2. Stop sending jokes or funny pictures to your colleagues. Some
people do it every day just to let everyone know that they came early
today… This also may get you in trouble unless you work for a mom-
and-pop company.

Do not tell me, “’cause it hurts.”

After one of my Java talks, a woman from the audience came to me and said,
"I'm being displaced. But that's okay; the company gave me enough time for
retraining. I've been working with Java , but would you recommend that I
learn .NET?"

This lady deserves a lot of respect for at least two reasons:

 1. She has maintained her positive attitude toward her current employer.
 2. She is ready to start learning again.

So last week you used to be a programmer, but not anymore. What's next?

Life After a Pink Slip

Do not panic. Start collecting unemployment (in the U.S. it's about $400 a
week for most programmers). Incorporated contractors are also entitled to
unemployment benefits - if you can't sign a new contract within three
months, just close your corporation and get some cash flow from the
unemployment office.

If you haven't found a new job and your unemployment benefits are ending
in a month, find any school that is approved by the Department of Labor
and register for their longest running course. Even if you won't learn
anything useful there, your benefits may be extended for the time that
you're in school.

Let me stress it again, your résumé should be customized for each job that
you are applying to. The same facts about your work experience can be
presented in multiple ways. As Nelson DeMille wrote in one of his novels,
"He never lied. He could give 10 correct answers to the same question."

If, Else If, Else If

Even though this article is written for Java Developer’s Journal, I'd like to
make it useful for non-Java programmers as well. Let's write some if-
statements for a victim of a recent layoff.

if (urMainframeProgrammer){
/* Consider learning WebSphere application server, messaging, and
integration tools.

Get yourself IBM certified in these disciplines. For example,
WebSphereMQ administration is one of many career choices. Try
selling your industry experience. */

} else if (urVBorPBProgrammer){
/* Consider a database-related career. Improve your database
skills, obtain all possible certificates from one of the major
database vendors and present yourself in the job market as a
database developer who also knows a front-end tool. Visual Basic
people should master C# and ASP. Everyone should know XML. Learn
Silverlight and become an RIA developer. */

}else if (urJavaOrDotNetProgrammer){
/* Stay where you are, but make your résumé stand out from the
crowd by analyzing what the hottest skills are in your area using
job-related Web sites. Perform multiple searches using different
keywords that are close to your area of expertise, and
meticulously write down the number of ads for each keyword. After
finding the hottest skills, get yourself certified in this skill
by a recognizable software vendor like Sun Microsystems, IBM,
Microsoft, Oracle, etc. Do not send out your résumé until you've
received the certificates. Consider learning a tool for
developing rich Internet applications like Adobe Flex.*/
}

Moving Out?

Modern IT is a moving target and, if you can't keep up with it, you should
find something more suitable for yourself. If you are considering opening a
business (I hope you're not planning to get into real estate), be prepared to
live without any income for at least a year. If you have saved some cash, this

might be a good time to try to capitalize on that business idea you've
dreamed about for years.

If you're not a businessman, stay in IT. Ask yourself this question: "How can I
earn $60K a year in a non-IT world?" The most probable answer is to start by
investing $50K+ into a business hoping to break even in a year and start
earning some money. The other choice is to change your profession. Go
back to college and in about two years you'll become a junior engineer or
biochemist with a $40K salary and a similar amount of student loans.

Staying In!

Here's another plan:

1. Don't even start polluting the job market with your current résumé.

2. For the next six months sleep not more than six hours a day. Spend no
more than three hours for food intake, wife/girlfriend, and kids. Spend the
remaining 15 hours with books and your PC.

3. Find a couple of reputable courses that teach the programming tools of
your choice. These weekly courses are expensive, but they give you a chance
to listen and communicate with experts in this field. To make these courses
more effective, take them after spending a substantial amount of time
studying on your own. Install the trial version of the software, read the
books, and study the source code of sample applications. This way you'll be
better able to absorb the course info in the classroom and will ask the right
questions in the class.

After taking the first course, continue studying at home and take another
(more advanced) course in a month or two. Take any available free online
courses on the subject of your choice. Attend professional seminars, user
groups meetings, and sign up for each free technical Webinar. Check out the
schools of continuing education at your local college. They may be offering
evening/weekend classes.

4. Join an open source project (see sourceforge.net).

5. After all, of the above is done, add description of your new skills to your
résumé and hit the job market.

Sorry for the cold-blooded coverage of this unpleasant topic, but victims of
layoffs might already be sick of hearing that "It's going to get better any
moment." Just don't stop fighting - looking for work is a full-time job and has
to be done the right way. Keep pushing and they won't have any other
choice but to hire you!

Come back - you can do it!

Thoughts of an aging programmer

During the last 25+ years I work as software engineer (the title does not
really matter because most of the time I worked as a consultant). What’s
next?

Software Engineering is a very competitive profession. The question is if I
can compete with a 30-years old software engineer from Bangalore? Should
I leave the scene?

Roll over, Beethoven!

As of today, I do not have problems with employment charging several
times more than most of the young offshore programmers. Will it last? Yes…
for a while. I’m a down to Earth person and realize that if you lock me in a
room with a 30-year old programmer and give us 30 minutes and an
assignment to write a program that uses linked lists without using Google,
I’ll lose. They are faster. They type as typists... Fifty characters at the speed of
sound, then 30 hits on Backspace...and then another 30 at the speed of
sound...They know the names of the classes and methods in these linked
lists, but they are not always sure when to use them. They pass technical
interviews easily by studying the API.

Do I want to become a young programmer again? No. I’ve been there
already. I’ve been programming at 25, at 35 and at 45. I’m better now. I’m
wiser now and I’m happy to move forward, not backward.

I’ve been visiting my accountant who, and somehow the same question
came up – do you want to be young again?
He answered, “Young - no, but I want to be 40 again”.
“Why?”
“I just like the look and feeling of myself at 40.”
“But you can work out in a gym and improve your look and feel.”
“I know, but at 40 I did not need to work out…”

There was a period in my life when I started getting rejected by employers
who were looking for Java developers. I was caught by surprise. Getting a

job interview ALWAYS meant getting a job…I started working on my
visibility by writing articles and book as I explained earlier in this book.

Now the situation is different. These days, I’m often being offered jobs
without being interviewed. I did not update my resume in two years. People
do not ask for it. I have a big mouth and just googling my name generates
lots of materials (noise too) that often gives some managers enough reasons
to hire me right away.

But once in a while I’m still getting these multi-person technical
interrogations with poking needles under my nails. A couple of years ago, I
went through two hours of interviews with a large financial firm. To my own
surprise I still knew the answers to all the questions. And interviewers have
not been shy.

This was a Java interview, but the guy asked me, “What would you do if you
had to send a message using MQ Series, and you have a message in the
ASCII encoding on one end and EBCDIC on another. How do you like this
under-the-belt question? Anyway, I knew the answer, and said that since
we're using JMS on the Java side, we can cast a generic
TopicConnectionFactory to IBM’s implementation and set a parameter (do
not remember exact name) to specify that there is a non-JMS reader on the
other end of the queue.

 I knew this because I did it back in 2000. The interviewer exclaimed, “Did
you guys not have MQ administrator? There is a configurable parameter that
they could have set on the queue, so you would not even need to do it
programmatically!” Then he revealed that he’s working with MQ Series since
version 1.0 (it’s more than 10 years).

What can I say… I know, I did well on this interview, but I was rejected. The
guy who sent me there simply said, “They decided to hire someone else”. I
can think of two reasons – either “my failure” with the MQ guy was crucial, or
I just was too expensive compared to other candidates. No sweat. Today I
have more projects on my plate than I can handle. Moving on…

Writing this book may not be to beneficial for my career, as it’s not a
politically correct book. I’m sure, some people will be angry with me after

reading it. But on the other hand there’s a lot of smart hiring managers who
will appreciate it.

So why are employers still hiring me over the younger and less expensive
candidates? One of the main reason is that they want to have insurance. If
everything goes as planned, young programmers have no problems. Now
raise your hand if your last five projects went as planned…

I’ve been working with well trained young programmers, who just panicked
when they needed to provide a solution to a production problem in a high-
pressure situation. Employers want to make sure that the project will move
on if something unexpected happens down the road. They want insurance,
because a failure of the project may hurt their career too. That’s why they
hire me, and I’ll do my best to make sure they succeed.

This is THE ultimate goal of any seasoned consultant:

Make sure that the hiring manager succeeds.

The other factor that keeps me in demand is that I’m still learning new
technologies a little earlier than others. I have a good nose for the next big
thing in software and go there earlier than others. Two years ago, when all
progressive mankind started moving in the AJAX direction for development
of rich Internet applications, I started working with Adobe Flex. Today it’s
becoming hot, and I already have two years of experience under my belt.

Remember the golden rule?

Do the same things as others, but do them a little better
than others.

I am not smarter than others, but I work a little more than others and
adopt new technologies a little earlier than others.

It’s 6 AM on Saturday. What do you usually do at this time? I know, I know…

I wrote this section of the book after reading a small and very smart book
called “Tuesdays with Morrie”. My 12-year old son has read it by accident
and said that adults can read this book too. Read this book, and then you
might want to re-read this section again.

My friend is a 72-year old programmer

This is a short story about my friend Felix. The last 15 years prior to his
retirement Felix spent working as a mainframe programmer for a large
financial firm in New York City. He stopped working at 67, collected a well
deserved retirement package and was looking forward to a new life
traveling the world and meeting new people. His lovely wife Dora is a food
critic who loves traveling and have been pretty much everywhere.. She runs
a small travel agency “Travel Six Starts” 1-(212) 693-4444 for those who
understand the difference between booking your travels online or via
experienced and trustworthy travel agent. We often travel with Dora and
Felix. We never feel any age difference because Dora and Felix are a lot
more energetic and interesting people than many 40-year old people that I
know.

To make a long story short, after a year of enjoying his retirement, Felix got a
call from a former boss asking for help. Outsourcing of their system to young
programmers did not work out, because the system was rather complex, and
knowing the syntax of a programming language did not cut it – they
needed people who understood ins and outs of this application. Felix
signed a 6-month telecommuting contract paying very good hourly rate.

Needless to say, this 6-month contract turned into a 2-year gig. Finally Felix
was done with this job and started traveling full time. We’d join Felix and
Dora whenever our busy schedule permitted. Last year, we spent a week
with them in Europe, returned back to the USA, while Felix,72 and Dora
continued their skiing vacation in France. He loved this lifestyle and often
expressed his happiness with the fact that his programming career was
finally over.

But their travelling life did not last long - I got an email from Dora saying that
Felix had to break his vacation and return to New York…to start a new 6-
month contract with his former employer who was looking for him around
the globe and managed to convince Felix to accept this offer.

It’s yet another six-month gig, but let’s not fool ourselves – he’s facing yet
another 2 years of programming.

I wish Felix all the best with his new contract. I know it’s not about money
but about being in demand, which is very important for any professional.

Many years ago The Beatles wrote a song “When I’m sixty four”:

“I could be handy, mending a fuse
When your lights have gone.
You can knit a sweater by the fireside
Sunday mornings go for a ride,
Doing the garden, digging the weeds,
Who could ask for more.
Will you still need me, will you still feed me,
When I'm sixty-four.”

Well, Felix asks for more at 72. Now I have a dream to get a programming gig
when I’ll be 72. What can be better?

Good luck, Felix! Many more contracts to come! Dora, do not be angry, let’s
plan our next skiing vacation. By the way, have I mentioned that Felix is a
good skier too?

Conclusion

Several years ago my wife and I were vacationing in Thailand. We were sun
bathing on one of the beaches in Phuket . A small yacht comes to the shore
unloading tourists. The owner of the yacht is a European looking tanned
guy with a ponytail. His business is to take tourists like us to a small almost
desert island were beach is better, the water is cleaner, and they serve super
fresh fish and crabs. This may be irrelevant for my story, but he lived in a
bungalow by the ocean with a beautiful Thai girl who was twenty years
younger than him.
This little yacht in Thailand was his way of retirement.

When I came back to the US, I told the story of this guy to Gregory Z., “What
a nice way to retire! My wife and I have modest savings, which would be
enough for both of us to move to one of the warmer countries and live there
without worrying too much about project rollouts, functional specs, offshore
developers… ”

Gregory replied, “Maybe it’s good for that guy, but YOU can’t do this. You
have to be involved.”

He’s right again. I need to be involved with IT - this is what I’ve done all my
life, this is what I know how to do, and I hope that I’ll stay involved with IT for
as long as possible. Remember Hotel California by Eagles?

“You can check out any time you like, but you can never leave!”

To be continued…

Yours truly,
Yakov Fain

	Table of Contents
	Acknowledgements
	What’s this book about?
	Part 1: Getting into IT
	Do you want your child to be a programmer?
	What happened to enrollment in CS and IS
	Out of college: the catch-22 situation
	 How to look for a job. Can you trust online postings?
	What real estate agents and recruiters have in common
	Getting the interview
	Passing the interview
	Considering the offer

	Interviewing enterprise developers
	Give a second chance
	Your first Employer
	An unofficial history of programming – ’95 - present
	Managing your software development career
	When to take a new job
	Rules of resignation

	Who are these IT contractors, anyway?
	Work as an employee or a contractor?
	Comparing the incomes

	Polyglot programmers minus SQL
	Will high-paid contractors become extinct?
	Living with outsourcing
	Who Is Teaching
	Finding quality training
	Enjoy your technical conference
	The cost of attending a technical conference

	How comfy is your cubicle?

	S/he or cherchez la femme
	Sexism, women and IT
	Arranged marriages in IT
	The honeymoon
	The family life (a.k.a. corporate politics)
	The family budget
	Divorce is not an option

	Increase your visibility
	Manage your manager
	Have you published your book yet?

	Outsourcing
	The world is round
	What CIO should know about outsourcing
	Ten tips on dealing with offshore developers
	Dead souls from overseas
	Outsourcing to students
	And Pedro said, “Move over, Ravi!”
	Me goes to America!

	What a country!
	My H1B story
	Are H1B workers abused?
	Have I taken your job?

	How to select a software vendor for your next project
	Underpaid? Quit!
	Overpaid? Hardly
	Poor advice to laid-off people
	Why people work overtime
	SOA Ground Up
	SOA Top Down
	SOA as a burner
	SOA Maturity
	Technical Benefits of SOA
	ESB Infrastructure
	To SOA or not to SOA
	Making Business Users Happy
	SOA+RIA

	Agility is a tough sell in enterprises
	Technical principles and tools
	CYA

	And he was fired
	Do not tell me, “’cause it hurts.”
	Life After a Pink Slip
	If, Else If, Else If
	Moving Out?
	Staying In!

	My friend is a 72-year old programmer

	Conclusion

