
RESTful services and 
OAUTH protocol in IoT

by Yakov Fain, Farata Systems



Farata Systems and SuranceBay

http://easy.insure

http://easy.insure


The three parts of this presentation

• One approach to integrating consumer devices in the 
business workflow 

• Live demo: integrating a blood pressure monitor into a 
business workflow 

• A brief review of REST, OAUTH, Websockets and their 
roles tin our application.



Yesterday’s Sensors (Things)

• 18 years ago. Telephony. 

• I’ve been programming IoT!



Today’s Sensors 

SCIO: a molecular sensor that scans physical objects and 
receives instant information to your smartphone. 

http://www.consumerphysics.com/

http://www.consumerphysics.com/


Tomorrow: Streachable Wearables 
epidermal electronics

Source: http://bit.ly/1uu0srr

http://bit.ly/1uu0srr


A thing is an app + an API + a Web site. 



Smartphone  
app

Device  
 Manufacturer’s 

Server
Device

A Typical Consumer Device Setup

Bluetooth or NFC

MQTT, CoAp, …

MQTT, CoAp, …



Low-Level IoT Approach
Learn and implement IoT protocols: MQTT, XMPP, AMQP,  CoAp,… 

Write Java programs for Raspberry Pi or Arduino  

Learn HomeKit and HealthKit from Apple 



High-Level IoT Approach

Create applications using standard 
technologies to integrate things into an 

existing business workflow. 



A Proof of Concept App
• Integrate consumer devices into one of the insurance 

business workflows 

• Leverage existing software technologies 

• Create a standard-based application layer that connects 
things 



Your Server in the Middle
• Create a software layer as a proxy for all communications 

with IoT devices. 

• Find the use-cases for data-gathering devices in your 
business applications.  

• Collect the valuable data from devices for analisys.

Java dominates on the middleware market.



The Use Case: Integrating Scale and Blood Pressure Monitor 
into insurance workflow

IHealthLabs Blood 
Pressure Monitor

Fitbit Scale 
Aria



Medical Examiner’s Report

Removing Manual Entry



DeviceVendor.com

XYZ protocol

XYZ protocol

A Typical IoT Workflow

http://fitbit.com


A Typical IoT Workflow

XYZ protocol

XYZ protocol

We’re not dealing with XYZ 
 

Our server communicates with the vendor’s server  
using HTTPS 

DeviceVendor.com

http://fitbit.com


Integrating With Fitbit Scale: Take 1.
fitbit.com

My Front-End App

HTTP/Rest API
   Weight:

http://fitbit.com


Integrating With Fitbit Scale: Take 2.
fitbit.com

   
HTTP/Rest API

Weight:

My Front-End App
My Server

Polling/Pub-SubData push 
via 

WebSocket

http://fitbit.com


Integrating With Fitbit and iHealthLabs.
fitbit.com

   Weight:

iHealthLabs.com
HTTP/ 

Rest API

   Blood Pressure:

HTTP/Rest API

Data push 
via 

WebSocket

My Front-End App
My Server

http://fitbit.com
http://iHealthLabs.com


Adding OAuth Authentication
fitbit.com

   Weight:

iHealthLabs.com
HTTP/ 

Rest API

   Blood Pressure:

HTTP/Rest API
My Front-End App

My Server

Data push 
via 

WebSocket

Secret, key, 
tokens from 

each vendor are 
here

http://fitbit.com
http://iHealthLabs.com


The Final Architecture
fitbit.com

   Weight:

iHealthLabs.com
HTTP/ 

Rest API

   Blood Pressure:

HTTP/Rest API
My Front-End App

My Server

Data push 
via 

WebSocket

- Vendor’s consumer app

Secret, key, 
tokens from 

each vendor are 
here

http://fitbit.com
http://iHealthLabs.com


Demo

Measuring Blood Pressure



What’s used in our app 
• RESTful Web services

• OAuth authentication and authorization

•  WebSocket protocol

• Front end: written in Dart, deployed as JavaScript 

• Data exchange format: JSON 

• Back-end: Java with Spring Boot and embedded Tomcat 

• Build automation: Gradle



© 2015 Farata Systems

REST API

REpresentational State of Transfer 



© 2015 Farata Systems

HTTP Request and Java EE Rest Endpoint

A sample client’s HTTP request:
“https://iHealthLabs.com:8443/iotdemo/ihealth/bp"

localhost:8080/webresources/product/Handbag


© 2015 Farata Systems

HTTP Request and Java EE Rest Endpoint

A sample client’s HTTP request:
“https://iHealthLabs.com:8443/iotdemo/ihealth/bp"

// Configuring The App 
@ApplicationPath(“iotdemo") 
public class MyIoTApplication extends Application { 
}

localhost:8080/webresources/product/Handbag


© 2015 Farata Systems

HTTP Request and Java EE Rest Endpoint

// Receiving and handling blood pressure on our server 
@Path("/ihealth")  
public class BloodPressureService { 

  // …   
  // The method to handle HTTP Get requests  
  @GET 
  @Path("/bp")  
  @Produces(“application/json")  
  public String getBloodPressureData() { 
    // The code to get bp and prepare JSON goes here  
    return bloodPressure;  
  } 
}

A sample client’s HTTP request:
“https://iHealthLabs.com:8443/iotdemo/ihealth/bp"

// Configuring The App 
@ApplicationPath(“iotdemo") 
public class MyIoTApplication extends Application { 
}

localhost:8080/webresources/product/Handbag


© 2015 Farata Systems

A Rest Endpoint in Spring Framework 

// The endpoint handling blood pressure 
@RestController 
@RequestMapping("/ihealth")  
public class HealthLabsController { 

// …   
// The method to handle HTTP Get requests  
@RequestMapping(value="/bp", method = RequestMethod.GET,  
                              produces = "application/json")  
public Measurement getBloodPressureData() { 
    // The code to get blood pressure goes here  
    return bloodPressure;  
  } 
} 



OAuth 2
Authorizing an app to act on behalf of the user



Authorization and Authentication

• Authentication: Is the user who he says he is? 

• Authorization: Which resources the user can access?

The owner of the Blood Pressure Monitor can see only the  
measurments taken from his device.



The OAuth Players
• The User 

• The client app that accesses the user’s resources 

• The server with the user’s resources (data) 

• The authorization server



Delegating Authorization to 3rd Party Servers



Bad

Authorization with Hot Wi-Fi in Moscow

Good



OAuth 2 Access Token
A client app needs to aquire an access token that 
can be used on behalf of the user. 



Typical OAuth 2 Workflows

• A client app is located on the user’s device 

• A client app is located on the server (our use case)



iHealthLabs Authorization

(our  
server)

GUI

Redirect URI



A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect 

URI for successful and failed logins and gets a client id and a secret.



A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect 

URI for successful and failed logins and gets a client id and a secret. 

• My company builds an app that uses the thing’s API (e.g. with REST ).



A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor: providing a redirect 

URI for successful and failed logins and gets a client id and a secret. 

• My company builds an app that uses the thing’s API (e.g. with REST ). 

• The user opens my app and logs into thing’s vendor site via its authentication 
server (not the OAuth provider). 



A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect 

URI for successful and failed logins and gets a client id and a secret. 

• My company builds an app that uses the thing’s API (e.g. with REST ) 

• The user opens my app and logs into thing’s vendor site via its authentication 
server (not the OAuth provider).  

• My app (not the browser) generates a session-based random state and sends 
the request to the thing vendor’s OAuth provider: 
 
https://<auth_server>/path?clientid=123&redirect_uri=https//
myCallbackURL&response_type=code&scope=“email 
user_likes”&state=7F32G5



A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect URI for successful 

and failed logins and gets a client id and a secret. 

• My company builds an app that uses the thing’s API (e.g. with REST ) 

• The user opens my app and logs into thing’s vendor site via its authentication server (not the 
OAuth provider).  

• My app (not the browser) generates a session-based random state and sends the request to 
the thing vendor’s OAuth provider:  
 
https://<auth_server>/path?clientid=123&redirect_uri=https//
myCallbackURL&response_type=code&scope=“email user_likes”&state=7F32G5

• My app receives a temporary auth code from the thing’s OAuth server, regenerates the state 
and compares it with the received one from the server: 
 
https://myCallbackURL?code=54321&state=7F32G5

https://myCallbackURL?code=54321&state=7F32G5


A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect URI for successful and failed logins 

and gets a client id and a secret. 

• My company builds an app that uses the thing’s API (e.g. with REST ) 

• The user opens my app and logs into thing’s vendor site via its authentication server (not the OAuth provider).  

• My app (not the browser) generates a session-based random state and sends the request to the thing 
vendor’s OAuth provider: 
 
https://<auth_server>/path?clientid=123&redirect_uri=https//
myCallbackURL&response_type=code&scope=“email user_likes”&state=7F32G5

• My app receives temporary auth code from the thing’s OAuth server, regenerates the state and compares with 
the received one from the server: 
 
https://myCallbackURL?code=54321&state=7F32G5 

• ,My app makes another request adding the secret and exchanging the code for the authorization token: 
 
https://<auth_server>/path?clientid=123&client_secret=…&code=54321&redirect_uri= 
https//myCallbackURL&grant_type=authorization_code 



A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor: providing a redirect URI for successful and failed logins 

and gets a client id and a secret. 

• My company builds an app that uses the thing’s API (e.g. with REST ) 

• The user opens my app and logs into thing’s vendor site via its authentication server (not the OAuth provider).  

• My app (not the browser) generates a session-based random state and sends the request to the thing 
vendor’s OAuth provider: 
 
https://<auth_server>/path?clientid=123&redirect_uri=https//
myCallbackURL&response_type=code&scope=“email user_likes”&state=7F32G5

• My app receives temporary auth code from the thing’s OAuth server, regenerates the state and compares with 
the received one from the server: 
 
https://myCallbackURL?code=54321&state=7F32G5 

• ,My app makes another request adding the secret and exchanging the code for the authorization token:  
 
https://<auth_server>/path?clientid=123&client_secret=…&code=54321&redirect_uri= 
https//myCallbackURL&grant_type=authorization_code  

• The thing’s vendor redirects the user to my app and returns the authorization token.



A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect URI for successful and failed logins and 

gets a client id and a secret. 

• My company builds an app that uses the thing’s API (e.g. with REST ) 

• The user opens my app and logs into thing’s vendor site via its authentication server (not the OAuth provider).  

• My app (not the browser) generates a session-based random state and sends the request to the thing vendor’s OAuth 
provider: 
 
https://<auth_server>/path?clientid=123&redirect_uri=https//myCallbackURL&response_type=code&scope=“email 
user_likes”&state=7F32G5

• My app receives temporary auth code from the thing’s OAuth server, regenerates the state and compares with the 
received one from the server: 
https://myCallbackURL?code=54321&state=7F32G5 

• ,My app makes another request adding the secret and exchanging the code for the authorization token:  
 
https://<auth_server>/path?clientid=123&client_secret=…&code=54321&redirect_uri= 
https//myCallbackURL&grant_type=authorization_code  

• The thing’s vendor redirects the user to my app and provides the authorization token. 

• My app starts invoking the vendor’s API using the token.



Access and Refresh Tokens
• The OAuth 2 server returns the authorization token. It 

expires after certain time interval. iHealtLabs sends the 
token in JSON format that expires in 10 min. 

• The OAuth 2 server also can provide a refresh token that 
the client app uses to request a new token instead of the 
expired one.



© 2015 Farata Systems

WebSocket Protocol
Bi-directional communication for the Web



© 2015 Farata Systems

HTTP - Request/Response, Half Duplex  

WebSocket - Full Duplex



© 2015 Farata Systems

Monitoring AJAX requests



© 2015 Farata Systems

WebSocket Workflow
• Establish connection with the service endpoint 

upgrading the protocol from HTTP to WebSocket  

• Send messages in both directions at the same time 
(Full Duplex) 

• Close the connection



© 2015 Farata Systems

Apps for Websockets
• Live trading/auctions/sports notifications 

• Controlling medical equipment over the web 

• Chat applications 

• Multiplayer online games 

• Any app that requires a data push from a server



© 2015 Farata Systems

WebSocket Client/Server handshake

• Client sends an UPGRADE HTTP-request 

• Server confirms UPGRADE 

• Client receives UPGRADE response 

• Client setsreadyState=1 on the WebSocket object



© 2015 Farata Systems

The JavaScript Client
if (window.WebSocket) {    
    ws = new WebSocket("ws://www.websocket.org/echo");  
     
    ws.onopen = function() { 
        console.log("onopen"); 
    };   
     
    ws.onmessage = function(e) { 
       console.log("echo from server : " + e.data);  
    }; 

    ws.onclose = function() {  
       console.log("onclose"); 
    }; 
    ws.onerror = function() { 
       console.log("onerror");   
    }; 

} else { 
   console.log("WebSocket object is not supported"); 
}

ws.send(“Hello Server”);Sending a request:



© 2015 Farata Systems

Java EE WebSocket Server’s APIs
  1. Annotated WebSocket endpoint

Annotate a POJO with @ServerEndpoint, and its methods with 
@OnOpen,@OnMessage, @OnError,and @OnClose 

2. Programmatic endpoint
Extend your class from javax.websocket.Endpoint and 
override onOpen(), onMessage(), onError(), and onClose(). 



© 2015 Farata Systems

HelloWebSocket Server

@ServerEndpoint("/hello")
public class HelloWebSocket {   

  @OnOpen   
  public void greetTheClient(Session session){   
     try { 
        session.getBasicRemote().sendText("Hello stranger");
 
     } catch (IOException ioe) { 
        System.out.println(ioe.getMessage()); 
     }   
  }
}

The server-side push without client’s requests 

A detailed description at http://bit.ly/1DHuKwg

http://bit.ly/1DHuKwg


© 2015 Farata Systems

Websockets with Spring Framework
public class WebSocketEndPoint extends TextWebSocketHandler { 
    private final static Logger LOG = 
LoggerFactory.getLogger(WebSocketEndPoint.class); 
 
    private Gson gson;  
    private WebSocketSession currentSession;  
 
    @Override 
    public void afterConnectionEstablished(WebSocketSession session) throws 
Exception { 
        super.afterConnectionEstablished(session); 
 
        setCurrentSession(session); 
    } 
 
    public boolean sendMeasurement(Measurement m) { 
        if (getCurrentSession() != null) { 
            TextMessage message = new TextMessage(getGson().toJson(m)); 
 
            try {  
                getCurrentSession().sendMessage(message); 
            } catch (IOException e) { 
                e.printStackTrace(); 
                return false;  
            } 
 
            return true;  
        } else {  
            LOG.info("Can not send message, session is not established."); 
            return false;  
        } 
    } 



Deploying with Spring Boot
• Java EE REST services are deployed in a WAR under the external Java Server. 

• Spring Boot allows creating a standalone app (a JAR) with an embedded servlet container.  

• Starting our RESTful server: java -jar MyJar. 

• We used Tomcat. To use another server, exclude Tomcat in build configuration and specify 
another dependency.  

• A sample section from Gradle build replacing Tomcat with Jetty:

dependencies { 
   compile("org.springframework.boot:spring-boot-starter-web") { 
        exclude module: "spring-boot-starter-tomcat" 
   } 
   compile("org.springframework.boot:spring-boot-starter-jetty") 
}



Security
• Device vendors should take security very seriously. 

• We don’t deal with security between the thing and its vendor. 

• The OAuth state attribute helps ensuring that the received redirect_uri is the 
same as provided during the app registration. 

• IoT integration apps are as as secure as any other Web app (see owasp.org).

http://owasp.org


Thank you!
• Farata Systems: faratasystems.com

• email: yfain@faratasystems.com

• Twitter: @yfain

• My blog: yakovfain.com 

• My podcast: americhka.us 
 
 

http://faratasystems.com
mailto:yfain@faratasystems.com
http://yakovfain.com
http://americhka.us

