<,

S—

ms Princeton JUG and)\ Flex

flex

Java 101 for Flex Developers

By Yakov Fain, Farata Systems

‘s pnm U hyhris

WE BUILD APPLICATIONS. EVERY APP 15 UNIQUE.
WE CREATE IT. YOU OWNIT.

I’ll be using materials
from my book

“Java Programming 24-
Hour Trainer”.

Java Programming
o 24-Hour Trainer

Yakov Fain

JDK and JRE

* Java Development Kit (JDK) is required to develop
and run programs.

e Java Runtime Environment (JRE) is required to run
programs.

* Users must have JRE installed, developers — JDK.

Java SE and Java EE

Java SE: Java Standard Edition is available at

http://www.oracle.com/technetwork/java/javase/
downloads

Java EE: Java Enterprise Edition (a.k.a. J2EE)

Java EE includes a set of technologies built on top of Java
SE: Servlets, JSP, JSF, EJB, JMS, et al.

All Java programs run inside the Java Virtual Machine (JVM)
similarly to compiled ActionScript that runs in a VM a.k.a.
Flash Player.

Running a Java program without IDE

1. Write the program and save it in a file with the
name that ends with .java, for example
HelloWorld.java

2. Compile the program using javac compiler, e.g.
javac HelloWorld.java

This will create a file HelloWorld.class

3. Runyour program: java HelloWorld

Eclipse IDE

Eclipse is the most widely used IDE.

Alternatives: Intelli) IDEA (JetBrains), NetBeans (Oracle).
Download Eclipse IDE for Java EE developers at eclipse.org.
You still have to download and install JDK separately.

Flash Builder is built on top of Eclipse IDE.

Hello World Demo in Eclipse IDE

Variable and constants

In Java you don’t use the keyword var. Data type goes first.

int currentSubmergeDepth; // integer primitive variable
boolean isGunOnBoard=true; // boolean primitive variable
final String MANUFACTURER=“GAZ”; // afinal String variable

First declare a variable, then use it.
currentSubmergeDepth = 25;

You can assign the value to a final variable only once and can’t change it afterward.
MANUFACTURER = “Toyota”;

Method Signature

In the method signature you need to declare the data type and the name of each
argument:

int calcLoanPayment(int amount, int numberOfMonths, String state){

// Your code goes here
return 12345;

}

The method return type goes first.

You can call this method passing the values for the payment calculations as arguments:

calcLoanPayment(20000, 60, “NY”);

Java Classes

class Car{
String color;
int numberOfDoors;

class TestCar{ void startEngine() {
// Some code goes here

public static void main(String[] args){ } . .
void stopEngine () {

int tempCounter=0;

Car carl = new Car(); // Some code goes here

Car car2 = new Car();)
carl.color="blue”; }
car2.color=“red”;

// Printing a message on the console like trace() in ActionScript
System.out.printin(”The cars have been painted “);

Inheritance works as in ActionScript

class Tax {

_ class NJTax extends Tax{
double grossincome;

String state;

e double adjustForStudents (double stateTax){

double adjustedTax = stateTax — 500;
return adjustedTax;

}
public double calcTax() { }

return 234.55;

Abstract Classes

A class is called abstract if it was declared with the abstract keyword. You can not
instantiate an abstract class. Usually, an abstract class has at least one abstract method.

abstract public class Person {

public void changeAddress(String address){
System.out.printIn("New address is" + address);

}

// an abstract method to be implemented in subclasses
public abstract boolean increasePay(int percent);

}

The increasePay() method must be implemented in the subclasses of Person,
which may implement it differently, but the signature of the method increasePay() will
be the same.

Abstract classes are not supported by ActionScript 3.

Promoting Workers. The spec.

A company has employees and contractors. Design the classes without using interfaces
to represent the people who work for this company.

The classes should have the following methods:

changeAddress()
promote()
giveDayOff()
increasePay()

Promotion means giving one day off and raising the amount in the pay check.

For employees, the method increasePay() should raise the yearly salary.

For contractors, the method increasePay() should increase their hourly rate.

abstract public class Person {

private String name;
int INCREASE_CAP = 20; // cap on pay increase

public Person(String name){
this.name=name;

}

public String getName(){
return "Person's name is " + name;

}

public void changeAddress(String address){
System.out.printIn("New address is" + address);

}

private void giveDayOff(){
System.out.printIn("Giving a day off to " + name);

}

public void promote(int percent){
System.out.printin(" Promoting a worker...");
giveDayOff();

//calling an abstract method
increasePay(percent);
}
// an abstract method to be implemented in subclasses
public abstract boolean increasePay(int percent);

Interfaces used similarly to ActionScript

* Interfaces can contain only declarations of methods and final variables

public interface Payable {
boolean increasePay(int percent);

}

* Aclass can implement one or more interfaces
class Employee implements Payable, Promotionable {...}

class Contractor implements Payable{...}

e |f aclass declaration has the implements keyword it MUST implement
every method that’s declared in the interface(s) that this class
implements.

Casting has different syntax

All Java classes form an inheritance tree with the class Object. While declaring non-primitive
variables you are allowed to use either the exact data type of this variable or one of its
ancestor data types. For example, if the class NJTax extends Tax each of these lines is correct.

NJTax myTaxl = new NJTax();
Tax myTax2 =new NJTax(); // upcasting
Object myTax3 = new NJTax(); // upcasting

If Employee and Contractor extend class Person, you can declare array of type Person,
but populate it with employees and contractors:

Person workers[] = new Person [100];
workers[0] = new Employee(“Yakov”, “Fain”);

workers[1] = new Employee(“Mary”, “Lou”);
workers[2] = new Contractor(“Bill”, “Shaw”);

Casting (cont.)

Placing a data type in parenthesis in front of another type means that you want to cast
this object to specified type.

Person workers[] = new Person [20];
// Code to populate the array workers with Person’s descendants goes here.
for (int i=0; i<20; i++){

Employee currentEmployee;
Contractor currentContractor;

if (workers[i] instanceof Employee){ // type check

currentEmployee = (Employee) workers|i]; // downcasting
// do some employee-specific processing here

} else if (workers[i] instanceof Contractor){

currentContractor = (Contractor) workers[i]; // downcasting
// do some contractor-specific processing here

}
}

Demo of the Abstract classes

Polymorphism

ublic class TestPaylnceasePol
P v A Assumption: both Employee and Contractor

implement Payable that declares a method

public static void main(String[] args) { ,
increasePay().

Payable workers[] = new Payable[3];

workers[0] = new Employee("John");
workers[1] = new Contractor("Mary");
workers[2] = new Employee("Steve");

for (Payable p: workers){
p.increasePay(30);

}

Ul in Java can be programmed either using Swing
library or in its modern wrapper JavaFX.

JavaFX want to compete with Flex and AIR.

Error Handling is Enforced in Java

Throwable

Error Exception

LoveFailedException |OException

Subclasses of Exception are called checked exceptions and must be
handled in your code.

Subclasses of the class Error are fatal errors. They are called
unchecked exceptions.

Java Collection Framework

* Classes located in the packages java.util and
java.util.concurrent are often called Java
collections.

* Arraylist, HashMap, Hashtable, Iterator,
Properties, Collections

* Collections store Java objects — no primitives
allowed.

Populating an ArrayList

ArrayList customers = new ArrayList();

Customer custl = new Customer("David","Lee");
customers.add(custl);

Customer cust2 = new Customer("Ringo","Starr");
customers.add(cust2);

add() doesn’t copy instance of the Customer into the customers collection,
it just adds the memory address of the Customer being added.

You can specify initial size of ArrayList by using constructor with the argument:

ArrayList customers = new ArrayList(10);

Hashtable and Hashmap store key-value pairs

Customer cust = new Customer("David", "Lee");
Order ord = new Order(123, 500, "IBM");
Portfolio port = new Portfolio(123);

Hashtable data = new Hashtable();
data.put("Customer", cust);

data.put("Order", ord);
data.put("Portfolio", port);

Getting the object by key:

Order myOrder = (Order) data.get(“Order”);

Hashtable is synchronized, but Hashmap is not. You’ll understand the difference after

learning about threads and concurrent access.

Hashtable is not used very often. It has better replacements in the java.concurrent package.

Hashtable and Hashmap are for key-value pairs

Customer cust = new Customer("David", "Lee");
Order ord = new Order(123, 500, "IBM");
Portfolio port = new Portfolio(123);

Hashtable data = new Hashtable();
data.put("Customer", cust);

data.put("Order", ord);
data.put("Portfolio", port);

Retrieving an object by key:

Order myOrder = (Order) data.get(“Order”);

Hashtable is synchronized, but Hashmap is not. You’ll understand the difference after
learning about multi-threading and concurrent access.

Hashtable is not used very often. It has better replacements in the java.concurrent package.

Generics - Parameterized Data Types

Classes can have parameters — they are called generics.

ArrayList is a kitchen sink-like storage that can hold any object.
Getting an error during compilation is better than getting run-time cast exceptions.

ArrayList<Customer> customers = new ArrayList<>();

Customer custl = new Customer("David","Lee");
customers.add(custl);

Customer cust2 = new Customer("Ringo","Starr");
customers.add(cust2);

Order ord1= new Order();
customers.add(ord1); // Compiler error because of <Customer>

Demo of Generics

SSSSS

Intro to Multi-Threading

A program may need to execute some tasks
concurrently, e.g. get market news and the user’s
portfolio data.

Concurrent means parallel execution
A Java program is a process.
A thread is a light-weight process

One Java program can start (spawn) multiple threads.

Intro to Multi-Threading (cont.)

 One server instance can process multiple clients’
request by spawning multiple threads of execution (one
per client).

* My MacBook Pro has 4 CPUs. Tasks can run in parallel.

* Even on a single-CPU machine you can benefit from the
multi-threading — one thread needs CPU, the other
waits for the user’s input, the third one works with files.

The class Thread

public class MarketNews extends Thread { public class Portfolio extends Thread {
public MarketNews (String threadName) { public Portfolio (String threadName) {
super(threadName); // name your thread super(threadName);
} }
public void run() { public void run() {
System.out.printin(System.out.printin(
"The stock market is improving!"); "You have 500 shares of IBM ");

} }

} }

public class TestThreads {
public static void main(String args[]){
MarketNews mn = new MarketNews(“Market News”);
mn.start();

Portfolio p = new Portfolio(“Portfolio data”);
p.start();
System.out.printIn("TestThreads is finished”);

}
}

Interface Runnable

public class MarketNews2 implements Runnable { || public class Portfolio2

public void run() { implements Runnable {
System.out.printin(public void run() {
"The stock market is improving!"); System.out.printin(
} "You have 500 shares of IBM ");
} }
}

public class TestThreads2 {
public static void main(String args|[]){

MarketNews2 mn2 = new MarketNews2();
Thread mn = new Thread(mn2,”Market News”);
mn.start();

Runnable port2 = new Portfolio2();
Thread p = new Thread(port2, “Portfolio Data”);

p.start();

System.out.println("TestThreads2 is finished”);
}

Sleeping Threads

public class MarketNews3 extends Thread { public class Portfolio3 extends Thread {
public MarketNews3 (String str) { public Portfolio3 (String str) {
super(str); super(str);
} }
public void run() { public void run() {
try{ try{
for (int i=0; i<10;i++){ for (int i=0; i<10;i++){
sleep (1000); // sleep for 1 second sleep (700); // Sleep for 700 milliseconds
System.out.printin("The market is improving " +i); System.out.printin("You have " + (500 + i) +
} " shares of IBM");
}catch(InterruptedException e){ }
System.out.printin(Thread.currentThread().getName() }catch(InterruptedException e){
+ e.toString()); System.out.printIn(Thread.currentThread().getName()
} + e.toString());
} }
} }

public class TestThreads3 {
public static void main(String args[]){

MarketNews3 mn = new MarketNews3("Market News");
mn.start();

Portfolio3 p = new Portfolio3("Portfolio data");
p.start();

System.out.printin("The main method of TestThreads3 is finished");

Thread Synchronization and Race Conditions

A race condition may happen when multiple threads need
to modify the same program resource at the same time
(concurrently).

A classic example: a husband and wife are trying to
withdraw cash from different ATMs at the same time.

To prevent race conditions Java always offered the
keyword synchronized. The preferred way though is the
class java.util.concurrent.locks.ReentrantLock.

The synchronized places a lock (a monitor) on an
important object or piece of code to make sure that only
one thread at a time will have access to it.

Minimize the locking periods

class ATMProcessor extends Thread{

synchronized withdrawCash(int accountID, int amount){
// Some thread-safe code goes here, i.e. reading from
// a file or a database

boolean allowTransaction = validateWithdrawal(accountID,
amount);

if (allowTransaction){
updateBalance(accountID, amount, “Withraw”);

}

else {
System.out.printIn(“Not enough money on the account”);

}
}
}

Synchronizing the code block

Synchronizing the entire method

class ATMProcessor extends Thread{

withdrawCash(int accountID, int amount){
// Some thread-safe code goes here, i.e. reading from

// a file or a database

synchronized(this) {
if (allowTransaction){
updateBalance(accountID, amount, “Withdraw”);

}

else {
System.out.printin(
“Not enough money on the account”);

}
}
}

Executor Framework

Creating threads by subclassing Thread or implementing Runnable has shortcomings:

1. The method run() cannot return a value.

2. An application may spawn so many threads that it can take up all the system resources.

You can overcome the first shortcoming by using the Callable interface,
and the second one by using classes from the Executor framework.

The Executors class spawns the threads from Runnable objects.

ExecutorService knows how to create Callable threads.

ScheduledExecutorService allows you to schedule threads for future execution.

Demo of Threads

SSSSS

Java Annotations

 Metadata is the data about your data, a document, or
any other artifact.

* Program’s metadata is the data about your code. Any
Java class has its metadata embedded, and you can
write a program that “asks” another class, “What
methods do you have?”

e Java allows you to declare your own custom annotations
and define your own processing rules that will route the
execution of your program and produce configuration
files, additional code, deployment descriptors, and
more.

Predefined Java Annotations

 There are about a dozen of predefined annotations in Java SE, the

packages java.lang, java.lang.annotation, and javax.annotation.

Some of these annotations are used by the compiler (@Override,
@SuppressWarning, @Deprecated, @Target, @Retention,
@Documented, and @Inherited); some are used by the Java SE
run-time or third-party run times and indicate methods that have
to be invoked in a certain order (@PostConstruct, @PreDestroy),

or mark code that was generated by third-party tools
(@Generated).

In Java EE annotations are being used everywhere

@Qverride

public class NJTax extends Tax { class Tax{
double grossincome;
@override String state;
public double calcTax() { int dependents;
double stateTax=0;
if (grossincome < 30000) { public double calcTax() {
stateTax=grossincome*0.05; double stateTax=0;
} if (grossincome < 30000) {
else{ stateTax=grosslncome*0.05;
stateTax= grossincome*0.06; }
} else{
stateTax= grossincome*0.06;
return stateTax - 500; }
} return stateTax;
} }
}
Try

@Override public double calcTax(String something)

Compiler gives an error:
The method calcTax(String) of type NJTax must override or implement a supertype method

Custom Annotations

Java has a mechanism for creation of your own annotations and
annotation processors.

For example, you may create an annotation that will allow other
programmers to mark class methods with an SQL statement to be
executed during the run time.

Java EE 6 Overview

Client Presentation Business Data
Tier Tier Tier Tier
" Thin |
HTTP
e . oA,
lent Web le e
, .‘ container p .
JavaFX <. TTP ' Running l EJB IMS
Client servlets, | RMI/IIOP Container [MOM
e
—— JSP, JSF,
HTTE EIB Lite P—
Java) JAX-RS et
Applet or JAXWS| | seryi
\ , HTTP ervice
- ‘;/ —
RMI/IIOP
Java T p- \
' Any
applic
a':il::)n JAX-RS RESTful or SOAP ﬁ External
—_— or JAXWS Web Service System
\ J /' ‘\—/,'
A
Client Server

Web applications with Servlets

Web Server Servlet Container
| HttoServlet
Web HTTPReauest Request
Browser . | Adobe
HTTPResnonse HttnServlet BlaseDS
‘ ™ _Response

Most popular servlet containers are Tomcat and Jetty.

All Java EE Application Servers come with Servlet
Containers and Web Servers.

|
'y
/ y /
- . \
[\
{
/

POJO, EJB,
| DBMS,
?,. External
- Application,

How to write a servlet

 To create a servlet, write a class that extends
from HTTPServlet and annotate it with
@\WebServlet annotation.

* The servlet receives client’s request and
directs it to one of the methods of your

servlet that you have to override, e.g. doGet(),
doPost() et al.

Your First Servlet

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.PrintWriter;

@WebServlet(urlPatterns="/books", name="FindBooks")
public class FindBooks extends HttpServlet {

@Override
public void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException {

// The code processing request goes here

// The resulting Web page will be sent back via the
// 1/0 stream that response variable contains

PrintWriter out = response.getWriter();
out.printIn("Hello from FindBooks");

Deploying a serviet

The annotation @WebServlet is a place where you specify serviet
deployment parameters.

Every application server or servlet container has a directory known as document root.
It is used not only for servlet-based Web sites, but also for deploying static HTML files.

For example, if you put the HTML file TermAndConditions.html in a subfolder legal of
document root in the server MyBooks.com, the users would need to direct their Web browser
to http://www.mybooks.com/legal/TermAndConditions.html.

In GlassFish application server, the default document root is directory

In Apache Tomcat it’s the directory :
If you are planning to create a servlet, its deployment directory will also be located in

document root, but it will contain the subdirectories and

Sample Directory Structure of a
Deployed Servlet

document root dir
WEB-INF
classes
com
practicaljava
lesson27
FindBooks.class
lib
META-INF
manifest.mf

Demo of a Dynamic Web project in Eclipse
with a servlet

1. Create a dynamic Web project lesson27 by selecting Eclipse menu
File | New | Other | Web | Dynamic Web Project. Make sure that
the target runtime is Tomcat.

2. Observe the folder WebContent in your project. This is your
server-side deployment part.

3. Generate new Servlet class: right-click on the project name and
select New | Servlet. Specify as the

name of the package and the as the class name.
Press Next and enter by editing the URL mapping field.

4. Inthe next window keep the defaults methods and
and press Finish.

5. The source code of the FindBooks servlet will be generated.

See the next slide

6. Add the following two lines in the method doGet():
PrintWriter out = response.getWriter();
out.printIn("Hello from FindBooks");

7. Import PrintWriter class

8. Deploy the servlet in Tomcat: open the Servers view, right-click
on the server and select Add and Remove from the menu.
Select lesson27 in the left panel and add it to the right one.

9. Run the servlet: right-click on FindBooks and select Run on Server.
Eclipse will start its internal browser and display the following:

Java EE - http://localhost:8080/Lesson27 /books - Eclipse -

B @SSR e G

gl [1] FindBooks.java 4 http://localhost:8080/Lesson27/books &3
e) ‘;‘j?-‘ 'http://Iocalhost:BOBO/LessonZ7/books

Hello from FindBooks

Flex-BlazeDS-Java-DBMS communications

Client

-

N

Web Browse

with Flash
Player

~

r

<7

A RPC or

Server

/Java Servlet Container\

/

v

The servlet container’s web.xml has the following section:

<servlet>

<servlet-name>MessageBrokerServlet</servlet-name>
<display-name>MessageBrokerServlet</display-name>

messaging call

*

Adobe BlazeDS is
deployed as as Java
Web application

Your Java

Class

<servlet-class>flex.messaging.MessageBrokerServlet</servlet-class>

<init-param> <param-name>services.configuration.file</param-name>

<param-value>/WEB-INF/flex/services-config.xml</param-value>

</init-param>
</servlet>

\

Configure destination in BlazeDS

remoting-config.xml mapped to
your java class.

Creating Flex/BlazeDS Project

Instructions below work in Eclipse IDE for JavaEE
developers with installed Flash Builder plugin.

In Flash perspective select menu File | New | Flex
Project and name it HelloServer. Press Next.

On the next popup window select Java as your
application server type. Select BlazeDS radio

button.

Note the checked box “Select combined Java/Flex
project using WTP”

Select Apache Tomcat as your target runtime.

Click on the button Browse and select your
downloaded blazeds.war file. Press Finish.

173 HelloServer

(2 flex_src
3 (default package)
ﬂHelloServer.mxml
= Flex 4.5.2
[~ bin-debug
(= flex_libs
= html-template
(= src
=WebContent
(= META-INF
(= WEB-INF
[=>classes
(= flex
% messaging-config.xml
%0 proxy-config.xmi
% remoting-config.xml
%0 services-config.xml
5] version.properties
(=lib
(= src
= web.xml
|Z] index.htm
1=+ Servers

THANK YOU

Email: yfain@faratasystems.com
Twitter: @yfain

NN ez zwwwranarosystems.con AR

