

 JavaTM Programming for Kids,
Parents

and GrandParents

Yakov Fain

 Java Programming for Kids, Parents and Grandparents iii

Java Programming for Kids, Parents and Grandparents

by Yakov Fain

Copyright  2004 Yakov Fain

All rights reserved. No part of this book may be reproduced, in any form or by any,
without permission in writing from the publisher.

Cover design and illustrations: Yuri Fain

Adult technical editor: Yuri Goncharov

Kid technical editor: David Fain

May 2004: First Electronic Edition

The information in this book is distributed without warranty. Neither the author nor the publisher shall
have any liability to any person or entitle to any liability, loss or damage to be caused directly or indirectly
by instructions contained in this book or by the computer software or hardware products described herein.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Windows 98, Windows NT, Windows 2000 and Windows XP are trademarks of Microsoft Corporation.
All other product names and company names are the property of their respective owners.

ISBN: 0-9718439-5-3

Table of Contents
PREFACE .. IX

ACKNOWLEDGEMENTS ... XI

CHAPTER 1. YOUR FIRST JAVA PROGRAM .. 1

How to Install Java on Your Computer .. 2

Three Main Steps in Programming .. 6
Step 1 – Type the Program .. 6
Step 2 – Compile the Program ... 8
Step 3 – Run the Program .. 9

Additional Reading ... 10

CHAPTER 2. MOVING TO ECLIPSE.. 11

Installing Eclipse ... 11

Getting Started with Eclipse ... 13

Creating Programs in Eclipse ... 15

Running HelloWorld in Eclipse ... 16

How HelloWorld Works? .. 17

Additional Reading ... 20

Practice .. 20

Practice for Smarty Pants ... 21

CHAPTER 3. PET AND FISH – JAVA CLASSES .. 22

Classes and Objects ... 22

Data Types... 25

Creation of a Pet ... 28

Inheritance – a Fish is Also a Pet .. 33

Method Overriding ... 37

Additional Reading ... 38

Practice .. 38

Practice for Smarty Pants ... 39

 Java Programming for Kids, Parents and Grandparents v

CHAPTER 4. JAVA BUILDING BLOCKS ... 40

Program Comments .. 40

Making Decisions with if Statements .. 41

Logical Operators ... 43

The logical not here is applied to the expression in parentheses. ... 44

Conditional operator ... 44

Using else if ... 44

Making Decisions With switch Statement .. 45

How Long Variables Live?.. 46

Special Methods: Constructors ... 47

The Keyword this ... 48

Arrays .. 49

Repeating Actions with Loops .. 51

Additional Reading ... 54

Practice .. 54

Practice for Smarty Pants ... 54

CHAPTER 5. A GRAPHICAL CALCULATOR ... 55

AWT and Swing .. 55

Packages and Import Statements .. 55

Major Swing Elements .. 56

Layout Managers .. 59
Flow Layout .. 59
Grid Layout... 60
Border Layout ... 62
Combining Layout Managers... 62
Box Layout ... 65
Grid Bag Layout.. 66
Card Layout .. 68
Can I Create Windows Without Using Layouts? .. 68

Window Components .. 68

Additional Reading ... 72

Practice .. 72

Practice for Smarty Pants ... 73

CHAPTER 6. WINDOW EVENTS ... 74

Interfaces ... 75

Action Listener .. 76
Registering Components with ActionListeneter ... 78
What’s the Source of an Event? ... 79

How to Pass Data Between Classes ... 81

Finishing Calculator .. 83
Some Other Event Listeners .. 89

How to Use Adapters ... 90

Additional Reading ... 91

Practice .. 91

Practice for Smarty Pants ... 91

CHAPTER 7. THE TIC-TAC-TOE APPLET ... 92

Learning HTML in 15 Minutes .. 93

Writing Applets Using AWT ... 96

How to Write AWT Applets.. 97

Writing a Tic-Tac-Toe Game .. 99
The Strategy .. 99
The Code .. 100

Additional Reading ... 110

Practice .. 110

Practice for Smarty Pants ... 111

CHAPTER 8. PROGRAM ERRORS - EXCEPTIONS .. 112

Reading the Stack Trace ... 113

Genealogical Tree of Exceptions ... 114

The keyword throws ... 117

The Keyword finally .. 118

The Keyword throw .. 119

Creating New Exceptions .. 121

Additional Reading ... 123

Practice .. 123

 Java Programming for Kids, Parents and Grandparents vii

Practice for Smarty Pants ... 123

CHAPTER 9. SAVING THE GAME SCORE ... 124

Byte Streams ... 124

Buffered Streams .. 127

Command-Line Arguments .. 129

Reading Text Files ... 132

Class File .. 135

Additional Reading ... 137

Practice .. 137

Practice for Smarty Pants ... 138

CHAPTER 10. MORE JAVA BUILDING BLOCKS ... 139

Working with Date and Time Values.. 139

Method Overloading ... 140

Reading Keyboard Input .. 143

More on Java Packages ... 145

Access Levels ... 148

Getting Back to Arrays .. 151

Class ArrayList ... 154

Additional Reading ... 158

Practice .. 158

Practice for Smarty Pants ... 159

CHAPTER 11. BACK TO GRAPHICS – THE PING PONG GAME 160

The Strategy .. 160

The Code ... 161

Java Threads Basics .. 170

Finishing Ping Pong Game .. 175

What to Read Next on Game Programming ... 185

Additional Reading ... 186

Practice .. 186

Practice for Smarty Pants ... 186

APPENDIX A. JAVA ARCHIVES - JARS .. 188

Additional Reading ... 189

APPENDIX B. ECLIPSE TIPS .. 190

Eclipse Debugger ... 191

APPENDIX C. HOW TO PUBLISH A WEB PAGE ... 194

Additional Reading ... 197

Practice .. 197

INDEX .. 198

 Java Programming for Kids, Parents and Grandparents ix

Preface

One day my son Davey-steamboat showed up in my office with my
rated “R” Java tutorial in his hands. He asked me to teach him
programming so he could create computer games. At that time I’ve
already written a couple of books on Java and taught multiple classes
about computer programming, but all of this was for grownups! A
search on Amazon could not offer anything but books for dummies, but
Davey is not a dummy! After spending hours on Google I found either
some poor attempts to create Java courses for kids, or some reader-
rabbit-style books. Guess what? I decided to write one. To help me
understand the mentality of the little people, I decided to ask Davey
to become my first kid student.

This book will be useful for the following groups of people

• Kids from 11 to 18 years old
• School computer teachers
• Parents who want to teach their kids programming
• Complete beginners in programming (your age does not

matter)

Even though I use a simple language while explaining programming, I
promise to treat my readers with respect - I’m not going to write
something like “Dear friend! You are about to begin a new and exciting
journey…”. Yeah, right! Just get to the point!

First chapters of the book will end with simple game-like programs
with detailed instructions on how to make them work. Also we are
going to create a calculator that looks and works similarly to the one
that you have in your computer. In the second part of the book we’ll
create together game programs Tic-Tac-Toe and Ping-Pong.

You’ll need to get used to the slang of professional programmers, and
all important words will be printed in this font.

Java language elements and programs will be shown in a different
font, for example String.

This book does not cover each and every element of the Java language,
otherwise it would be too fat and boring. But at the end of each chapter
there is a section Additional Reading wit links to Web sites with more
detailed explanations of the subject.

You’ll also find assignments at the end of each chapter. Every reader
has to complete assignments given in the section Practice. If these

assignments are too easy for you, I challenge you to do assignments
from the section Practice for Smarty Pants. Actually, if you are reading
this book, you are a smart person and should try to complete all the
assignments.

To get the most out of this book, read it from the beginning to the end.
Do not move on until you understand the chapter you are reading now.
Teenagers, parents and grandparents should be able to master this
book without asking for help, but younger kids should read this book
with an adult.

 Java Programming for Kids, Parents and Grandparents xi

Acknowledgements

Thank you all architects and developers who worked for free on Eclipse
– one of the best available Integrated Development Environment for
Java.

Special thanks to New Jersey Transit bus drivers for the smooth ride –
a half of this book has been written while commuting to work on the
bus #139.

Thanks to a lovely lady and my wife Natasha for successfully running
a business called family.

Special thanks to Yuri Goncharov - an expert Java programmer from
Toronto, Canada. He reviewed the book, tested every code example,
and provided a valuable feedback to make this book a little better.

Chapter 1. Your First Java Program

People talk to each other using different languages. Similarly,

they write computer programs like games, calculators, text editors
using different programming languages. Without programs, your
computer would be useless, and its screen would be always black.
Computer parts are called hardware, and programs are known as
software. The most popular computer languages are Visual Basic,
C++, and Java. What makes the Java language different from many
others?

First of all, the same Java program can run (work) on different
computers like PC, Apple and others without changes. As a matter of
fact, Java programs do not even know where they run, because they
run inside of a special software shell called Java Virtual Machine
(JVM). If, for example, your Java program needs to print some
messages, it asks JVM to do this, and JVM know how to deal with
your printer.

Second, Java makes it easy to translate your programs (screens,
menus and messages) to different human languages.

Third, Java allows you to create program elements (classes) that
represent objects from the real world. For example, you can create a
Java class called Car and set attributes of this class like doors, wheels,
similarly to what the real cars have. After that, based on this class
you can create another class, for example Ford, which will have all the
features of the class Car plus something that only Fords have.

Fourth, Java is more powerful than many other languages.

Fifth, Java is free! You can find everything for creating your Java
programs on the Internet without paying a penny!

How to Install Java on Your Computer

To start programming in Java you need to download a special software
from the Web site of the company called Sun Microsystems, that
created this language. The full name of this software is Java 2
Software Development Kit (J2SDK). At the time of this writing its
latest version 1.5.0 could be downloaded from this Web site:

http://java.sun.com/j2se

Select release J2SE 1.5.0 or the newer one, and on the next Web page
under the title Downloads click on the link to this release. Then click
on the word Download under the title SDK. Accept the license
agreement and select Windows Offline Installation (unless you have a
Mac, Linux or Solaris computer). Press the button Save on the next
screen and select the folder on your hard disk where you’d like to save
the Java installation file. The file download will start.

After the download ends, start the installation process – just double-
click on the file that you’ve downloaded, and this will install J2SDK
on your disk. For example, on Windows computer it will create a folder
like this one:
 c:\Program Files\java\j2sdk1.5.0, where c: is the name of
your hard disk.

 Java Programming for Kids, Parents and Grandparents 3

If you do not have enough room on your c: drive, select a different one,
otherwise, just keep pressing the buttons Next, Install and Finish on
the windows that will be popping up on your screen. In several minutes
the installation of Java on your computer will be complete.

In the next step of installation, you need to define two system
variables. For example, in Windows click on the button Start, and get
to the Control Panel (it might be hidden behind the menu Settings),
and click on the icon System. Select there a tab Advanced, and click on
the button Environment Variables.

On the next page you can see how this screen looks like on my
Windows XP notebook.

The next window will show all system variables that already exist in
your system.

 Java Programming for Kids, Parents and Grandparents 5

Press the lower button New and declare the variable Path that will
help Windows (or Unix) find J2SDK on your machine. Double check
the name of the folder where you’ve installed Java. If the variable
Path already exists, just add the new Java directory and a semicolon
to the very beginning of the box Variable Value:

Also, declare the variable CLASSPATH by entering a period and a
semicolon as its value. This system variable will help Java find your
programs. The period means that Java has to start looking for your
programs from the current disk folder, and the semicolon is just a
separator:

Now the installation of J2SDK is complete!

Three Main Steps in Programming

To create a working Java program you need to go through the
following tree steps:

ü Write the program in Java and save it on a disk.

ü Compile the program to translate it from Java language into a

special byte code that JVM understands.

ü Run the program.

Step 1 – Type the Program

You can use any text editor to write Java programs, for example
Notepad.

If you have an old Windows 98 computer, you’ll need to set
the PATH and CLASSPATH variable in a different way.
Find the file autoexec.bat on your c: drive, and using
Notepad or other text editor enter the proper values for
these variable at end of this file, for example:

SET CLASSPATH=.;
SET PATH=c:\j2sdk1.5.0\bin;%PATH%

After making this change you’ll need to restart your
computer.

 Java Programming for Kids, Parents and Grandparents 7

First, you’ll need to type the program and save it in a text file with a
name ending in .java. For example, if you want to write a program
called HelloWorld, enter its text (we call it source code) in Notepad
and save it in the file named HelloWorld.java. Please do not use
blanks in Java file names.

Here is the program that prints on the screen the words Hello World:

I’ll explain how this program works a little later in this chapter, but at
this point just trust me – this program will print the words Hello
World in the step 3.

public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello World");

 }
}

Step 2 – Compile the Program

Now you need to
compile this program.
You’ll be using the
javac compiler,
which is a part of
J2SDK.

Let’s say you’ve saved
your program in the
directory called
c:\practice. Select
the menus Start,
Run, and enter the
word cmd to open a
black command
window.

Just to make sure that you’ve set the system variables PATH and
CLASSPATH correctly, enter the word set and take another look at
their values.
Change the current folder to c:\practice and compile the program:

cd \practice

javac HelloWorld.java

You do not have to name the folder practice – give it any name you
like.

The program javac is Java compiler. You won’t see any confirmation
that your program HelloWorld has been compiled successfully. This
is the case when no news is good news. Type a command dir and it’ll
show you all the files that exist in your folder. You should see there a
new file named HelloWorld.class. This proves that your program
has been successfully compiled. Your original file HelloWorld.java
is also there, and you can modify this file later to print Hello Mom or
something else.

In Windows 98 select the “MS DOS Prompt” from the
Start menu to open a command prompt window.

 Java Programming for Kids, Parents and Grandparents 9

If the program has syntax errors, let’s say you forgot to type the last
curly brace, Java compiler will print an error message. Now you’d need
to fix the error, and recompile the program again. If you have several
errors, you may need to repeat these actions more than once until the
file HelloWorld.class is created.

Step 3 – Run the Program

Now let’s run the program. In the same command window enter the
following:

java HelloWorld

Have you noticed that this time you’ve used the program java
instead of javac? This program is called Java Run-time
Environment (JRE), or you may call it JVM like I did before.

Keep in mind that Java does not treat capital and small letters the
same, which means that if you named the program HelloWorld with a
capital H and a capital W, do not try to start the program helloworld
or helloWorld – JVM will complain.

Now let’s have some fun - try to guess how to change this program. I’ll
explain how this program works in the next chapter, but still, try to
guess how to change it to say hello to you pet, friend or print your
address. Go through all three steps to see if the program still works
after your changes J.

In the next chapter I’ll show you how to type, compile and run your
programs in a more fancy place than a text editor and a black
command window.

Additional Reading

Creating your first application:
http://java.sun.com/docs/books/tutorial/getStart
ed/cupojava/win32.html

Java installation instructions for Windows:
http://java.sun.com/j2se/1.5.0/install-
windows.html

 Java Programming for Kids, Parents and Grandparents 11

Chapter 2. Moving to Eclipse

Programmers usually work in so-called Integrated Development

Environment (IDE). You can write, compile and run programs there.
IDE also has a Help thingy that describes all elements of the language,
and makes it easier to find and fix errors in your programs. While
some IDE programs are expensive, there is an excellent free IDE called
Eclipse. You can download it from the Web site www.eclipse.org. In
this chapter I’ll help you to download and install Eclipse IDE on your
computer, create there a project called Hello World, and after this
we’ll be creating all our programs there. Make yourself comfortable in
Eclipse – it’s an excellent tool that many professional Java
programmers use.

Installing Eclipse

Open the Web page www.eclipse.org and click on the Download menu
on the left (http). Click on the link Main Eclipse Download Site and
select the version of Eclipse you want to download. They usually have
one latest release and several stable builds. The latest release is an
officially released product. Even though stable builds may have more
features, they still may have some minor problems. At the time of this
writing the latest stable build is 3.0M8. Select this build and you’ll see
the following window:

Click on the link (http) next to the word Windows, Mac, or Linux
depending on your computer, and download the file with this long
name that ends with .zip to any folder on your disk.

Now you just have to unzip
this file into your c: drive. If
you already have the program
WinZip installed on your
computer, right-click on this
file and select the WinZip on
the menu and the option
Extract To. If you have room
on your c: drive, press the
button Extract, otherwise
select another disk that has
more space available.

Files with the name suffix
.zip are archives, and they
contain many other files inside.
To unzip the file means to
extract the content of this
archive on the disk. The most
popular archive program is
called WinZip and you can
download its trial version at
www.winzip.com.

You’ll need it to complete
installation of Eclipse.

 Java Programming for Kids, Parents and Grandparents 13

Installation of Eclipse is complete! For your convenience, create the
shortcut for Eclipse. Right-click on the desktop of your computer, then
press New, Shortcut, Browse, and select the file eclipse.exe in the
folder c:\eclipse. To start the program, double-click on the blue icon
Eclipse, and you’ll see the first Welcome screen (this screen is changing
sligtly with each Eclipse build):

If your screen looks different, proceed to so-called Workbench, which is
the working area for your Java projects.

Getting Started with Eclipse

In this section I’ll show you how you can quickly create and run Java
programs in Eclipse. You can also find a nice tutorial under the menus
Help, Help Contents, and Java Development User Guide.

To start working on a program you’ll need to create a new project. A
simple project like our HelloWorld will have just one file –
HelloWorld.java. Pretty soon we’ll create more advanced projects
that will consist of several files.

To create a brand new project in Eclipse just click on the menus File,
New, Project, and then press the button Next on the New Project
Window. Now you’ll need to enter the name of your new project, for
example My First Project:

Look at the grayed out box Directory. It tells you where the files of this
project will be located on the disk. Eclipse has a special folder
workspace, where it keeps all files for your projects. Later on, you’ll
create separate projects for a calculator program, a Tic-Tac-Toe game,
and other programs. There will be several projects in the workspace
folder by the end of this book.

Eclipse workbench has several smaller areas called perspectives which
are different views of your projects.

 Java Programming for Kids, Parents and Grandparents 15

If you click on the little plus sign by My First Project, it’ll expand
showing you an item Java Run-time Environment (JRE)
System Library which is a part of the project If for any reason you
do not see JRE there, click on the menus Windows, Preferences, Java,
Editor, Installed JREs, Add, and, using the button Browse find the
folder where you have installed Java, for example c:\j2sdk1.5.0.

Creating Programs in Eclipse

Let’s recreate the HelloWorld program from Chapter 1 in Eclipse.
Java programs are classes that represent objects from real life. You’ll
learn more about classes in the next chapter.

To create a class in Eclipse select the menus File, New, Class and
enter HelloWorld in the field Name. Also, in the section Which
methods stubs you would like to create, check off the box

public static void main(String[] args)

Press the button Finish, and you’ll see that Eclipse created for you the
class HelloWorld. It placed program comments (the text between /*
and */) on top - you should change them to describe your class. After
the comments you’ll find the code of the class HelloWorld with an
empty method main(). The word method means action. To run a Java
class as a program, this class must have a method called main().

To complete our program, place the cursor after the curly brace in the
line with main, push the button Enter and type the following on the
new line:

System.out.println("Hello World");

To save the program on disk and compile it, just press at the same
time two buttons on your keyboard: Ctrl-S. If you did not make any
syntax errors, you won’t see any messages – the program is compiled.
But let’s make an error on purpose to see what’s going to happen.
Erase the last curly brace and hit Ctrl-S again. Eclipse will display the
Unmatched Brace error in the tasks perspective, and also it will place
a red mark at the line that has a problem.

As your projects become larger, they’ll have several files and compiler
may generate more than one error. You can quickly find (not fix
though) the problematic lines by double-clicking on the error message
in the tasks perspective. Let’s put the curly brace back and hit Ctrl-S
again – voila, the error message is gone!

Running HelloWorld in Eclipse

Our simple program is a one-class project. But pretty soon you projects
will have several Java classes. That’s why before running the project
for the first time, you need to tell Eclipse which class in this project is
the main one.

Select the menu Run, then Run…(make sure that Java Application is
selected in the top left corner), and enter the names of the project and
the main class:

public class HelloWorld {

 public static void main(String[] args) {
 }
}

 Java Programming for Kids, Parents and Grandparents 17

Now press the button Run, to start the the program. It will print the
words Hello World in the console view the same way as it did in
Chapter 1.

Now you can run this project by selecting the menus Run, Run Last
Launched or by pressing the buttons Ctrl-F11 on the keyboard.

How HelloWorld Works?

Let’s start learning what’s actually happening in the program
HelloWorld.

The class HelloWorld has only one method main(), which is an entry
point of a Java application (program). You can tell that main is a
method, because it has parentheses after the word main. Methods can
call (use) other methods, for example our method main() calls the
method println() to display the text Hello World on the screen.

Each method starts with a declaration line called a method signature:

public static void main(String[] args)

This method signature tells us the following:

Ø Who can access the method - public. The keyword public

means that the method main() could be accessed by any
other Java class or JVM itself.

Ø Instructions on how to use it - static. The keyword

static means that you don’t have to create an instance (a
copy) of HelloWorld object in memory to use this method.
We’ll talk about class instances more in the next chapter.

Ø Does the method return any data? The keyword void means

that the method main() doesn’t return any data to the
calling program, which is Eclipse in this case. But if for
example, a method had to perform some calculations, it could
have returned a resulting number to its caller.

Ø The name of the method is main.

Ø The list of arguments – some data that could be given to the

method - String[] args. In the method main() the
String[] args means that this method can receive an
array of Strings that represent text data. The values that
are being passed to a method are called arguments.

As I said before, you can have a program that consists of several
classes, but one of them has the method main(). Java class usually
have several methods. For example, a class Game can have the
methods startGame(), stopGame(), readScore(), and so on.

The body of our method main()has only one line :

System.out.println("Hello World");

Every command or a method call must end with a semicolon ;. The
method println()knows how to print data on the system console
(command window). Java’s method names are always followed by
parentheses. If you see a method with empty parentheses, this means
that this method does not have any arguments.

The System.out means that the variable out is defined inside the
class System that comes with Java. How are you supposed to know
that there’s something called out in the class System? Eclipse will
help you with this. After you type the word System and a dot, Eclipse
will show you everything that is available in this class. At any time
you can also put a cursor after the dot and press Ctrl-Space to bring
up a help box similar to this one:

 Java Programming for Kids, Parents and Grandparents 19

The out.println() tells us that there is an object represented by a
variable out and this “something called out” has a method called
println(). The dot between a class and a method name means that
this method exists inside this class. Say you have a class
PingPongGame that has a method saveScore(). This is how you can
call this method for Dave who won three games:

PingPongGame.saveScore("Dave", 3);

Again, the data between parentheses are called arguments or
parameters. These parameters are given to a method for some kind of
processing, for example saving data on the disk. The method
saveScore() has two arguments –a text string “Dave”, and the
number 3.

Eclipse will add fun to writing Java programs. Appendix B has some
useful tips and tricks that will speed up your Java programming in
this excellent IDE.

Additional Reading

Eclipse Web Page:

http://www.eclipse.org

Practice

Change the class HelloWorld to print your
address using several calls to println().

 Java Programming for Kids, Parents and Grandparents 21

Practice for Smarty Pants

Change the class HelloWorld to print the
word Hello like this:

Chapter 3. Pet and Fish – Java Classes

Java programs consist of classes that represent objects from the

real world. Even though people may have different preferences as to
how to write programs, most of them agree that it’s better to do it in a
so-called object-oriented style. This means that good programmers
start with deciding which objects have to be included in the program
and which Java classes will represent them. Only after this part is
done, they start writing Java code.

Classes and Objects

Let’s create and discuss a class named VideoGame. This class may
have several methods, which can tell what objects of this class can do:
start the game, stop it, save the score, and so on. This class also may
have some attributes or properties: price, screen color, number of
remote controls and others.

Classes in Java may have methods and attributes.

Methods define actions that a class can perform.

Attributes describe the class.

 Java Programming for Kids, Parents and Grandparents 23

In Java language this class may look like this:

Our class VideoGame should be similar to other classes that represent
video games – all of them have screens of different size and color, all of
them perform similar actions, and all of them cost money.

We can be more specific and create another Java class called
GameBoyAdvance. It also belongs to the family of video games, but has
some properties that are specific to the model GameBoy Advance, for
example a cartridge type.

In this example the class GameBoyAdvance defines two attributes –
cartridgeType and screenWidth and two methods – startGame()

class GameBoyAdvance {
 String cartridgeType;
 int screenWidth;

 void startGame() {

 }
 void stopGame() {

 }
}

class VideoGame {
 String color;
 int price;

 void start () {
 }
 void stop () {
 }
 void saveScore(String playerName, int score) {
 }
}

and stopGame(). But these methods can’t perform any actions just
yet, because they have no Java code between the curly braces.

A factory description of the GameBoy Advance relates to an actual
game the same way as a Java class relates to its instance in memory.
The process of building actual games based on this description in the
game factory is similar to the process of creating instances of GameBoy
objects in Java.

In many cases, a program can use a Java class only after its instance
has been created. Vendors also create thousands of game copies based
on the same description. Even though these copies represent the same
class, they may have different values in their attributes - some of them
are blue, while others are silver, and so on. In other words, a program
may create multiple instances of the GameBoyAdvance objects.

In addition to the word class, you’ll have to get used to the
new meaning of the word object.

The phrase “to create an instance of an object” means to
create a copy of this object in the computer’s memory
according to the definition of its class.

 Java Programming for Kids, Parents and Grandparents 25

Data Types

Java variables represent attributes of a class, method arguments or
could be used inside the method for a short-time storage of some data.
Variables have to be declared first, and only after this is done you can
use them.

Remember equations like y=x+2? In Java you’d need to declare the
variables x and y of some numeric data type like integer or double:

int x;
int y;

The next two lines show how you can assign a value to these variables.
If your program assigns the value of five to the variable x, the variable
y will be equal to seven:

x=5;
y=x+2;

In Java you are also allowed to change the value of a variable in a
somewhat unusual way. The following two lines change the value of
the variable y from five to six:

int y=5;
y++;

Despite the two plus signs, JVM is still going to increment the value
of the variable y by one.

After the next code fragment the value of the variable myScore is also
six:

int myScore=5;
myScore=myScore+1;

You can also use multiplication, division and subtraction the same
way. Look at the following piece of code:

int myScore=10;

myScore--;
myScore=myScore*2;
myScore=myScore/3;

System.out.println("My score is " + myScore);

What this code prints? Eclipse has a cool feature called a scrapbook
that allows quickly test any code snippet (like the one above) without

even creating a class. Select menus File, New, Scrapbook Page and
type the word Test as the name of your scrapbook file.

Now enter these five lines that manipulate with myScore in the scrap
book, highlight them, and click on the little looking glass on the
toolbar.

To see the result of the score calculations, just click on the console tab
at the bottom of the screen:

My score is 6

In this example the argument of the method println() was glued
from two pieces – the text “My score is ” and the value of the variable
myScore, which was six. Creation of a String from pieces is called
concatenation. Even though myScore is a number, Java is smart
enough to convert this variable into a String, and then attach it to the
text My Score is.

Look at some other ways of changing the values of the variables:

myScore=myScore*2; is the same as myScore*=2;
myScore=myScore+2; is the same as myScore+=2;
myScore=myScore-2; is the same as myScore-=2;
myScore=myScore/2; is the same as myScore/=2;

There are eight simple, or primitive data types in Java, and you have
to decide which ones to use depending on the type and size of data that
you are planning to store in your variables:

 Java Programming for Kids, Parents and Grandparents 27

ü Four data types for storing integer values – byte, short,
int, and long.

ü Two data types for values with a decimal point – float and

double.

ü One data type for storing a single character – char.

ü One logical data type called boolean that allows only two
values: true or false.

You can assign an initial value to a variable during its declaration and
this is called variable initialization:

char grade = 'A';
int chairs = 12;
boolean playSound = false;
double nationalIncome = 23863494965745.78;
float gamePrice = 12.50f;
long totalCars =4637283648392l;

In the last two lines f means float and l means long.

If you don’t initialize the variables, Java will do it for you by assigning
zero to each numeric variable, false to boolean variables, and a
special code ‘\u0000’ to a char.

There is also a special keyword final, and if it’s used in a variable
declaration, you can assign a value to this variable only once, and this
value cannot be changed afterwards. In some languages the final
variables are called constants. In Java we usually name final variables
using capital letters:

final String STATE_CAPITAL="Washington";

In addition to primitive data types, you can also use Java classes to
declare variables. Each primitive data type has a corresponding
wrapper class, for example Integer, Double, Boolean, etc. These
classes have useful methods to convert data from one type to another.

While a char data type is used to store only one character, Java also
has a class String for working with a longer text, for example:

String lastName="Smith";

In Java, variable names can not start with a digit and can not contain
spaces.

Creation of a Pet

Let’s design and create a class Pet. First we need to decide what
actions our pet will be able to do. How about eat, sleep, and say? We’ll
program these actions in the methods of the class Pet. We’ll also give
our pet the following attributes: age, height, weight, and color.

Start with creating a new Java class called Pet in My First Project as
described in Chapter 2, but do not mark the box for creation of the
method main().

Your screen should look similar to this one:

A bit is the smallest piece of data that can be stored in
memory. It can hold either 1 or 0.

A byte consists or eight bits.

A char in Java occupies two bytes in memory.

An int and a float in Java take four bytes of memory.

Variables of long and double types use eight bytes each.

Numeric data types that use more bytes can store larger
numbers.

1 kilobyte (KB) has 1024 bytes

1 megabyte (MB) has 1024 kilobytes

1 gigabyte (GB) has 1024 megabytes

 Java Programming for Kids, Parents and Grandparents 29

Now we are ready to declare attributes and methods in the class Pet.
Java classes and methods enclose their bodies in curly braces. Every
open curly brace must have a matching closing brace:

To declare variables for class attributes we should pick data types for
them. I suggest an int type for the age, float for weight and height,
and String for a pet’s color.

The next step is to add some methods to this class. Before declaring a
method you should decide if it should take any arguments and return a
value:

ü The method sleep() will just print a message Good night,
see you tomorrow – it does not need any arguments and will
not return any value.

class Pet{
 int age;
 float weight;
 float height;
 String color;
}

class Pet{
}

ü The same is true for the method eat().It will print the
message I’m so hungry…let me have a snack like nachos!.

ü The method say() will also print a message, but the pet will

“say” (print) the word or a phrase that we give to it. We’ll
pass this word to the method say() as a method argument.
The method will build a phrase using this argument and will
return it back to the calling program.

The new version of the class Pet will look like this:

This class represents a friendly creature from the real world:

public class Pet {
 int age;
 float weight;
 float height;
 String color;

 public void sleep(){
 System.out.println(
 "Good night, see you tomorrow");
 }

 public void eat(){
 System.out.println(
 "I’m so hungry…let me have a snack like nachos!");
 }

 public String say(String aWord){
 String petResponse = "OK!! OK!! " +aWord;
 return petResponse;
 }
}

 Java Programming for Kids, Parents and Grandparents 31

Let’s talk now about the signature of the method sleep():

public void sleep()

It tells us that this method can be called from any other Java class
(public), it does not return any data (void). The empty parentheses
mean that this method does not have any arguments, because it does
not need any data from the outside world – it always prints the same
text.

The signature of the method say() looks like this:

public String say(String aWord)

This method can also be called from any other Java class, but has to
return some text, and this is the meaning of the keyword String in
front of the method name. Besides, it expects some text data from
outside, hence the argument String aWord.

How do you decide if a method should or should not return a value? If a
method performs some data manipulations and has to give the result
of these manipulations back to a calling class, it has to return a value.
You may say, that the class Pet does not have any calling class! That’s
correct, so let’s create one called PetMaster. This class will have a
method main()containing the code to communicate with the class
Pet. Just create another class PetMaster, and this time select the
option in Eclipse that creates the method main(). Remember, without
this method you can not run this class as a program. Modify the code
generated by Eclipse to look like this:

Do not forget to press Ctrl-S to save and compile this class!
To run the class PetMaster click on the Eclipse menus Run, Run…,
New and type the name of the main class: PetMaster. Push the button
Run and the program will print the following text:

I’m so hungry…let me have a snack like nachos!
OK!! OK!! Tweet!! Tweet!!
Good night, see you tomorrow

The PetMaster is the calling class, and it starts with creating an
instance of the object Pet. It declares a variable myPet and uses the
Java operator new:

Pet myPet = new Pet();

This line declares a variable of the type Pet (that’s right, you can
treat any classes created by you as new Java data types). Now the
variable myPet knows where the Pet instance was created in the
computer’s memory, and you can use this variable to call any methods
from the class Pet, for example:

myPet.eat();

If a method returns a value, you should call this method in a different
way. Declare a variable that has the same type as the return value of
the method, and assign it to this variable. Now you can call this
method:

String petReaction;

petReaction = myPet.say("Tweet!! Tweet!!");

public class PetMaster {

 public static void main(String[] args) {

 String petReaction;

 Pet myPet = new Pet();

 myPet.eat();
 petReaction = myPet.say("Tweet!! Tweet!!");
 System.out.println(petReaction);

 myPet.sleep();

 }
}

 Java Programming for Kids, Parents and Grandparents 33

At this point the returned value is stored in the variable
petReaction and if you want to see what’s in there, be my guest:

System.out.println(petReaction);

Inheritance – a Fish is Also a Pet

Our class Pet will help us learn yet another important feature of Java
called inheritance. In the real life, every person inherits some features
from his or her parents. Similarly, in the Java world you can also
create a new class, based on the existing one.

The class Pet has behavior and attributes that are shared by many
pets – they eat, sleep, some of them make sounds, their skins have
different colors, and so on. On the other hand, pets are different - dogs
bark, fish swim and do not make sounds, parakeets talk better than
dogs. But all of them eat, sleep, have weight and height. That’s why
it’s easier to create a class Fish that will inherit some common
behaviors and attributes from the class Pet, rather than creating Dog,
Parrot or Fish from scratch every time.

A special keyword extends that will do the trick:

class Fish extends Pet{

}

You can say that our Fish is a subclass of the class Pet, and the class
Pet is a superclass of the class Fish. In other words, you use the class
Pet as a template for creating a class Fish.

Even if you will leave the class Fish as it is now, you can still use
every method and attribute inherited from the class Pet. Take a look:

Fish myLittleFish = new Fish();
myLittleFish.sleep();

Even though we have not declared any methods in the class Fish yet,
we are allowed to call the method sleep() from its superclass!

Creation of subclasses in Eclipse is a piece of cake! Select the menus
File, New, Class, and type Fish as the name of the class. Replace the
java.lang.Object in the field superclass with the word Pet.

Let’s not forget, however, that we’re creating a subclass of a Pet to
add some new features that only fish have, and reuse some of the code
that we wrote for a general pet.

 Java Programming for Kids, Parents and Grandparents 35

Not all pets can dive, but fish certainly can. Let’s add a new method
dive() to the class Fish now.

The method dive() has an argument howDeep that tells the fish how
deep it should go. We’ve also declared a class variable currentDepth
that will store and update the current depth every time you call the
method dive(). This method returns the current value of the variable
currenDepth to the calling class.

Please create another class FishMaster that will look like this:

It’s time to reveal a secret – all classes in Java are
inherited from the super-duper class Object, regardless if
you do use the word extends or not.

But Java classes can not have two separate parents.
If this would happen with people, kids would not be
subclasses of their parents, but all the boys would
descendents of Adam, and all the girls descendents of Eve
J.

public class FishMaster {

 public static void main(String[] args) {

 Fish myFish = new Fish();

 myFish.dive(2);
 myFish.dive(3);

 myFish.sleep();
 }
}

public class Fish extends Pet {

 int currentDepth=0;

 public int dive(int howDeep){
 currentDepth=currentDepth + howDeep;
 System.out.println("Diving for " + howDeep +
 " feet");
 System.out.println("I'm at " + currentDepth +
 " feet below sea level");
 return currentDepth;
 }
}

The method main() instantiates the object Fish and calls its method
dive() twice with different arguments. After that, it calls the method
sleep(). When you run the program FishMaster, it will print the
following messages:

Diving for 2 feet
I'm at 2 feet below sea level
Diving for 3 feet
I'm at 5 feet below sea level
Good night, see you tomorrow

Have you noticed that beside methods defined in the class Fish, the
FishMaster also calls methods from its superclass Pet? That’s the
whole point of inheritance – you do not have to copy and paste code
from the class Pet – just use the word extends, and the class Fish
can use Pet’s methods!

One more thing, even though the method dive() returns the value of
currentDepth, our FishMaster does not use it. That’s fine, our
FishMaster does not need this value, but there may be some other
classes that will also use Fish, and they may find it useful. For
example, think of a class FishTrafficDispatcher that has to know
positions of other fish under the sea before allowing diving to avoid
traffic accidents J.

 Java Programming for Kids, Parents and Grandparents 37

Method Overriding

As you know, fish do not speak (at least they do not do it aloud). But
our class Fish has been inherited from the class Pet that has a
method say(). This means that nothing stops you from writing
something like this:

myFish.say();

Well, our fish started to talk… If you do not want this to happen, the
class Fish has to override the Pet’s method say(). This is how it
works: if you declare in a subclass a method with exactly the same
signature as in its superclass, the method of the subclass will be used
instead of the method of the superclass. Let’s add the method say()
to the class Fish.

Now add the following three lines to the method main() of the class
FishMaster:

String fishReaction;
fishReaction = myFish.say("Hello");
System.out.println(fishReaction);

Run the program and it’ll print

Don't you know that fish do not talk?

This proves that Pet’s method say() has been overridden, or in other
words suppressed.

Wow! We’ve learned a lot in this chapter – let’s just take a break.

public String say(String something){
 return "Don't you know that fish do not talk?";
}

If a method signature includes the keyword final, such
method can not be overridden, for example:

final public void sleep(){…}

Additional Reading

1.Java Data Types:
http://java.sun.com/docs/books/tutorial/j
ava/nutsandbolts/datatypes.html

2.About inheritance:
http://java.sun.com/docs/books/tutorial/java/concepts/i
nheritance.html

Practice

1. Create a new class Car with the following
methods:

public void start()
public void stop()
public int drive(int howlong)

The method drive() has to return the total
distance driven by the car for the specified
time. Use the following formula to calculate
the distance:

distance = howlong*60;

2. Write another class CarOwner and that
creates an instance of the object Car and call
its methods. The result of each method call
has to be printed using
System.out.println().

 Java Programming for Kids, Parents and Grandparents 39

Practice for Smarty Pants

Create a subclass of Car named
JamesBondCar and override the method
drive() there. Use the following formula to
calculate the distance:

distance = howlong*180;

Be creative, print some funny messages!

Chapter 4. Java Building Blocks

You can add any text comments to your program to explain

what a particular line, method or a class is for. Sometimes people
forget why they have written the program this way. The other reason
for writing comments is to help other programmers understand you
code.

Program Comments

There are three different types of comments:

• If your comment fits in one line, start it with two slashes:

// This method calculates the distance

• Longer multi-line comments have to be surrounded with these

symbols: /* and */, for example:

 /* the next 3 lines store the current
 position of the Fish.
 */

• Java comes with a special program javadoc that can extract all

comments from your programs into a separate help file. This file
can be used as a technical documentation for your programs. Such
comments are enclosed in symbols /** and */. Only the most
important comments like description of the class or a method
should be placed between these symbols.

 /** This method calculates the discount that depends
 on the price. If the price is more than $100,
 it gives you 20% off, otherwise only 10%.
 */

From now on, I’ll be adding comments to the code samples to give you
a better idea how and where to use them.

 Java Programming for Kids, Parents and Grandparents 41

Making Decisions with if Statements

We always make decisions in our life: If she is going to tell me this –
I’m going to answer that, otherwise I’ll do something else. Java has an
if statement that checks if a particular expression is true or false.

Based on the result of this
expression, your program execution
splits, and only the one matching
portion of the code will work.

For example, if an expression Do I
want to go to grandma? returns
true, turn to the left, otherwise
turn to the right.

If an expression returns true, JVM will execute the code between the
first curly braces, otherwise it goes to the the code after else
statement. For example, if a price is more than a hundred dollars, give
a 20% discount, otherwise take only 10% off.

Let’s modify the method dive() in the class Fish to make sure that
our fish will never dive below 100 feet:

// More expensive goods get 20% discount
if (price > 100){
 price=price*0.8;
 System.out.println("You’ll get a 20% discount”);
}
else{
 price=price*0.9;
 System.out.println("You’ll get a 10% discount”);
}

public class Fish extends Pet {
 int currentDepth=0;
 public int dive(int howDeep){

Now just make a little change to the FishMaster – let it try to make
our fish go deep under the sea:

Run this program and it’ll print the following:

Diving for 2 feet
I'm at 2 feet below the sea level
Diving for 97 feet
I'm at 99 feet below the sea level
I am a little fish and can't dive below 100 feet
Good night, see you tomorrow

public class FishMaster {

 public static void main(String[] args) {

 Fish myFish = new Fish();

 // Try to have the fish go below 100 feet
 myFish.dive(2);
 myFish.dive(97);
 myFish.dive(3);

 myFish.sleep();
 }
}

 Java Programming for Kids, Parents and Grandparents 43

Logical Operators

Sometimes, to make a decision you may need to check more than one
conditional expression, for example if the name of the state is Texas or
California, add the state tax to the price of every item in the store. This
is an example of the logical or case – either Texas or California. In
Java the sign for a logical or is one ore two vertical bars. It works like
this – if any of the two conditions is true, result of the entire
expression is true. In the following examples I use use a variable of
type String. This Java class has a method equals(), and I use it to
compare the value of the variable state with Texas or California:

if (state.equals("Texas") | state.equals("California"))

You can also write this if statement using two bars:

if (state.equals("Texas") || state.equals("California"))

The difference between the two is that if you use two bars, and the
first expression is true, the second expression won’t even be checked.
If you place just a single bar, JVM will evaluate both expressions.

The logical and is represented by one or two ampersands (&&) and the
whole expression is true if every part of it is true. For example,
charge the sales tax only if the state is New York and the price is more
than $110. Both conditions must be true at the same time:

if (state.equals("New York") && price >110)

or

if (state.equals("New York") & price >110)

If you use double ampersand and the first expression is false, the
second one won’t even be checked, because the entire expression will be
false anyway. With the single ampersand both expressions will be
evaluated.

The logical not is represented by the exclamation point, and it changes
expression to the opposite meaning. For example, if you want to
perform some actions only if the state is not New York, use this syntax:

if (!state.equals("New York"))

Here’s anoher example - the following two expressions will produce the
same result:

if (price < 50)

if (!(price >=50))

The logical not here is applied to the expression in parentheses.

Conditional operator

There is another flavor of an if statements called conditional
operator. This statement is used to assign a value to a variable based
on an expression that ends with a question mark. If this expression is
true, the value after the question mark is used, otherwise the value
after the colon is assigned to the variable on the left:

discount = price > 50? 10:5;

If the price is greater than fifty, the variable discount will get the
value of 10, otherwise the value of 5. It’s just a shorter replacement of
a regular if statement:

if (price > 50){
 discount = 10;
} else {
 discount = 5;
}

Using else if

You are also allowed to build more complex if statements with several
else if blocks. This time we’ll create a new class called ReportCard.
This class has to have the method main() and also a method that will
have one argument - numeric test result. Depending on the number, it
should print your grade like A, B, C, D, or F. We’ll name this method
convertGrades().

public class ReportCard {

/**
 This method takes one integer argument - the result of
the test and returns one letter A, B, C or D depending
on the argument.
*/

 Java Programming for Kids, Parents and Grandparents 45

Beside using the else if condition, this example also shows you how
to use variables of type char. You can also see that with the &&
operator you can check if a number falls into some range. You can not
write simply if testResult between 80 and 89, but in Java we
write that at the same time testResult has to be greater or equal to
80 and less then 89:

testResult >= 80 && testResult < 89

Think about why we could not use the || operator here.

Making Decisions With switch Statement

The switch statement sometimes can be used as an alternative to if.
The variable after the keyword switch is evaluated, and program
goes only to one of the case statements:

 public static void main(String[] args){

 ReportCard rc = new ReportCard();
 char yourGrade = rc.convertGrades(88);

Do not forget to put the keyword break at the end of each case – the
code has to jump out of the switch statement. Without the break
statements this code will print all four lines, even though the variable
yourGrade will have only one value.

Java switch statement
has a restriction – the
variable that’s being
evaluated must have one
of these types:
char
int
byte
short.

How Long Variables Live?

Class ReportCard declares a variable grade inside the method
convertGrades(). If you declare a variable inside any method, such
variable is called local. This means that this variable is available
only for the code within this method. When the method completes, this
variable automatically gets removed from memory.

 Java Programming for Kids, Parents and Grandparents 47

Programmers also use the word scope to say how long a variable will
live, for example you can say that the variables declared inside a
method have a local scope.

If a variable has to be reused by several method calls, or it has to be
visible from more than one method in a class, you should declare such
variable outside of any method. In class Fish, currentDepth is a
member variable. These variables are “alive” until the instance of the
object Fish exists in memory, that’s why they are also called instance
variables. They could be shared and reused by all methods of the class,
and in some cases they can even be visible from external classes, for
example in our classes the statement System.out.println() is
using the class variable out that was declared in the class System.

Wait a minute! Can we even use a member variable from the class
System if we have not created an instance of this class? Yes we can, if
this variable was declared with a keyword static. If declaration of a
member variable or a method starts with static, you do not have to
create an instance of this class to use it. Static members of a class are
used to store the values that are the same for all instances of the class.

For example, a method convertGrades() can be declared as static
in the class ReportCard, because its code does not use member
variables to read/store values specific to a particular instance of the
class. This is how you call a static method:

char yourGrade = ReportCard.convertGrades(88);

Here’s another example: there is a class Math in Java that contains
several dozens of mathematical methods like sqrt(), sin(), abs()
and others. All these methods are static and you do not need to
create an instance of the class Math to call them, for example:

double squareRoot = Math.sqrt(4.0);

Special Methods: Constructors

Java uses operator new to create instances of objects in memory, for
example:

Fish myFish = new Fish();

Parentheses after the word Fish tell us that this class has some
method called Fish(). Yes, there are special methods that are called
constructors , and these methods have the following features:

• Constructors are called only once during construction of the object
in memory.

• They must have the same name as the class itself.
• They do not return a value, and you do not even have to use the

keyword void in constructor’s signature.

Any class can have more than one constructor. If you do not create a
constructor for the class, Java automatically creates during the
compilation time so-called default no-argument constructor. That’s
why Java compiler has never complained about such statement as new
Fish(), even though the class Fish did not have any constructors.

In general, constructors are used to assign initial values to member
variables of the class, for example the next version of class Fish has
one-argument constructor that just assigns the argument’s value to
the instance variable currentDepth for future use.

Now the class FishMaster can create an instance of the Fish and
assign the initial position of the fish. The next example creates an
instance of the Fish that is “submerged” 20 feet under the sea:

Fish myFish = new Fish(20);

If a constructor with arguments has been defined in a class, you can no
longer use default no-argument constructor. If you’d like to have a
constructor without arguments - write one.

The Keyword this

The keyword this is useful when you need to refer to the instance of
the object you are in. Look at the next example:

public class Fish extends Pet {
 int currentDepth;

 Fish(int startingPosition){
 currentDepth=startingPosition;
 }
}

class Fish {
 int currentDepth ;

 Fish(int currentDepth){
 this.currentDepth = currentDepth;
 }
}

 Java Programming for Kids, Parents and Grandparents 49

A keyword this helps to avoid
name conflicts, for example
this.currentDepth refers to a
member variable currentDepth,
while the currentDepth
refers to the argument’s value.

In other words, the instance of
the object Fish is pointing to
itself.

You’ll see another important example of using keyword this in
Chapter 6 in the section How to Pass Data Between Classes.

Arrays

Let’s say your program has to store names of the four game players.
Instead of declaring four different String variables, you can declare
one String array that has four elements.
Arrays are marked by placing square brackets either after the variable
name, or after the data type:

String [] players;

or

String players[];

These lines just tells Java compiler that you are planning to store
several text strings in the array players. Each element has its own
index starting from zero. The next sample actually creates an instance
of an array that can store four String elements and assigns the
values to the elements of this array:

players = new String [4];

players[0] = "David";
players[1] = "Daniel";

players[2] = "Anna";
players[3] = "Gregory";

You must know the size of the array before assigning values to its
elements. If you do not know in advance how many elements you are
going to have, you can not use arrays, but should look into other Java
classes, for example Vector, but let’s concentrate on arrays at this
point.

Any array has an attribute called length that “remembers” the
number of elements in this array, and you can always find out how
many elements are there:

int totalPlayers = players.length;

If you know all the values that will be stored in the array at the time
when you declare it, Java allows you to declare and initialize such
array in one shot:

String [] players = {"David", "Daniel", "Anna", "Gregory"};

Imagine that the second player is a winner and you’d like to print
congratulations to this kid. If the players’ name are stored in an array,
we need to get its second element:

String theWinner = players[1];
System.out.println("Congratulations, " + theWinner + "!");

Here’s the output of this code:

Congratulations, Daniel!

Do you know why the second element has the index [1]? Of course you
do, because the index of the first element is always [0].

Array of players in our example are one-dimensional, because we store
them sort of in a row. If we wanted the store the values as a matrix,

 Java Programming for Kids, Parents and Grandparents 51

we can create a two-dimensional array. Java allows creation of multi-
dimensional arrays. You can store any objects in arrays, and I’ll show
you how to do this in Chapter 10.

Repeating Actions with Loops

Loops are used to repeat the same action multiple times, for example
we need to print congratulation to several winners.
When you know in advance how many times this action has to be
repeated - use a loop with a keyword for:

JVM executes every line between the curly braces and then returns
back to the first line of the loop to increment the counter and check the
conditional expression. This code means the following:

Print the value of the array element whose number is the same as the
current value of the counter. Start from the element number 0
(counter=0), and increment the value of the counter by one
(counter++). Keep doing this while the counter is less than
totalPlayers (counter<totalPlayers).

There is another keyword for writing loops - while. In these loops you
do not have to know exactly how many times to repeat the action, but
you still need to know when to end the loop. Let’s see how we can
congratulate players using the while loop that will end when the
value of the variable counter becomes equal to the value of
totalPlayers:

 int totalPlayers = players.length;
 int counter;

 for (counter=0; counter <totalPlayers; counter++){
 String thePlayer = players[counter];
 System.out.println("Congratulations,"+
 thePlayer+"!");
 }

In Chapter 9 you’ll learn how to save data on the disks and how to read
them back into computer’s memory. If you read game scores from the
disk file, you do not know in advance how many scores were saved
there. Most likely you’ll be reading the scores using the while loop.

You can also use two important keywords with loops: break and
continue.

The keyword break is used to jump out of the loop when some
particular condition is true. Let’s say we do not want to print more
than 3 congratulations, regardless of how many players we’ve got. In
the next example, after printing the array elements 0, 1 and 2, the
break will make the code go out of the loop and the program will
continue from the line after the closing curly brace.

The next code sample has a double equal sign in the if statement.
This means that you are comparing the value of the variable counter
with number 3. A single equal sign in the here would mean
assignment of the value of 3 to the variable counter. Replacing ==
with = in an if statement is a very tricky mistake, and it can lead to
unpredictable program errors that may not be so easy to find.

The keyword continue allows the code to skip some lines and return
back to the beginning of the loop. Imagine that you want to
congratulate everyone but David – the keyword continue will return
the program back to the beginning of the loop:

int counter =0;
while (counter< totalPlayers){

 if (counter == 3){
 break; // Jump out of the loop
 }
 String thePlayer = players[counter];
 System.out.println("Congratulations, "+thePlayer+ "!");
 counter++;
}

 int totalPlayers = players.length;
 int counter=0;

 while (counter< totalPlayers){
 String thePlayer = players[counter];
 System.out.println("Congratulations, "
 + thePlayer + "!");
 counter++;
 }

 Java Programming for Kids, Parents and Grandparents 53

There is yet another flavor of the while loop that starts with the word
do, for example:

Such loops check an expression after executing the code between curly
braces, which means that code in the loop will be executed at least
once. Loops that start with the keyword while might not be executed
at all if the loop expression is false to begin with.

while (counter< totalPlayers){
 counter++;

 String thePlayer = players[counter];

 if (thePlayer.equals("David"){
 continue;
 }
 System.out.println("Congratulations, "+ thePlayer+ !");
}

do {
 // Your code goes here
 } while (counter< totalPlayers);

Additional Reading

1. jGuru: Language Essentials. Short
Course:
http://java.sun.com/developer/onlineTraining/JavaIntro/conten
ts.html

2.Scope of variables:
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/scop
e.html

Practice

1. Create a new class named
TemperatureConverter that will have a
method with the following signature:

public String convertTemp
 (int temperature, char convertTo)

If the value of the argument convertTo is F,
the temperature has to be converted to
Fahrenheit, and if it’s C, convert it to
Celsius. When you’ll be calling this method,
put the value of the argument char in single
quotes.

2. Declare a method convertGrades() of
the class ReportCard as static and
remove the line that instantiates this class
from the method main().

Practice for Smarty Pants

Have you noticed that in the example with
the keyword continue we’ve moved up the
line counter++;?
What would have happened if we left this
line at the end of the loop as it was in the
example with break?

 Java Programming for Kids, Parents and Grandparents 55

Chapter 5. A Graphical Calculator

Java comes with the whole bunch of classes that you’ll be using

to create graphical applications. There are two main groups of classes
(libraries) that are used for creating windows in Java: AWT and Swing.

AWT and Swing

When Java was originally created, only AWT library was available for
working with graphics. This library is a simple set of classes like
Button, TextField, Label and others. Pretty soon, another and more
advanced library called Swing was introduced. It also includes
buttons, text fields, and other window controls. The names of the
Swing components start with the letter J, for example JButton,
JTextField, JLabel, and so on.

Everything is a little better, faster, and more convenient in Swing, but
in some cases our programs will run on computers with older JVMs
that may not support Swing classes. You’ll see the examples of
working with AWT later in Chapter 7, but in this chapter we’ll create
a calculator program using Swing.

There is yet another set of Java classes which is a part of Eclipse
platform called Standard Widget Toolkit (SWT), but we won’t use it in
this book.

Packages and Import Statements

Java comes with many useful classes that are organized in packages.
Some packages include classes responsible for drawing, while other
packages have classes to work with the Internet, and so on. For

example the class String is located in the package called java.lang,
and the full name of the class String is java.lang.String.

Java compiler knows where to find classes that are located in
java.lang, but there are many other packages with useful classes,
and it’s your responsibility to let the compiler know where the classes
from your program live. For example, most of the Swing classes live in
one of the following two packages:

javax.swing
javax.swing.event

It would be annoying to write a full class name every time you use it,
and to avoid this you can write import statements just once above
the class declaration line, for example:

These import statements will allow you to use the short class names
like JFrame or JButton, and Java compiler will know where to
look for these classes.

If your need to use several classes from the same package, you do not
have to list each of them in the import statement, just use the wild
card. In the following example the star (asterisk) makes all classes
from the package javax.swing visible to your program:

import javax.swing.*;

Still, it’s better to use separate import statements, so you can see what
exactly the class is importing from each package. We’ll talk more
about Java packages in Chapter 10.

Major Swing Elements

These are some of the major objects that Swing applications consist of:

• A window or a frame that can be created using the class
JFrame.

import javax.swing.JFrame;
import javax.swing.JButton;

class Calculator{
 JButton myButton = new JButton();
 JFrame myFrame = new JFrame();
}

 Java Programming for Kids, Parents and Grandparents 57

• An invisible panel or a pane that holds all these buttons, text
fields, labels, and other components. Panels are created by the
class JPanel.

• Window controls like buttons (JButton), text fields

(JTextfield), lists (JList), and so on.

• Layout managers that help arrange all these buttons and fields
on a panel.

Usually a program creates an instance of a JPanel and assigns the
layout manager to it. Then, it can create some window controls and
add them to the panel. After that, add the panel to the frame, set the
frame’s size and make it visible.

But displaying a frame is only half of the job, because the window
controls should know how to respond to various events, for example a
click on the button.

In this chapter we’ll learn how to display nice-looking windows, and
the next chapter is about writing code that will respond to events that
may happen with elements of this window.

Our next goal is to create a simple calculator that knows how to add
two numbers and display the result. Create a new project in Eclipse
named My Calculator and add a new class SimpleCalculator with
the following code:

Compile and run this program and it’ll display a window that looks
like this one:

import javax.swing.*;
import java.awt.FlowLayout;

public class SimpleCalculator {
 public static void main(String[] args) {
 // Create a panel
 JPanel windowContent= new JPanel();

 // Set a layout manager for this panel
 FlowLayout fl = new FlowLayout();
 windowContent.setLayout(fl);
 // Create controls in memory
 JLabel label1 = new JLabel("Number 1:");
 JTextField field1 = new JTextField(10);
 JLabel label2 = new JLabel("Number 2:");
 JTextField field2 = new JTextField(10);
 JLabel label3 = new JLabel("Sum:");
 JTextField result = new JTextField(10);
 JButton go = new JButton("Add");

 // Add controls to the panel
 windowContent.add(label1);
 windowContent.add(field1);
 windowContent.add(label2);
 windowContent.add(field2);
 windowContent.add(label3);
 windowContent.add(result);
 windowContent.add(go);

 // Create the frame and add the panel to it
 JFrame frame = new JFrame("My First Calculator");

 frame.setContentPane(windowContent);

 // set the size and make the window visible
 frame.setSize(400,100);
 frame.setVisible(true);
 }
}
}

 Java Programming for Kids, Parents and Grandparents 59

This may not be the best-looking calculator, but it’ll give us a chance
to learn how to add components and display a window. In the next
section we’ll try make it look better with the help of layout managers.

Layout Managers

Some old-fashioned programming languages force you to set exact
coordinates and sizes of each window component. This works fine if you
know the screen settings (resolution) of all people that will use your
program. By the way, we call people who use your programs users.
Java has layout managers that help you arrange components on the
screen without assigning strict positions to the window controls.
Layout managers will ensure that their screen will look nice regardless
of the window size.

Swing offers the following layout managers:

• FlowLayout

• GridLayout

• BoxLayout

• BorderLayout

• CardLayout

• GridBagLayout

To use any layout manager, a program needs to instantiate it, and
then assign this object to a container , for example to a panel as in the
class SimpleCalculator.

Flow Layout

This layout arranges components in a window row by row. For
example, labels, text fields and buttons will be added to the first
imaginary row until there is room there. When the current row is
filled, the rest of the components will go to the next row, and so on. If a
user changes the size of the window, it may mess up the picture. Just
grab the corner of our calculator window and resize it. Watch how the
manager java.awt.FlowLayout rearranges controls as the size of
the window changes.

In the next code sample, the keyword this represents an instance of
the object SimpleCalculator.

FlowLayout fl = new FlowLayout();
this.setLayoutManager(fl);

Well, the FlowLayout is not the best choice for our calculator. Let’s
try something different now.

Grid Layout

The class java.awt.GridLayout allows you to arrange components
as rows and columns in a grid. You’ll be adding components to
imaginary cells of this grid. If the screen gets resized, grid cells may
become bigger, but the relative positions of window components will
stay the same. Our calculator has seven components – three labels,
three text fields and a button. We may arrange them as a grid of four
rows and two columns (one cell stays empty):

GridLayout gr = new GridLayout(4,2);

You can also assign some horizontal and vertical space gaps between
the cells, for example five pixels:

GridLayout gr = new GridLayout(4,2,5,5);

After minor changes in our calculator (they are highlighted below), our
calculator will look a lot prettier.

Create and compile a new class SimpleCalculatorGrid in the
project My Calculator.

 Java Programming for Kids, Parents and Grandparents 61

Run the program SimpleCalculatorGrid, and you’ll see this:

import javax.swing.*;
import java.awt.GridLayout;

public class SimpleCalculatorGrid {
 public static void main(String[] args) {
 // Create a panel
 JPanel windowContent= new JPanel();

 // Set the layout manager for this panel
 GridLayout gl = new GridLayout(4,2);
 windowContent.setLayout(gl);

 // Create controls in memory

 JLabel label1 = new JLabel("Number 1:");
 JTextField field1 = new JTextField(10);
 JLabel label2 = new JLabel("Number 2:");
 JTextField field2 = new JTextField(10);
 JLabel label3 = new JLabel("Sum:");
 JTextField result = new JTextField(10);
 JButton go = new JButton("Add");

 // Add controls to the panel
 windowContent.add(label1);
 windowContent.add(field1);
 windowContent.add(label2);
 windowContent.add(field2);
 windowContent.add(label3);
 windowContent.add(result);
 windowContent.add(go);

 // Create the frame and add the panel to it
 JFrame frame = new JFrame(
 "My First Calculator");
 frame.setContentPane(windowContent);

 // set the size and display the window
 //frame.pack();
 frame.setSize(400,100);
 frame.setVisible(true);
 }
}

Try to resize this window - controls will grow with the window, but
their relative positions will not change:

There is one more thing to remember about the grid layout – all cells of
the grid have the same width and height.

Border Layout

Class java.awt.BorderLayout divides a window into a South,
West, North, East, and Center areas. The North area stays always
on top of the window, the South at the bottom, the West is on the left
and the East is on the right.
For example, in the calculator that is shown on the next page, a text
field that displays numbers is located in the North area.

This is how you can create a BorderLayout and place a text field
there:

BorderLayout bl = new BorderLayout();
this.setLayoutManager(bl);

JTextField txtDisplay = new JTextField(20);
this.add("North", txtDisplay);

You do not have to put window controls in all five areas. If you only
need North, Center, and South areas, the Center area will become
wider since you are not going to use the East and West.

I’ll use a BorderLayout a little later in the next version of our
calculator called Calculator.java.

Combining Layout Managers

Do you think that the GridLayout will allow you to create a
calculator window that looks like the one that comes with Microsoft
Windows?

 Java Programming for Kids, Parents and Grandparents 63

Unfortunately it won’t, because cells have different sizes in this
calculator - the text field is much wider than the buttons. You could
combine layout managers using panels that have their own layout
managers.

To combine layout managers in the new calculator, let’s do the
following:

ü Assign a border layout to the content panel of the frame.

ü Add a JTextField to the North area of the screen to display the

numbers.

ü Create a panel p1 with the GridLayout, add 20 buttons to it, and

then add p1 to the Center area of the content pane.

ü Create a panel p2 with the GridLayout, add four buttons to it,

then add p2 to the West area of the content pane.

Let’s start with a little simpler version of the calculator screen that
will look like this:

Create a new class Calculator and run the program. Read the
program comments in the next code example to understand how it
works.

Class Calculator (part 1 of 2)

import javax.swing.*;
import java.awt.GridLayout;
import java.awt.BorderLayout;
public class Calculator {
 // Declaration of all calculator's components.
 JPanel windowContent;
 JTextField displayField;
 JButton button0;
 JButton button1;
 JButton button2;
 JButton button3;
 JButton button4;
 JButton button5;
 JButton button6;
 JButton button7;
 JButton button8;
 JButton button9;
 JButton buttonPoint;
 JButton buttonEqual;
 JPanel p1;

 // Constructor creates the components in memory
 // and adds the to the frame using combination of
 // Borderlayout and Gridlayout
 Calculator(){
 windowContent= new JPanel();

 // Set the layout manager for this panel
 BorderLayout bl = new BorderLayout();
 windowContent.setLayout(bl);

 // Create the display field and place it in the
 // North area of the window
 displayField = new JTextField(30);
 windowContent.add("North",displayField);

 // Create buttons using constructor of the
 // class JButton that takes the label of the
 // button as a parameter
 button0=new JButton("0");
 button1=new JButton("1");
 button2=new JButton("2");
 button3=new JButton("3");
 button4=new JButton("4");
 button5=new JButton("5");

 Java Programming for Kids, Parents and Grandparents 65

Class Calculator (part 2 of 2)

Box Layout

Class java.swing.BoxLayout allows multiple window components to
be laid out either horizontally (along the X-axis) or vertically (along the
Y-axis). Unlike with the FlowLayout manager, when the window with
the BoxLayout is resized, its controls are not getting wrapped up.
With BoxLayout, window controls can have different sizes (this is not
allowed in the GridLayout).

 button6=new JButton("6");
 button7=new JButton("7");
 button8=new JButton("8");
 button9=new JButton("9");
 buttonPoint = new JButton(".");
 buttonEqual=new JButton("=");

 // Create the panel with the GridLayout
 // that will contain 12 buttons - 10 numeric
 // ones, and buttons with the point and the
 // equal sign
 p1 = new JPanel();
 GridLayout gl =new GridLayout(4,3);
 p1.setLayout(gl);
 // Add window controls to the panel p1
 p1.add(button1);
 p1.add(button2);
 p1.add(button3);
 p1.add(button4);
 p1.add(button5);
 p1.add(button6);
 p1.add(button7);
 p1.add(button8);
 p1.add(button9);
 p1.add(button0);
 p1.add(buttonPoint);
 p1.add(buttonEqual);

 // Add the panel p1 to the center area
 // of the window
 windowContent.add("Center",p1);
 //Create the frame and set its content pane
 JFrame frame = new JFrame("Calculator");
 frame.setContentPane(windowContent);
 // set the size of the window to be big enough
 // to accomodate all controls
 frame.pack();
 // Finally, display the window
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 Calculator calc = new Calculator();
 }
}

The next two lines of code set a box layout with vertical alignment in a
JPanel.

JPanel p1= new JPanel();
setLayout(new BoxLayout(p1, BoxLayout.Y_AXIS));

To make this code shorter, I do not declare a variable to store a
reference to the object BoxLayout, but rather create an instance of
this object and immediately pass it to the method setLayout() as an
argument.

Grid Bag Layout

In this section I’ll show you yet another way of creating the calculator
window using java.awt.GridBagLayout manager instead of
combining layouts and panels.

Our calculator has rows and columns, but in a grid layout, all of the
components must have the same size. This does not work for our
calculator because there is a text field on the top that is as wide as tree
numeric buttons.

The GridBagLayout is an advanced grid, that allows you to have a
grid with cells of different sizes. Class GridBagLayout works together
with another class called GridBagConstraints. Constrains is
nothing else but attributes of the cell, and you have to set them for
each cell separately. All constraints for a cell have to be set before
placing a component in the cell. For example, one of the constraint’s
attributes is called gridwidth. It allows you to make a cell as wide
as several other cells.

When working with the grid layout you should create an instance of
the constraint object first, and then set the values to its properties.
After this is done, you can add the component to the cell in your
container.

 Java Programming for Kids, Parents and Grandparents 67

The next code sample is heavily sprinkled with comments to help you
understand how to use GridBagLayout.

// Set the GridBagLayout for the window’s content pane
 GridBagLayout gb = new GridBagLayout();
 this.setLayout(gb);

// Create an instance of the GridBagConstraints
// You’ll have to repeat these lines for each component
// that you’d like to add to the grid cell
 GridBagConstraints constr = new GridBagConstraints();

//setting constraints for the Calculator’s displayField:

// x coordinate in the grid
 constr.x=0;
// y coordinate in the grid
 constr.y=0;

// this cell has the same height as other cells
 constr.gridheight =1;

// this cell is as wide as 6 other ones
 constr.gridwidth= 6;

// fill all space in the cell
 constr.fill= constr.BOTH;
// proportion of horizontal space taken by this
// component
 constr.weightx = 1.0;

// proportion of vertical space taken by this component
 constr.weighty = 1.0;
// position of the component within the cell
 constr.anchor=constr.CENTER;

 displayField = new JTextField();
// set constrains for this field
 gb.setConstraints(displayField,constr);

// add the text field to the window
 windowContent.add(displayField);

Card Layout

Think of a deck of cards laying on top of each other, where you can only
see the top card. The java.awt.CardLayout manager can be used if
you need to create a component that looks like a tab folder.

When you click on a tab, the content of the screen changes. In fact, all
of the panels needed for this screen are already pre-loaded and lay on
top of each other. When the user clicks on a tab, the program just
“brings this card" on top and makes the rest of the cards invisible.

Most likely you won’t use this layout, because the Swing library
includes a better component for windows with tabs. This component is
called JTabbedPane.

Can I Create Windows Without Using Layouts?

Sure you can! You may set screen coordinates of each component while
adding them to the window. In this case, your class has to explicitly
state that it won’t use any layout manager. Java has a special keyword
null that actually means “has no value”. We’ll use this keyword quite
often in the future, and in the following example it means that there is
no layout manager:

windowContent.setLayout(null);

But if you do this, your code has to assign the coordinates of the left
upper corner, the width, and the height of each window component.
The next example shows how you can set a button’s width to 40 pixels,
height to 20, and place it 100 pixels to the right and 200 pixels down
from the top left corner of the window:

JButton myButton = new Button("New Game");
myButton.setBounds(100,200,40,20);

Window Components

I’m not going to describe all Swing components in this book, but you
can find references to Swing online tutorial in the section Additional
Reading. This tutorial has detail explanations of all Swing

 Java Programming for Kids, Parents and Grandparents 69

components. Our calculators use only JButton, JLabel and
JTextField, and here’s the list of what else is available:

ü JButton
ü JLabel
ü JCheckBox
ü JRadioButton
ü JToggleButton
ü JScrollPane
ü JSpinner
ü JTextField
ü JTextArea
ü JPasswordField
ü JFormattedTextField
ü JEditorPane
ü JScrollBar
ü JSlider
ü JProgressBar
ü JComboBox
ü JList
ü JTabbedPane
ü JTable
ü JToolTip
ü JTree
ü JViewPort
ü ImageIcon

You can also create menus (JMenu and JPopupMenu), popup windows,
frames inside other frames (JInternalFrame), use the standard-
looking windows (JFileChooser, JColorChooser and
JOptionPane).

Java comes with an excellent demo application that shows all
available Swing components in action. It’s located in the J2SDK
folder under demo\jfc\SwingSet2. Just open the file
SwingSet2.html, and you’ll see a screen similar to the next one.

Click on any image on the toolbar to see how this particular Swing
component works. You can also find Java code that was used to create
each window by selecting the tab Source Code. For example, if you
click on the fourth icon from the left (so-called combobox), you’ll see a
window that looks like this:

 Java Programming for Kids, Parents and Grandparents 71

Swing has so many different components to make your windows pretty!

In this chapter we were creating Swing components simply by typing
the code without using any special tools. But there are tools that allow
you to select a component from a toolbar and drop it on the window.
These tools will automatically generate proper Java code for Swing
components. One of the free Graphic User Interface (GUI) designers
that allow easy creation of Swing and SWT components is called jigloo
from CloudGarden, and you can find a reference to a Web page of this
product in the section Additional Reading.

In the next chapter you’ll learn how a window can respond to the user’s
actions.

Additional Reading

1.Swing Tutorial:
http://java.sun.com/docs/books/tutorial/uiswing/

2. Class JFormattedTextField:
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JFormatte
dTextField.html

3.SWT tutorial and articles:
http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/pl
atform-swt-home/SWT_Resources.html

4.Jigloo GUI builder:
http://www.cloudgarden.com/jigloo/index.html

Practice

1.Modify the class Calculator.java to add
the buttons +, -, /, and *. Add these buttons
to the panel p2, and place the panel in the
East area of the content pane.

2. Read about the class
JFormattedTextField on the web and
change the code of the calculator to use this
class instead of the JTextField. The goal
is to create a right-aligned field like real
calculators have.

 Java Programming for Kids, Parents and Grandparents 73

Practice for Smarty Pants

Modify the class Calculator.java to keep
all numeric buttons in the 10-element array
declared as follows:

Buttons[] numButtons= new Buttons[10];

Replace 10 lines that start from

button0=new JButton("0");

with a loop that creates the buttons and
store them in this array.
Hint: peek into the code of the Tic-Tac-Toe
game in Chapter 7.

Chapter 6. Window Events

Various events may happen to a running program: a user clicks

on a button in a window, the Web browser decides to re-paint the
window, and so on. I’m sure you’ve tried to click on the buttons of our
calculator from Chapter 5, but these buttons were not ready to respond
to your actions yet.

Each window component can process a number of events, or as we say,
listen to these events. Your program has to register window
components with Java classes called listeners. You should make
components listen to only those events they are interested in. For
example, when a person moves the mouse cursor over the calculator
button, it’s not important where exactly the mouse pointer was when
the person pressed the button as long as it was on the button’s surface.
That’s why you do not need to register the button with the
MouseMotionListener. On the other hand, this listener is handy for
all kinds of drawing programs.

Calculator’s buttons should register themselves with the
ActionListener that can process button-click events. All these
listeners are special Java classes called interfaces.

 Java Programming for Kids, Parents and Grandparents 75

Interfaces

Most of the classes define methods that perform various actions, for
example will react to button clicks, will react to mouse movements, and
so on. A combination of such actions is called a class behavior.

Interfaces are special classes that just name a set of particular actions
without writing actual code that implements these actions, for
example:

As you can see, the methods mouseDragged() and mouseMoved() do
not have any code – they are just declared in the interface called
MouseMotionListener. But if your class needs to react when the
mouse is being moved or dragged, it has to implement this interface.
The word implements means that this class will definitely include
methods that might have been declared in this interface, for example:

 import java.awt.event.MouseMotionListener;

class myDrawingPad implements MouseMotionListener{

interface MouseMotionListener {
 void mouseDragged(MouseEvent e);
 void mouseMoved(MouseEvent e);
}

You may be wondering, why even bother creating interfaces without
writing code there? The reason is that once the interface is created, it
could be reused by many classes. For example, when other classes (or
JVM itself) see that the class myDrawingPad implements the
interface MouseMotionListener, they know for sure that this class
will definitely have methods mouseDragged() and mouseMoved().
Every time when a user moves the mouse, JVM will call the method
mouseMoved()and execute the code that you wrote there. Imagine if
a programmer Joe decides to name such method mouseMoved(),
Mary calls it movedMouse(), and Pete prefers mouseCrawling()? In
this case the JVM would be confused and wouldn’t know which method
to call on your class to signal about the mouse movement.

A Java class can implement multiple interfaces, for example it may
need to respond to mouse movements and to a button click:

After getting comfortable with the interfaces that come with Java,
you’ll be able to create your own interfaces, but this is an advanced
topic and let’s not even go there at this time.

Action Listener

Let’s get back to our calculator. If you’ve completed assignments from
the previous chapter, the visual part is done. Now we’ll create another
class-listener that will perform some actions when the user clicks on

class myDrawingProgram implements
 MouseMotionListener, ActionListener
{

 //You have to write the code for each method that
 // has been defined in both interfaces here

}

 Java Programming for Kids, Parents and Grandparents 77

one of the buttons. Actually, we could have added the code processing
click events to the class Calculator.java, but good programmers
always keep visual and processing parts in separate classes.

We’ll name a second class CalculatorEngine, and it must implement
a java.awt.ActionListener interface that declares only one
method - actionPerformed(ActionEvent). JVM calls this method
on the class that implements this interface whenever the person clicks
on the button.

Please create the following simple class:

If you try to compile this class (or just save it in Eclipse), you’ll get an
error message saying that the class must implement the method
actionPerformed(ActionEvent e). Let’s fix this error:

The next version of this class will display a message box from the
method actionPerformed(). You can display any messages using
the class JOptionPane and its method showConfirmDialog(). For
example, the class CalculatorEngine displays the following
message box:

There are different versions of the method showConfirmDialog(),
and we are going to use the one with four arguments. In the code

import java.awt.event.ActionListener;
public class CalculatorEngine implements ActionListener {

}

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
public class CalculatorEngine implements
 ActionListener {

 public void actionPerformed(ActionEvent e){
 // An empty method is also allowed here,
 // even though nothing is going to happen when
 // the JVM calls it
 }
}

below, null means that this message box does not have the parent
window, the second argument contains the title of the message box,
then goes the message itself, and the fourth argument allows you to
select a button(s) to be included in the box (PLAIN_MESSAGE means
that only a single button OK will be displayed in the message box).

In the next section I’ll explain you how to compile and run the next
version of our calculator that will display the Something Happened
message box.

Registering Components with ActionListeneter

Who and when will call the code that we wrote in the method
actionPerformed()? The JVM itself will call this method if you
register (or link) the calculator’s buttons with the class
CalculatorEngine! Just add the following two lines at the end of the
constructor of the class Calculator.java to register the button zero
with our action listener:

CalculatorEngine calcEngine = new CalculatorEngine();
button0.addActionListener(calcEngine);

From now on, every time when the user clicks on the button0, JVM
calls the method actionPerformed() on the object
CalculatorEngine. Compile and run the class Calculator now,
and click on the button zero – it’ll display the Something happened
message box! Other buttons remain silent because they are not
registered yet with our action listener. Keep adding similar lines to
bring all buttons to life:

button1.addActionListener(calcEngine);
button2.addActionListener(calcEngine);
button3.addActionListener(calcEngine);
button4.addActionListener(calcEngine);
…

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JOptionPane;
public class CalculatorEngine implements
ActionListener {

 public void actionPerformed(ActionEvent e){
 JOptionPane.showConfirmDialog(null,
 "Something happened...",
 "Just a test",
 JOptionPane.PLAIN_MESSAGE);
 }
}

 Java Programming for Kids, Parents and Grandparents 79

What’s the Source of an Event?

The next step is to make our listener a little smarter – it’ll display
different message boxes, depending on which button was pressed.
When an action event happens, JVM calls the method
actionPerformed(ActionEvent) on your listener class, and it
provides a valuable information about the event in the argument
ActionEvent. You can get this information by calling appropriate
methods on this object.

Casting

In the next example we are finding out which button has been
pressed by calling the method getSource() of the class ActionEvent
– the variable e is a reference to this object that lives somewhere in
computer’s memory. But according to Java documentation, this
method returns the source of the event as an instance of type Object,
which is a superclass of all Java classes including window components.
It’s done this way to make a universal method that works for all
components. But we know for sure, that in our window only buttons
can possibly be the reason of the action event! That’s why we cast the
returned Object to the shape of a JButton by placing a type
(JButton) in parentheses in front of the method call:

JButton clickedButton = (JButton) evt.getSource();

We declare a variable of type JButton on the left of the equal sign,
and even though the method getSource() returns the data of type
Object, we say to JVM: Don’t worry, I know for sure that I’m getting
an instance of a JButton.

Only after performing casting from Object to JButton we are allowed
to call the method getSource() that belongs to a class JButton.

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JOptionPane;

For example, if you press the button five, you’ll see the following
message box:

But what if window events are produced not only by buttons, but by
some other components as well? We do not want to cast every object to
JButton! For these cases you should use a special Java operator called
instanceof to perform the proper casting. The next example first
checks what type of object caused the event, and then performs casting
to either JButton or JTextField:

public void actionPerformed(ActionEvent evt){

 JTextField myDisplayField=null;
 JButton clickedButton=null;

 Object eventSource = evt.getSource();

 if (eventSource instanceof JButton){
 clickedButton = (JButton) eventSource;
 }else if (eventSource instanceof JTextField){
 myDisplayField = (JTextField)eventSource;
 }
}

 Java Programming for Kids, Parents and Grandparents 81

Our calculator has to execute different portions of the code for each
button, and the next code snippet shows you how to do this.

How to Pass Data Between Classes

Actually, when you press a numeric button on the real calculator, it
does not show a message box, but rather displays the number in the
text field on top. Here’s a new challenge – we need to be able to reach
the attribute displayField of the class Calculator from the
method actionPerformed() of the class CalculatorEngine. This
can be done if we define in the class CalculatorEngine a variable
that will store a reference to the instance of the object Calculator.

We are going to declare a constructor in the next version of the class
CalculatorEngine. This constructor will have one argument of type
Calculator. Don’t be surprised, method arguments can have data
types of the classes that were created by you!

JVM executes the constructor of the CalculatorEngine instance
during creation of this class in memory. The class Calculator
instantiates the CalculatorEngine, and passes to the engine’s
constructor the reference to itself:

CalculatorEngine calcEngine = new CalculatorEngine(this);

This reference contains a location of the calculator’s instance in
memory. The engine’s constructor stores this value in the member
variable parent, and eventually will use it in the method
actionPerformed() to access the calculator’s display field.

parent.displayField.getText();
…

public void actionPerformed(ActionEvent e){

 Object src = e.getSource();

 if (src == buttonPlus){
 // Code that adds numbers goes here
 } else if (src == buttonMinus){
 // Code that subtracts numbers goes here
 }else if (src == buttonDivide){
 // Code that divides numbers goes here
 } else if (src == buttonMultiply){
 // Code that multiplies numbers goes here
 }

}

parent.displayField.setText(dispFieldText +
 clickedButtonLabel);

These two lines where taken from the next code sample.

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JButton;

public class CalculatorEngine implements ActionListener {

 Calculator parent; // a reference to the Calculator

 // Constructor stores the reference to the
 // Calculator window in the member variable parent
 CalculatorEngine(Calculator parent){
 this.parent = parent;
 }

 public void actionPerformed(ActionEvent e){
 // Get the source of this action
 JButton clickedButton = (JButton) e.getSource();

 // Get the existing text from the Calculator’s
 // display field
 String dispFieldText = parent.displayField.getText();

 // Get the button's label
 String clickedButtonLabel = clickedButton.getText();

 parent.displayField.setText(dispFieldText +
 clickedButtonLabel);
 }
}

 Java Programming for Kids, Parents and Grandparents 83

Finishing Calculator

Let’s come up with some rules (an algorithm) of how our calculator
should work:

1. The user enters all the digits of the first number.

2. If the user hits one of the action buttons +, -, / or * , then store

the first number and selected action in member variables, and
erase the number from the display text field.

3. The user enters the second number and hits the button equals .

4. Convert the String value from the text field into a numeric

type double to be able to store large numbers with a decimal
point. Perform selected action using this value and the number
stored in the variable from step 2.

5. Display the result from step 4 in the text field and store this

value in the variable that was used in step 2.
We’ll program all these actions in the class CalculatorEngine.
While reading the code below, remember that the method
actionPerformed() will be called after each button click and the
data between these method calls will be stored in the variables
selectedAction and currentResult.

When you declare a variable for storing a reference to the
instance of a particular class, this variable has to have
either the data type of this class or of one of its
superclasses.

Every class in Java is inherited from the class Object,
and if the class Fish is a subclass of a Pet, each of these
lines is correct:

Fish myFish = new Fish();
Pet myFish = new Fish();
Object myFish = new Fish();

Class CalculatorEngine (part 1 of 2)

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JButton;

public class CalculatorEngine
 implements ActionListener {

 Calculator parent; //a reference to Calculator window
 char selectedAction = ' '; // +, -, /, or *

 double currentResult =0;

// Constructor stores the reference to the Calculator
// window in the member variable parent
 CalculatorEngine(Calculator parent){
 this.parent = parent;
 }

 public void actionPerformed(ActionEvent e){

 // Get the source of this action
 JButton clickedButton = (JButton) e.getSource();
 String dispFieldText=parent.displayField.getText();

 double displayValue=0;

 //Get the number from the text field
 // if it’s not empty
 if (!"".equals(dispFieldText)){
 displayValue= Double.parseDouble(dispFieldText);
 }
 Object src = e.getSource();

 // For each action button memorize selected
 // action +, -, /, or *, store the current value
 // in the currentResult, and clean up the display
 // field for entering the next number

 Java Programming for Kids, Parents and Grandparents 85

Class CalculatorEngine (part 2 of 2)

The final version of the calculator window will look like this:

 if (src == parent.buttonPlus){
 selectedAction = '+';
 currentResult=displayValue;
 parent.displayField.setText("");
 } else if (src == parent.buttonMinus){
 selectedAction = '-';
 currentResult=displayValue;
 parent.displayField.setText("");
 }else if (src == parent.buttonDivide){
 selectedAction = '/';
 currentResult=displayValue;
 parent.displayField.setText("");
 } else if (src == parent.buttonMultiply){
 selectedAction = '*';
 currentResult=displayValue;
 parent.displayField.setText("");
 } else if (src == parent.buttonEqual){
 // Perform the calculations based on selectedAction
 // update the value of the variable currentResult
 // and display the result
 if (selectedAction=='+'){
 currentResult+=displayValue;
 // Convert the result to String by concatenating
 // to an empty string and display it
 parent.displayField.setText(""+currentResult);
 }else if (selectedAction=='-'){
 currentResult -=displayValue;
 parent.displayField.setText(""+currentResult);
 }else if (selectedAction=='/'){
 currentResult /=displayValue;
 parent.displayField.setText(""+currentResult);
 }else if (selectedAction=='*'){
 currentResult*=displayValue;
 parent.displayField.setText(""+currentResult);
 }
 } else{
 // For all numeric buttons append the button's
 // label to the text field
 String clickedButtonLabel=
 clickedButton.getText();
 parent.displayField.setText(dispFieldText +
 clickedButtonLabel);
 }
 }
}

The class Calculator performs the following steps:

1. Create and displays all window components.
2. Create an instance the event listener CalculatorEngine.
3. Pass to the engine a reference to the itself .
4. Registers with this listener all components that can generate

events.
Here’s the final version of the class Calculator:

 JButton buttonMinus=new JButton("-");

Class Calculator (part 1 of 3)

import javax.swing.*;
import java.awt.GridLayout;
import java.awt.BorderLayout;

public class Calculator {
 // Declare and instantiate window components
 JButton button0=new JButton("0");
 JButton button1=new JButton("1");
 JButton button2=new JButton("2");
 JButton button3=new JButton("3");
 JButton button4=new JButton("4");
 JButton button5=new JButton("5");
 JButton button6=new JButton("6");
 JButton button7=new JButton("7");
 JButton button8=new JButton("8");
 JButton button9=new JButton("9");
 JButton buttonPoint = new JButton(".");
 JButton buttonEqual=new JButton("=");
 JButton buttonPlus=new JButton("+");
 JButton buttonMinus=new JButton("-");

 Java Programming for Kids, Parents and Grandparents 87

Class Calculator (part 2 of 3)

 JButton buttonDivide=new JButton("/");
 JButton buttonMultiply=new JButton("*");
 JPanel windowContent = new JPanel();
 JTextField displayField = new JTextField(30);

 // Constructor
 Calculator(){
 // Set the layout manager for this panel
 BorderLayout bl = new BorderLayout();
 windowContent.setLayout(bl);

 // Add the display field to the top od the window
 windowContent.add("North",displayField);

 // Create the panel with the GridLayout
 // that will contain 12 buttons - 10 numeric ones, and
 // buttons with the point and the equal sign

 JPanel p1 = new JPanel();
 GridLayout gl =new GridLayout(4,3);
 p1.setLayout(gl);

 p1.add(button1);
 p1.add(button2);
 p1.add(button3);
 p1.add(button4);
 p1.add(button5);
 p1.add(button6);
 p1.add(button7);
 p1.add(button8);
 p1.add(button9);
 p1.add(button0);
 p1.add(buttonPoint);
 p1.add(buttonEqual);

// Add the panel p1 to the center area of the window
 windowContent.add("Center",p1);
 // Create the panel with the GridLayout
 // that will contain 4 action buttons -
 // Plus, Minus, Divide and Multiply
 JPanel p2 = new JPanel();
 GridLayout gl2 =new GridLayout(4,1);
 p2.setLayout(gl2);
 p2.add(buttonPlus);
 p2.add(buttonMinus);
 p2.add(buttonMultiply);

Class Calculator (part 3 of 3)

Now compile the project and run the class Calculator. It works
almost the same as the real world calculators.

Congratulations! This is your first program that can be used by many
people – give it as a gift to your friends.

For better understanding of how this program works, I recommend you
to get familiar with debugging of programs. Please read about
debugger in Appendix B, and then come back again.

 p2.add(buttonDivide);

 // Add the panel p2 to the east area of the window
 windowContent.add("East",p2);

 // Create the frame and add the content pane to it
 JFrame frame = new JFrame("Calculator");
 frame.setContentPane(windowContent);

 // set the size of the window to be big enough to
 // accomodate all window controls
 frame.pack();

 // Display the window
 frame.setVisible(true);

 // Instantiate the event listener and
 // register each button with it
 CalculatorEngine calcEngine = new
 CalculatorEngine(this);

 button0.addActionListener(calcEngine);
 button1.addActionListener(calcEngine);
 button2.addActionListener(calcEngine);
 button3.addActionListener(calcEngine);
 button4.addActionListener(calcEngine);
 button5.addActionListener(calcEngine);
 button6.addActionListener(calcEngine);
 button7.addActionListener(calcEngine);
 button8.addActionListener(calcEngine);
 button9.addActionListener(calcEngine);

 buttonPoint.addActionListener(calcEngine);
 buttonPlus.addActionListener(calcEngine);
 buttonMinus.addActionListener(calcEngine);
 buttonDivide.addActionListener(calcEngine);

 buttonMultiply.addActionListener(calcEngine);
 buttonEqual.addActionListener(calcEngine);
 }

 public static void main(String[] args) {
 // Instantiate the class Calculator
 Calculator calc = new Calculator();
 }
 }

 Java Programming for Kids, Parents and Grandparents 89

Some Other Event Listeners

These are some other Java listeners from the package java.awt that
are good to know:

• Focus listener will send a signal to your class when a
component gains or loses focus. For example, we say that the
text field has focus, if it has a blinking cursor.

• Item listener reacts on selection of items in a list or a
combobox (dropdown box).

• Key listener responds to keyboard buttons.
• Mouse listener responds when mouse is clicked, or it

enters/leaves a component’s area on the window.
• Mouse movement listener tells you if the mouse is being

moved or dragged. To drag means moving the mouse while
pressing its button.

• Window listener gives you a chance to catch the moments
when the user opens, closes, minimizes or activates the
window.

In the next table you’ll see the name of the listener interfaces, and the
methods that these interfaces declare.

Interface Methods to implement
FocusListener

ItemListener

KeyListener

MouseListener

MouseMotionListener

WindowListener

focusGained(FocusEvent)
focusLost(FocusEvent)

itemStateChanged(ItemEvent)

keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

mouseClicked(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mousePressed(MouseEvent)
mouseReleased(MouseEvent)

mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

windowActivated (WindowEvent)
windowClosed(WindowEvent)
windowClosing(WindowEvent)
windowDeactivated (WindowEvent)
windowDeiconified(WindowEvent)
windowIconified(WindowEvent)
windowOpened(WindowEvent)

For example, the FocusListener interface declares two methods:
focusGained() and focusLost(). This means that even if your
class is interested only in processing of the events when a particular
field gains the focus, you also must include the empty method
focusLost(). This may be annoying, and Java provides special
adapter classes for each listener to make event processing easier.

How to Use Adapters

Let’s say you need to save some data on the disk when the user closes
the window. According to the table above, the class that implements
WindowsListener interface has to include seven methods. This
means that you’ll have write code in the method windowClosing()
and also include six empty methods.

The package java.awt has adapters, which are classes that have
already implemented all required methods (these methods are empty
inside). One of such classes is called WindowAdapter. You can extend
the class that has to process events from WindowAdapter and just
override the methods you are interested in, for example the method
windowClosing().

The rest is easy – just register this class as an event listener in the
window class:

MyEventProcessor myListener = new MyEventProcessor();
addWindowListener(myListener);

We can achieve the same result using so-called anonymous inner
classes, but this topic is a little too complicated for this book.

class MyEventProcessor extends java.awt.WindowsAdapter {
 public void windowClosing(WindowEvent e) {
 // your code that saves the data on a disk
 // goes here.
 }
}

 Java Programming for Kids, Parents and Grandparents 91

Additional Reading

Writing Event Listeners:
http://java.sun.com/docs/books/tutorial/uiswing/events/

Practice

Try to divide a number by zero using our
calculator - the display field shows the word
Infinity. Modify the class
CalculatorEngine to display a message
Can’t divide by zero if the user clicks on the
button Divide when display field is empty.

Practice for Smarty Pants

Modify the class CalculatorEngine to not
allow entering more than one period in the
number.

Hint: read about the method indexOf() of
the class String to find out if the display
field already has one period.

Chapter 7. The Tic-Tac-Toe Applet

When you go online to your favorite Web site, the chances

are that some of these games or other programs were written in Java
using so-called applets. These special applications live and run inside
the Web browser’s window. Web browsers understand a simple mark-
up language called HTML, which allows you to insert special tags
(marks) in the text files to display them nicely in the browsers.
Besides the text, you can include in HTML file a special tag <applet>
that will tell the browser where to find and how to display a Java
applet.

Java applets are downloaded to your computer from the Internet as a
part of a Web page, and the browser is smart enough to start its own
JVM to run these applets.

In this chapter you’ll learn how to create applets on your computer,
and Appendix C explains how to publish your Web pages on the
Internet so other people can also use them.

People browse the Internet without knowing if web pages contain Java
applets or not, but they want to be sure that their computers will not
be harmed by some bad guys who added a nasty applet to the page.
That’s why the applets were designed with the following restrictions:

 Java Programming for Kids, Parents and Grandparents 93

• Applets can not access files on your disk unless you have a special
certificate file on your disk that gives them such permission.

• Applets can only connect to the computer they where downloaded

from.

• Applets can not start any other program located in your computer.

To run an applet you’ll need a Java class written in a special way, an
HTML text file that contains the tag <applet> pointing to this class,
and a Web browser that supports Java. You can also test applets in
Eclipse or using a special program called appletviewer. But before
learning how to create applets, let’s spend 15 minutes to get familiar
with some HTML tags.

Learning HTML in 15 Minutes

Imagine for a moment that you’ve written and compiled the game
applet called TicTacToe. Now you need create the HTML file with
information about it. First create the text file called
TicTacToe.html (by the way, Eclipse can create text files also).
HTML files have names that end either with .html or .htm. Inside,
they usually have the sections header and body. Most of the HTML
tags have the matching closing tags that start with a forward slash, for
example <Head> and </Head>. This is how the file
TicTacToe.html can look like:

You can place the tags either in the same line like we did with the tags
<Title> and </Title>, or in separate lines. Open this file in your Web
browser using its menus File and Open. The blue title bar of the
window will read My First Web Page…, and inside the page you’ll see
the words My Tic-Tac-Toe game is coming soon…:

<HTML>
<Head>
<Title>My First Web Page</Title>
</Head>
<BODY>
 My Tic-Tac-Toe game is coming soon…
</BODY>
</HTML>

Now change this file to add the tag for the Tic-Tac-Toe applet to this
file:

Now the screen looks different:

<HTML>
<BODY>
 Here is my Tic-Tac-Toe game:
 <APPLET code=”TicTacToe.class” width=300
 height=250>
 </APPLET>
</BODY>
</HTML>

 Java Programming for Kids, Parents and Grandparents 95

No wonder, since the Web browser could not find the TicTacToe.class,
it just shows a gray rectangle. We’ll create this class a little later in
this chapter.

HTML tags are surrounded by angle brackets, and some of the tags
may have additional attributes. The tag <APPLET> in our example uses
the following attributes:

• code - it’s the name of the applet’s Java class.

• width – has the width in pixels of the rectangular area on the

screen that will be used by the applet. Images on the computer
screen are made out of tiny dots that are called pixels.

• height - has the height of the area to be used by the applet.

If a Java applet consists of multiple classes, put all of them into one
archive file using the jar program that comes with JDK. And if you do
so, the attribute archive must have the name of this archive. You can
read about jars in Appendix A.

Writing Applets Using AWT

Why use AWT for writing applets if the Swing library is better? Can
we write applets using Swing classes? Yes we can, but there is
something you need to know about.

Web browsers come with their own JVMs, which support AWT, but
might not support the Swing classes that are included in your applet.
Of course the users may download and install the latest JVM, and
there are special HTML converters that will change the HTML file to
point their browsers to this new JVM, but do you really want to ask
users to do this? After your Web page is published on the Internet, you
do not know who might be using it. Imagine an old guy somewhere in
a desert with a 10 year old computer – he’ll just leave your page
instead of going through all these installation troubles. Imagine that
our applet helps to sell games online, and we do not want to loose this
guy – he might be our potential customer (people in deserts also have
credit cards). J

Use AWT if you’re not sure what kind of Web browsers your users have.

Actually, the other choice is to ask your users to download special
Java plugin, and configure their browsers to use the plugin instead of
JVM that came with their browser. You can read more about this
option ot the following Web site:
http://java.sun.com/j2se/1.5.0/docs/guide/plugin/.

 Java Programming for Kids, Parents and Grandparents 97

How to Write AWT Applets

Java AWT applets have to be inherited from the class
java.applet.Applet, for example:

Unlike Java applications, applets do not need the method main()
because the Web browser will download and run them as soon as they
see the tag <applet> in the Web page. The browser also sends signals
to applets when important events happen, for example the applet is
starting, re-painting, and so on. To make sure that the applet reacts
to these events, you should program special callback methods:
init(), start(), paint(), stop(), and destroy(). The browser’s
JVM will call these methods in the following cases:

• init() is called when the applet is loaded by the browser. It’s

called only once, so it plays a role similar to constructors in regular
Java classes.

• start() is called right after the init(). It is also called if a user

returns to a Web page after visiting another page.

• paint() is called when the applet’s window needs to be

displayed or refreshed after some activity on the screen. For
example, the applet is overlapped with some other window and the
browser needs to repaint it.

• stop() is called when a user leaves the Web page containing the
applet.

• destroy() – is called when the browser destroys the applet. You’d

write code in this method only if the applet uses some other
resources, for example it holds a connection to the computer it was
downloaded from.

Even though you do not have to program all of these methods, each
applet must have at least init() or paint(). Here’s a code of the
applet that displays the words Hello World. This applet has only one
method paint() that receives an instance of the object Graphics
from the browser’s JVM. This object has a whole bunch of methods for
painting. The next example uses the method drawString() to draw
the text Hello World.

class TicTacToe extends java.applet.Applet {

}

Create this class in Eclipse. Then in the Run window select Java
Applet in the top left corner, press the button New, and enter
HelloApplet in the field Applet Class.

To test this applet in the Web browser, create the file Hello.html in
the same folder where you applet class is located:

Now start you Web browser and open the file Hello.html using the
menus File and Open.

The screen should look like this:

public class HelloApplet extends java.applet.Applet {
 public void paint(java.awt.Graphics graphics) {
 graphics.drawString("Hello World!", 70, 40);
 }
}

<HTML>
 <BODY>
 Here is my first applet:<P>
 <APPLET code=”HelloApplet.class” width=200 height=100>
 </APPLET>
 </BODY>
</HTML>

 Java Programming for Kids, Parents and Grandparents 99

Do you think that after this simple example we are ready for writing a
game program? You bet! Just fasten your seat belts…

Writing a Tic-Tac-Toe Game

The Strategy

Every game uses some algorithm – a set of rules or a strategy that
have to be applied depending on the player’s actions. The algorithms
for the same game can be simple or very complicated. When you hear
that the world chess champion Gary Kasparov plays against a
computer, he actually plays against a program. Teams of experts are
trying to invent sophisticated algorithms to beat him. The tic-tac-toe
game can also be programmed using different strategies, and we’ll be
using the simple one:

1. We are going to use a 3x3 board.
2. The user will play with the symbol X, and the computer

will use O.
3. The winner must have a full row, column, or a diagonal

with the same symbols.
4. After each move, the program has to check if there is a

winner.
5. If there is a winner, the winning combination has to be

highlighted and the game has to end.
6. The game should also end if there is no more empty

squares left.
7. The player has to press the button New Game to play

again.

8. When computer makes a decision where to put the next O,
it has to try to find a row, a column or a diagonal that has
already two O’s, and put the third row accordingly.

9. If there is no two O’s, the computer has to try to find the
two X’s and place an O to block the person’s winning
move.

10. If no winning or blocking move was found, the computer
has to try to occupy the central square, or pick the next
empty square randomly.

The Code

I’ll give you just a short description of the program here because there
is lot of comments in the applet’s code that will help you to understand
how it works.

The applet will use a BorderLayout manager, and the North portion
of the window will have the button New Game.

The center part will show nine buttons representing squares, and the
South part will display messages:

All window components will be created in the applet’s method init().
All events will be processed by the ActionListener in the method
actionPerformed(). The method lookForWinner() is called after
every move to check if the game is over.

Rules 8, 9, and 10 from our strategy are coded in the method
computerMove()that might need to generate a random number. This
is done using the Java class Math and its method random().

 Java Programming for Kids, Parents and Grandparents 101

You’ll also find somewhat unusual syntax when several method calls
are perform in one expression, for example:

if(squares[0].getLabel().equals(squares[1].getLabel())){…}

This line makes the code shorter because it actually performs that
same actions that could have been done in the following lines:

String label0 = squares[0].getLabel();
String label1 = squares[1].getLabel();
if(label0.equals(label1)){…}

In complex expressions Java evaluates the code in parentheses before
doing any other calculations. The short version of this code gets the
result of the expression in parentheses first, and immediately uses it
as an argument for the method equals(), which is applied to the
result of the first call to getLabel().

Even though the game code occupies several pages, it should not be to
difficult to understand. Just read all program comments.

Class TicTacToe (part 1 of 7)

/**
 * A tic-tac-toe game on a 3x3 board
 */
import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;

public class TicTacToe extends Applet implements
 ActionListener{
Button squares[];
Button newGameButton;
Label score;
int emptySquaresLeft=9;
/**
 * init method is the applet's constructor
 */
 public void init(){
 //Set the applet's layout manager, font and color
 this.setLayout(new BorderLayout());
 this.setBackground(Color.CYAN);

 // Change the applet's font to be bold
 // of size 20 points
 Font appletFont=new Font("Monospased",Font.BOLD, 20);
 this.setFont(appletFont);
 // Create the button New Game and register it
 // with the action listener
 newGameButton=new Button("New Game");
 newGameButton.addActionListener(this);

 Panel topPanel=new Panel();
 topPanel.add(newGameButton);

 this.add(topPanel,"North");

 Panel centerPanel=new Panel();
 centerPanel.setLayout(new GridLayout(3,3));
 this.add(centerPanel,"Center");

 score=new Label("Your turn!");
 this.add(score,"South");

 // create an array to hold references to 9 buttons
 squares=new Button[9];

 // Instantiate the buttons, store the references
 // to them in the array, register them with the
 // listeners, paint them in orange and add to panel
 for(int i=0;i<9;i++){
 squares[i]=new Button();
 squares[i].addActionListener(this);

 squares[i].setBackground(Color.ORANGE);
 centerPanel.add(squares[i]);
 }
 }
 /**
 * This method will process all action events
 * @param ActionEvent object
 */
 public void actionPerformed(ActionEvent e) {

 Button theButton = (Button) e.getSource();
 // Is this a New Game button?
 if (theButton ==newGameButton){
 for(int i=0;i<9;i++){
 squares[i].setEnabled(true);
 squares[i].setLabel("");

 squares[i].setBackground(Color.ORANGE);
 }

 emptySquaresLeft=9;
 score.setText("Your turn!");
 newGameButton.setEnabled(false);

 return; // exit the method here
 }

 String winner = "";

 Java Programming for Kids, Parents and Grandparents 103

 // Is this one of the squares?
 for (int i=0; i<9; i++) {
 if (theButton == squares[i]) {
 squares[i].setLabel("X");
 winner = lookForWinner();

 if(!"".equals(winner)){
 endTheGame();
 } else {
 computerMove();
 winner = lookForWinner();
 if (!"".equals(winner)){
 endTheGame();
 }
 }
 break;
 }
 } // end for

 if (winner.equals("X")) {
 score.setText("You won!");
 } else if (winner.equals("O")){
 score.setText("You lost!");
 } else if (winner.equals("T")){
 score.setText("It's a tie!");
 }
} // end actionPerformed

/**
 * This method is called after every move to see
 * if we have a winner. It checks every row, column
 * and diagonal to find out three squares with the
 * same label (other than blank)
 * @return "X", "O", "T" for tie or "" for no winner
 */
 String lookForWinner() {

 String theWinner = "";
 emptySquaresLeft--;

 if (emptySquaresLeft==0){
 return "T"; // it's a tie
 }

// Check the row 1 - array elements 0,1,2
if (!squares[0].getLabel().equals("") &&
 squares[0].getLabel().equals(squares[1].getLabel()) &&
 squares[0].getLabel().equals(squares[2].getLabel())) {

 theWinner = squares[0].getLabel();
 highlightWinner(0,1,2);
// Check the row 2 - array elements 3,4,5
} else if (!squares[3].getLabel().equals("") &&
 squares[3].getLabel().equals(squares[4].getLabel()) &&
 squares[3].getLabel().equals(squares[5].getLabel())) {

 theWinner = squares[3].getLabel();
 highlightWinner(3,4,5);
// Check the row 3 - - array elements 6,7,8
} else if (! squares[6].getLabel().equals("") &&
 squares[6].getLabel().equals(squares[7].getLabel()) &&
 squares[6].getLabel().equals(squares[8].getLabel())) {

 theWinner = squares[6].getLabel();
 highlightWinner(6,7,8);
// Check the column 1 - array elements 0,3,6
} else if (! squares[0].getLabel().equals("") &&
 squares[0].getLabel().equals(squares[3].getLabel()) &&
 squares[0].getLabel().equals(squares[6].getLabel())) {

 theWinner = squares[0].getLabel();
 highlightWinner(0,3,6);
// Check the column 2 - array elements 1,4,7
} else if (! squares[1].getLabel().equals("") &&
 squares[1].getLabel().equals(squares[4].getLabel()) &&
 squares[1].getLabel().equals(squares[7].getLabel())) {

 theWinner = squares[1].getLabel();
 highlightWinner(1,4,7);
// Check the column 3 - array elements 2,5,8
} else if (! squares[2].getLabel().equals("") &&
 squares[2].getLabel().equals(squares[5].getLabel()) &&
 squares[2].getLabel().equals(squares[8].getLabel())) {
 theWinner = squares[2].getLabel();
 highlightWinner(2,5,8);

 Java Programming for Kids, Parents and Grandparents 105

// Check the first diagonal - array elements 0,4,8
} else if (! squares[0].getLabel().equals("") &&
 squares[0].getLabel().equals(squares[4].getLabel()) &&
 squares[0].getLabel().equals(squares[8].getLabel())) {

 theWinner = squares[0].getLabel();
 highlightWinner(0,4,8);
// Check the second diagonal - array elements 2,4,6
} else if (! squares[2].getLabel().equals("") &&
 squares[2].getLabel().equals(squares[4].getLabel()) &&
 squares[2].getLabel().equals(squares[6].getLabel())) {

 theWinner = squares[2].getLabel();
 highlightWinner(2,4,6);
 }
 return theWinner;
}
/**
 * This method applies a set of rules to find
 * the best computer's move. If a good move
 * can't be found, it picks a random square.
 */
 void computerMove() {
 int selectedSquare;
 // Computer first tries to find an empty
 // square next the two squares with "O" to win
 selectedSquare = findEmptySquare("O");
 // if can't find two "O", at least try to stop the
 // opponent from making 3 in a row by placing
 // "O" next to 2 "X".
 if (selectedSquare == -1)
 selectedSquare = findEmptySquare("X");
 }
 // if the selectedSquare is still -1, at least
 // try to occupy the central square
 if ((selectedSquare == -1)
 &&(squares[4].getLabel().equals(""))){
 selectedSquare=4;
 }
 // no luck with the central either...
 // just get a random square
 if (selectedSquare == -1){
 selectedSquare = getRandomSquare();
 }
 squares[selectedSquare].setLabel("O");
 }

/**
 * This method checks every row, column and diagonal
 * to see if there are two squares with the same label
 * and an empty square.
 * @param give X - for user, and O for computer
 * @return the number of the empty square to use,
 * or the negative 1 could not find 2 square
 * with the same label
 */
 int findEmptySquare(String player) {

 int weight[] = new int[9];

 for (int i = 0; i < 9; i++) {
 if (squares[i].getLabel().equals("O"))
 weight[i] = -1;
 else if (squares[i].getLabel().equals("X"))
 weight[i] = 1;
 else
 weight[i] = 0;
 }

 int twoWeights = player.equals("O") ? -2 : 2;

 // See if row 1 has the same 2 squares and a blank
 if (weight[0] + weight[1] + weight[2] == twoWeights
) {
 if (weight[0] == 0)
 return 0;
 else if (weight[1] == 0)
 return 1;
 else
 return 2;
 }
 // See if row 2 has the same 2 squares and a blank
 if (weight[3] +weight[4] + weight[5] == twoWeights) {
 if (weight[3] == 0)
 return 3;
 else if (weight[4] == 0)
 return 4;
 else
 return 5;
 }

 Java Programming for Kids, Parents and Grandparents 107

// See if row 3 has the same 2 squares and a blank
if (weight[6] + weight[7] +weight[8] == twoWeights) {
 if (weight[6] == 0)
 return 6;
 else if (weight[7] == 0)
 return 7;
 else
 return 8;
}
 // See if column 1 has the same 2 squares and a blank
if (weight[0] + weight[3] + weight[6] == twoWeights) {
 if (weight[0] == 0)
 return 0;
 else if (weight[3] == 0)
 return 3;
 else
 return 6;
}
// See if column 2 has the same 2 squares and a blank
if (weight[1] +weight[4] + weight[7] == twoWeights) {
 if (weight[1] == 0)
 return 1;
 else if (weight[4] == 0)
 return 4;
 else
 return 7;
}
 // See if column 3 has the same 2 squares and a blank
if (weight[2] + weight[5] + weight[8] == twoWeights){
 if (weight[2] == 0)
 return 2;
 else if (weight[5] == 0)
 return 5;
 else
 return 8;
}
//See if diagonal 1 has the same 2 squares and a blank
if (weight[0] + weight[4] + weight[8] == twoWeights){
 if (weight[0] == 0)
 return 0;
 else if (weight[4] == 0)
 return 4;
 else
 return 8;
}

Class TicTacToe (part 7 of 7)

 // See if diagonal has the same 2 squares and a blank
 if (weight[2] + weight[4] + weight[6] == twoWeights){
 if (weight[2] == 0)
 return 2;
 else if (weight[4] == 0)
 return 4;
 else
 return 6;
 }
 // There are no two neighbors that are the same
 return -1;
} // end of findEmptySquare()
/**
 * This method selects any empty square
 * @return a randomly selected square number
 */
 int getRandomSquare() {
 boolean gotEmptySquare = false;
 int selectedSquare = -1;

 do {
 selectedSquare = (int) (Math.random() * 9);
 if (squares[selectedSquare].getLabel().equals("")){
 gotEmptySquare = true; // to end the loop
 }
 } while (!gotEmptySquare);

 return selectedSquare;
 } // end getRandomSquare()
/**
 * This method highlights the winning line.
 * @param first,second and third squares to highlight
 */
 void highlightWinner(int win1, int win2, int win3) {
 squares[win1].setBackground(Color.CYAN);
 squares[win2].setBackground(Color.CYAN);
 squares[win3].setBackground(Color.CYAN);
 }
// Disables squares and enable New Game button
void endTheGame(){
 newGameButton.setEnabled(true);
 for(int i=0;i<9;i++){
 squares[i].setEnabled(false);
 }
 }
} // end of class

 Java Programming for Kids, Parents and Grandparents 109

Congratulations! You’ve completed your first game in Java.

You can run this applet either directly from Eclipse, or by opening the
file TicTacToe.html that we created in the beginning of this chapter,
just copy HTML file and the TicTacToe.class in the same folder.
Our class TicTacToe has a small bug – you might not even notice it,
but I’m sure it’ll be gone after you complete the second assignment
below.

Our TicTacToe class uses a simple strategy because our goal is just
learn how to program, but if you’d like to improve this game, learn so-
called minimax strategy that allows to select the best move for the
computer. Description of the minimax strategy does not belong to this
book, but is available online.

Additional Reading

Java Applets:
http://java.sun.com/docs/books/tutorial/applet/

Java Class Math
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

Practice

1. Add to the top panel of the class
TicTacToe two labels to count wins and
loses. Declare two class variables for this
and increment the corresponding variable
each time you have a winner or a loser. The
score has to be refreshed right after the
program prints a message You won or You
lost.

2. Our program allows click on the square
that already has an X or O. This is a bug!
The program continues as if you’ve made a
valid move. Modify the code to ignore clicks
on such squares

3. Add the method main() to the class
TicTacToe to allow starting the game not
as an applet, but as a Java application.

 Java Programming for Kids, Parents and Grandparents 111

Practice for Smarty Pants

1. Rewrite the TicTacToe to replace one-
dimensional array that stores nine buttons

JButton squares[]

with two dimensional 3x3 array:

JButton squares[][]

Read about multi-dimentional arrays on the
Web.

Chapter 8. Program Errors - Exceptions

Say you forget a closing curly brace in your Java code. This will

result in compilation error that can be fixed easily. But there are so
called run-time errors, when all of a sudden your program stops
working properly. For example, a Java class reads a file with the game
scores. What’s going to happen if someone will delete this file? Will the
program crash with that scary long error message, or will it stay alive
displaying a user friendly message like this one: Dear friend, for some
reason I could not read the file scores.txt. Please make sure that the file
exists? You should make your programs ready for unusual situation.
In many programming languages error processing depends on the good
will of a programmer. But Java forces you to include error processing
code, otherwise the programs will not even compile.

Run-time errors in Java are called exceptions, and error processing is
called exception handling. You have to place code that may produce
errors in so-called try/catch block. It’s as if you’re saying to JVM the
following: Try to read the file with scores, but if something happens,
catch the error and execute the code that will deal with it:

We’ll learn how to work with files in Chapter 9, but at this point get
familiar with a new term I/O or input/output. Read and write
operations (to disk or other device) are called input/output and hence
the IOException is a class that contains information about
input/output errors.

A method throws an exception in case of an error. Different exceptions
will be thrown for different type of errors. If the catch block exists in
the program for this particular type of an error, it will be caught and
the program will jump into the catch block to execute the code
located there. The program will stay alive, and this exception is
considered to be taken care of.

try{
 fileScores.read();
}
catch (IOException e){
 System.out.println(
 "Dear friend,I could not read the file cores.txt");
}

 Java Programming for Kids, Parents and Grandparents 113

The print statement from the code above will be executed only in case
of the file read error.

Reading the Stack Trace

If an unexpected exception occurs that is not handled by the program,
it prints a multi-line error message on the screen. Such message is
called stack trace. If your program has called several methods before
it ran into a problem, the stack trace can help you to trace the program,
and find the line that have caused the error.

Let’s write a program TestStackTrace that divides by zero on
purpose (line numbers are not the part of the code).

The output of this program shows the sequence of method calls that
were made up to the moment when the run-time error had happened.
Start reading this output from the last line going up.

Exception in thread "main"
java.lang.ArithmeticException: / by zero
 at TestStackTrace.divideByZero(TestStackTrace.java:9)
 at TestStackTrace.<init>(TestStackTrace.java:4)
 at TestStackTrace.main(TestStackTrace.java:14)

This means that the program started in the method main(), then
went to init() which is a constructor, and then called the method
divideByZero(). The numbers 14, 4 and 9 show in which lines of the
program these methods were called. After that, an
ArithmeticException was thrown –the line number nine tried to
divide by zero.

1 class TestStackTrace{
2 TestStackTrace()
3 {
4 divideByZero();
5 }
6
7 int divideByZero()
8 {
9 return 25/0;
10 }
11
12 static void main(String[]args)
13 {
14 new TestStackTrace();
15 }
16 }

Genealogical Tree of Exceptions

Exceptions in Java are also classes, and some of them are shown in
the following inheritance tree:

Subclasses of the class Exception are called checked exceptions and
you must process them in your code.

Subclasses of the class Error are fatal JVM errors and the running
program can’t handle them.

The TooManyBikesException is an example of exception that can be
created by a programmer.

How a programmer is supposed to know in advance if some Java
method may throw an exception and that a try/catch block should be

 Java Programming for Kids, Parents and Grandparents 115

used? Not to worry, if you call a method that may throw an exception,
Java compiler will print an error message similar to this one:

"ScoreReader.java": unreported exception: java.io.IOException;
must be caught or declared to be thrown at line 57

Of course you are welcome to read Java documentation that describes
exceptions that may be thrown by any particular method. The rest of
this chapter will explain how to deal with these exceptions.

Try/Catch Block

There are five Java keywords that can be used for error handling:
try, catch, finally, throw, and throws.

After one try block you may put several catch blocks, if you believe
that more than one error may happen. For example, when a program
tries to read a file, the file may not be there, and you’ll get the
FileNotFoundException, or the file is there, but the code keeps
reading the file after reaching the end of file – this generates
EOFException. The next code fragment will print messages in plain
English if the program can’t find a file with game scores or reached the
end of the file. For any other read errors it’ll print the message
Problem reading file and a technical description of the error.

If the method read() fails, the program jumps over the line
println() and tries to land in the catch block that matches the
error. If it finds such block, the appropriate println() will be
executed, but if the matching catch block is not found, the method
getScores() will re-throw this exception to its caller.

If you write several catch blocks, you may need to place them in a
particular order if these exceptions are inherited from each other. For
example, since the EOFException is a subclass of the IOException,
you have to put the catch block for the subclass first. If you would

public void getScores(){
 try{
 fileScores.read();
 System.out.println(“Scores loaded successfully”);
 }catch(FileNotFoundException e){
 System.out.println(“Can not find file Scores”);
 }catch(EOFException e1){
 System.out.println(“Reached end of file”);
 }catch(IOException e2){
 System.out.println(“Problem reading file “ +
 e2.getMessage());
 }
}

put the catch for IOException first, the program would never reach
the FileNotFound or EOFException, because the first catch would
intercept them.

Lazybones would program the method getScores() just like this:

This is an example of a bad style of Java coding. When you write a
program, always remember that someone else may read it, and you
don’t want to be ashamed of your code.

Catch blocks receive an instance of the object Exception that contains
a short explanation of a problem, and its method getMessage() will
return this info. Sometimes, if the description of an error is not clear,
try the method toString() instead:

catch(Exception e){
 System.out.println(“Problem reading file ”+ e.toString());
}

If you need more detailed information about the exception, use the
method printStackTrace(). It will print the sequence of method
calls that lead to this exception similar to an example from the
section Reading Stack Trace.

Let's try to “kill” the calculator program from Chapter 6. Run the class
Calculator and enter from the keyboard the charactes abc. Press any of
the action buttons, and you’ll see on the console screen something like
this:

java.lang.NumberFormatException: For input string: "abc"
 at
java.lang.NumberFormatException.forInputString(NumberFormatExcept
ion.java:48)
 at
java.lang.FloatingDecimal.readJavaFormatString(FloatingDecimal.ja
va:1213)
 at java.lang.Double.parseDouble(Double.java:202)
 at
CalculatorEngine.actionPerformed(CalculatorEngine.java:27)
 at
javax.swing.AbstractButton.fireActionPerformed(AbstractButton.jav
a:1764)

public void getScores(){
 try{
 fileScores.read();
 }catch(Exception e){
 System.out.println(“Problem reading file ”+
 e.getMessage());
 }
}

 Java Programming for Kids, Parents and Grandparents 117

This was an example of a non-handled exception. The class
CalculatorEngine has the following line in its method
actionPerformed():

displayValue= Double.parseDouble(dispFieldText);

If the variable dispFieldTest has not a numeric value, the method
parseDouble() will not be anle to convert it to the double data type
and will throw a NumberFormatException.

Let's handle this exception and display an error message that will
explain the problem to the user. The line with parseDouble() has to
be placed in a try/catch block, and Eclipse will help you with this.
Highlight this line and right-click on it with the mouse. In the popup
menu select the items Source and Surround with try/catch block.
Voila! The code is changed:

Replace the printStackTrace() line with the following:

javax.swing.JOptionPane.showConfirmDialog(null,
 "Please enter a Number", "Wrong input",
 javax.swing.JOptionPane.PLAIN_MESSAGE);
return;

We’ve got rid of the scary stack trace error messages, and displayed a
simple to understand message Please enter a Number:

Now the NumberFormatException is handled.

The keyword throws

In some cases, it makes more sense to handle the exception not in the
method where it happened, but in the method’s caller.

try {
 displayValue= Double.parseDouble(dispFieldText);
} catch (NumberFormatException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
}

In such cases the method signature has to declare (warn) that it may
throw a particular exception. This is done using a special keyword
throws. Let’s use the same example that reads a file. Since the
method read() may throw an IOException, you should either
handle or declare it. In the next example we are going to declare that
the method getAllScores() may throw an IOException:

Since we are not even trying to catch exceptions here, the
IOException will be propagated from the getAllScores() to its
caller - the method main(). Now the main method has to handle this
exception.

The Keyword finally

Any code within a try/catch block can end in one of the following
ways:

• The code inside the try block successfully ended and the program

continues.

• The code inside the try block runs into a return statement and

the method is exited.

class MySuperGame{

 void getAllScores() throws IOException{
 // …
 // Do not use try/catch if you are
 // not handling exceptions in this method
 file.read();
 }

 public static void main(String[] args){
 MySuperGame msg = new MySuperGame();
 System.out.println(“List of Scores”);

 try{
 // Since the getAllScores()declares exception,
 // we handle it over here
 msg.getAllScores();

 }catch(IOException e){
 System.out.println(
 "Sorry, the list of scores is not available");
 }
 }

 Java Programming for Kids, Parents and Grandparents 119

• The code in the try block throws an exception and control goes to
the matching catch block, which either handles the error and the
method execution continues, or it re-throws the exception to the
caller of this method.

If there is a piece of code that must be executed no matter what, put it
under the keyword finally:

The code above has to close the file regardless of success or failure of
the read operation. Usually, you can find the code that releases some
computer resources in the block finally, for example, disconnection
from a network or file closing.

If you are not planning to handle exceptions in the current method,
they will be propagated to the caller. In this case, you can use the
finally even without a catch block:

The Keyword throw

If an exception has happened in a method, but you believe that the
caller should handle it, just re-throw it to the method’s caller.
Sometimes, you might want to catch one exception but re-throw
another one with a different description of the error like in the code
snippet below.

The statement throw is used to throw Java objects. The object that a
program throws must be throwable. This means that you can only
throw objects that are direct or indirect subclasses of the class
Throwable, and all Java exceptions are its subclasses.

try{
 file.read();
}catch(Exception e){
 printStackTrace();
}finally{
 // the code that must always be executed
 // goes here, for example file.close();
}

void myMethod () throws IOException{
 try{
 // your code that reads a file goes here
 }
 finally{
 // your code that closes the file goes here
 }
}

The next code fragment shows how the method getAllScores()
catches an IOException and creates a new Exception object with a
more friendly description of the error, and re-throws it to the method
main(). Now the method main() won’t compile unless you put the
line that calls getAllScores() in the try/catch block, because this
method may throw an Exception and it should be either handled or
re-thrown again. The method main() should not throw any exceptions,
that’s why it should handle it.

class ScoreList{
 // Additional code is needed to compile this class

 static void getAllScores() throws Exception{
 try{
 file.read();//this line may throw an exception
 } catch (IOException e) {
 throw new Exception (
 "Dear Friend, the file Scores has problems");
 }
 }

 public static void main(String[] args){
 System.out.println("Scores");

 try{
 getAllScores();
 }
 catch(Exception e1){
 System.out.println(e1.getMessage());
 }
 }
}

 Java Programming for Kids, Parents and Grandparents 121

In case of a file error,
the main method will
handle it, and the
e1.getMessage() will
return the Dear Friend…
message.

Creating New Exceptions

Programmers could also create new exception classes that did not
exist in Java before. Such classes have to derive from one of the Java
exception classes. Let’s say you are in business of selling bikes and
need to validate customer orders. Different number of bikes can fit in
your small truck depending on the model. For example, you can fit no
more than three FireBird bikes in your truck. Create a new subclass
of Exception called TooManyBikesException, and if someone tries
to order more than three of these bikes, throw the this exception:

This class has only a constructor that takes the message describing
this error and gives it to its superclass for storage. When some catch
block receives this exception it can find out what exactly has happened
by calling the method getMessage().

Imagine that a user selects on the OrderWindow several bicycles of
some model and hits the button Place Order. As you know from
Chapter 6, this action will result in call to actionPerformed() that
will check if the order can be delivered. The next code example shows

class TooManyBikesException extends Exception{

 // Constructor
 TooManyBikesException (){
 // Just call the constructor of the superclass
 // and pass to it the error message to display
 super("Can't ship this many bikes in one shipment.");
 }
}

how the method checkOrder() of this window declares that it can
throw TooManyBikesException. If the order won’t fit in the truck,
this method throws the exception, the catch block intercepts it and
displays an error message in the text field on the window.

In a perfect world, every program would work properly, but
realistically we have to be ready for the unexpected situations. It really
helps that Java forces you to write code that is prepared for these
situations.

class OrderWindow implements ActionListener{
// The code to create window components is needed here.

// The user clicked on the button Place Order
 String selectedModel = txtFieldModel.getText();
 String selectedQuantity =
 txtFieldQuantity.getText();
 int quantity = Integer.parseInt(selectedQuantity);

 void actionPerformed(ActionEvent e){
 try{
 bikeOrder.checkOrder("FireBird", quantity);
 //the next line will be skipped in case of exception
 txtFieldOrderConfirmation.setText(
 "Your order is complete");
 } catch(TooManyBikesException e){
 txtFieldOrderConfirmation.setText(e.getMessage());
 }
 }

 void checkOrder(String bikeModel, int quantity)
 throws TooManyBikesException{

//Write the code that checks if the requested
//quantity of bikes of selected model will fit in the
//truck. If they won't fit, do the following:

 throw new TooManyBikesException("Can not ship" +
 quantity + " bikes of the model " + bikeModel +
 " in one shipment");
 }
}

 Java Programming for Kids, Parents and Grandparents 123

Additional Reading

Handling Errors With Exceptions:
http://java.sun.com/docs/books/tutorial/essential/exceptions/

Practice

Create a Swing application for placing bike
orders. It has to have two text fields Bike
Model and Quantity, a button Place Order,
and the label for order confirmation.

 Use the code in the examples OrderWindow
and TooManyBikesException. Make up
several combinations of bike models and
quantities that will throw an exception.

Practice for Smarty Pants

Modify the application from the previous
assignment to replace the text field Bike
Model with a dropdown list box that will
contain several models, so the user can select
from the list rather then type them.

You’ll have to read online about the Swing
component JComboBox and the
ItemListener to process events when the
user picks the bike model.

Chapter 9. Saving the Game Score

After a program ends it gets erased from memory. This means

that all the classes, methods and variables do not exist until you run
this program again. If you’d like to save some results of the program
execution, they must be saved in files on a disk, tape, a memory stick,
or other device that can store the data for a long time. In this chapter
you’ll learn how to save data on disks using Java streams. Basically,
you open a stream between your program and a file on disk. If you
need to read data from disk, it has to be an input stream, and if you
write data on the disk, open an output stream. For example, if a player
wins a game and you want to save the score, you can save it in a file
called scores.txt using an output stream.

A program reads or writes data from/to a stream serially – byte after
byte, character after character, etc. Since your program may use
different data types like String, int, double, and so on, you should
use an appropriate Java stream, for example a byte stream, a
character stream, or a data stream.

Classes that work with file streams are located in packages java.io.
and java.nio.

No matter what type of a file stream you are going to use, the following
three steps should be done in your program:

• Open a stream that points at some file.

• Read or write some data from/to this stream.

• Close the stream.

Byte Streams

If you create a program that reads a file, and then displays its content
on the screen, you need to know what type of data is stored in this file.

 Java Programming for Kids, Parents and Grandparents 125

On the other hand, a program that just copies files from one place to
another, does not even need to know if it’s an image, text or a file with
music. Such program reads the original file in memory as a set of
bytes, and then write them into a destination folder byte after byte
using Java classes FileInputStream or FileOutputStream.

The next example shows how to use the class FileInputStream to
read a graphic file named abc.gif that is located in the folder
c:\practice. If you use a computer with Microsoft Windos, to avoid
a confusion with special Java characters that start with a backslash,
use double slashes in your code to separate folders and files:
c:\\practice. This little program does not display the image, but
rather prints some numbers , which is how this image is stored on a
disk. Each byte has a positive integer value from 0 to 255, and the
class ByteReader prints these values separated by a space character.

Please note that the class ByteRader closes the stream in the block
finally. Never call the method close() inside of the try/catch
block right after finishing reading the file, do it in the finally block.
In case of exception during the file read, the program would jump over
the crossed-out close() statement and the stream would not be
closed! The reading ends when the method
FileInputStream.read() returns the value of a negative one.

 import java.io.FileInputStream;
import java.io.IOException;

The next code fragment writes several bytes that are represented by
integer numbers into a file called xyz.dat using the class
FileOutputStream:

 Java Programming for Kids, Parents and Grandparents 127

Buffered Streams

So far we were reading and writing data one byte at a time, which
means that the program ByteReader will have to access disk 1000
times for reading a file of 1000 bytes. But accessing data on disks is
much slower than data manipulation in memory. To minimize the
number of times a program tries to access the disk, Java provides so-
called buffers which are sort of "reservoirs of data".

The class BufferedInputStream helps quickly fill the memory
buffer with data from the FileInputStream. A buffered stream
reads a big chunk of bytes from a file in one shot into a buffer in
memory, and, then the method read() gets the single bytes from the
buffer a lot faster.

Your program can connect streams like a plumber connect two pipes.
Let’s modify the example that reads a file. First the data is being

int somedata[]= {56,230,123,43,11,37};

 FileOutputStream myFile = null;

 try {
 // Open the file xyz.dat and save
 // there data from the array
 myFile = new FileOutputStream("xyz.dat");
 for (int i = 0; i <some data.length; i++){
 file.write(data[i]);
 }
 } catch (IOException e) {
 System.out.println("Could not write to a file: "+
 e.toString());
 } finally{
 try{
 myFile.close();
 } catch (Exception e1){
 e1.printStackTrace();
 }
 }

poured from the FileInputStream to the BufferedInputStream,
and then to the method read():

How big is the buffer? It depends on the JVM, but you can set its size
and see if it makes the file reading a little faster. For example, to set
the buffer size to 5000 bytes use the two-argument constructor:

BufferedInputStream buff =
 new BufferedInputStream(myFile, 5000);

Buffered streams do not change the type of reading – they just make it
faster.

The BufferedOutputStream works in the same fashion, but it uses
the class FileOutputStream.

FileInputStream myFile = null;
 BufferedInputStream buff =null;

 try {
 myFile = new FileInputStream("abc.dat");
 // connect the streams
 buff = new BufferedInputStream(myFile);
 while (true) {
 int byteValue = buff.read();
 System.out.print(byteValue + " ");
 if (byteValue == -1)
 break;
 }
 } catch (IOException e) {
 e.printStackTrace();
 }finally{
 try{
 buff.close();
 myFile.close();
 } catch(IOException e1){
 e1.printStackTrace();
 }
 }

 Java Programming for Kids, Parents and Grandparents 129

To make sure that all bytes from the butter are pushed out to the file
stream, call the method flush() when the writing into a
BufferedOutputStream is finished.

Command-Line Arguments

Our ByteReader program stores the name of the file abc.gif right in
its code, or as programmers say, the file name is hard-coded in the
program. This means that to create a similar program that reads the
file xyz.gif, you’ll have to modify the code and recompile the program,
which is not nice. It would be much better to pass the name of the file
from a command line, when you run the program.

You can run any Java program with command-line arguments, for
example:

java ByteReader xyz.gif

In this example we are passing to the method main() of ByteReader
just one argument - xyz.gif. If you remember, the method main() has
an argument :

public static void main(String[] args) {

int somedata[]= {56,230,123,43,11,37};
 FileOutputStream myFile = null;
 BufferedOutputStream buff =null;

 try {
 myFile = new FileOutputStream("abc.dat");
 // connect the streams
 buff = new BufferedOutputStream(myFile);
 for (int i = 0; i <somedata.length; i++){
 buff.write(somedata[i]);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }finally{
 try{
 buff.flush();
 buff.close();
 myFile.close();
 } catch(IOException e1){
 e1.printStackTrace();
 }
 }

Yes, it’s a String array that JVM passes to the main method, and if
you start a program without any command line arguments, this array
remains empty. Otherwise, this array will have exactly as many
elements as the number of command-line arguments passed to the
program.

Let’s see how we can use these command line arguments in a very
simple class that will just print them:

The next screenshot shows you what happens if you run this program
with two arguments – xyz.gif and 250. The value xyz.gif is placed
by JVM into the element args[0], and the second one goes into
args[1].

Command-line arguments are always being passed to a program as
Strings. It’s the responsibility of a program to convert the data to the
appropriate data type, for example:

int myScore = Integer.parseInt(args[1]);

It’s always a good idea to check if the command line contains correct
number of arguments. Do this right in the beginning of the method
main(). If the program doesn’t receive expected arguments, it should
print a brief message about it and immediately stop by using a special
method System.exit():

public class TestArguments {

 public static void main(String[] args) {

 // How many arguments we've got?
 int numberOfArgs = args.length;

 for (int i=0; i<numberOfArgs; i++){
 System.out.println("I've got " + args[i]);
 }
 }
}

 Java Programming for Kids, Parents and Grandparents 131

In the end of this chapter you’ll have to write a program to copy files.
To make this program working with any files, the names of the
original and destination files have to be passed to this program as
command-line arguments.

You can test your programs in Eclipse that also has a place to provide
command-line arguments to each of your programs. In the Run
window, select the tab that reads (x)=Arguments and enter required
values in the box Program Arguments.

public static void main(String[] args) {
 if (args.length != 2){
 System.out.println(
 "Please provide arguments, for example:");
 System.out.println("java TestArguments xyz.gif 250");

 // Exit the program
 System.exit(0);
 }
}

VM arguments box allows you to pass parameters to your JVM. Such
parameters could request more memory for your program, fine-tune
performance of the JVM, etc. The section Additional Reading has a
reference to a Web site that that describes these parameters in details.

Reading Text Files

Java uses two-byte characters to store letters, and the classes
FileReader and FileWriter are handy for working with text files.
These classes can read text files either one character at a time with
the method read(), or entire lines with readLine(). Classes
FileReader and FileWriter also have their counterparts
BufferedReader and BufferedWriter that will speed up the work
with files.

Thr next class ScoreReader reads the file scores.txt line by line, and
the program ends when the method readLine() returns null which
means end of file.

Use any plain text editor and create a file c:\scores.txt with the
following content:

David 235
Brian 190
Anna 225
Zachary 160

Run the program ScoreReader, and it’ll print the content of this file.
Add several more lines to the file with scores and re-run the program
to see that the new lines are also printed.

 Java Programming for Kids, Parents and Grandparents 133

If your program needs to write a text file on a disk, use one of the
several overloaded methods write() of the class FileWriter . These
methods will allow you to write a character, a String or an entire
array of characters.

FileWriter has more than one overloaded constructor, and if you
open a file for writing providing just the file name, this file will be
replaced by the new one every time you run the program:

FileWriter fOut = new FileWriter("Scores.txt");

If you need to add data to an existing file, use the two-argument
constructor (true means append mode):

FileWriter fOut = new FileWriter("Scores.txt", true);

The next class ScoreWriter writes three lines from the array scores
into the file c:\scores.txt.

import java. io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;

public class ScoreReader {

 public static void main(String[] args) {
 FileReader myFile = null;
 BufferedReader buff = null;

 try {
 myFile=new FileReader("c:\\scores.txt");
 buff = new BufferedReader(myFile);

 while (true) {
 // read a line from scores.txt
 String line = buff.readLine();
 // check for the end of file
 if (line == null)
 break;
 System.out.println(line);
 } // end while
 }catch (IOException e){
 e.printStackTrace();
 } finally {
 try{
 buff.close();
 myFile.close();
 }catch(IOException e1){
 e1.printStackTrace();
 }
 }
 } // end main
}

Output of this program will look like this:

Writing Mr. Smith 240
Writing Ms. Lee 300
Writing Mr. Dolittle 190
File writing is complete

import java.io.FileWriter;
import java.io.BufferedWriter;
import java.io.IOException;

public class ScoreWriter {

 public static void main(String[] args) {

 FileWriter myFile = null;
 BufferedWriter buff = null;
 String[] scores = new String[3];

 // Populate array with scores
 scores[0] = "Mr. Smith 240";
 scores[1] = "Ms. Lee 300";
 scores[2] = "Mr. Dolittle 190";

 try {
 myFile = new
 FileWriter("c:\\scores2.txt");
 buff = new BufferedWriter(myFile);

 for (int i=0; i < scores.length; i++) {
 // write strings array into scores2.txt
 buff.write(scores[i]);

 System.out.println("Writing " + scores[i]);
 }
 System.out.println("File writing is complete");

 }catch (IOException e){
 e.printStackTrace();
 } finally {
 try{
 buff.flush();
 buff.close();
 myFile.close();
 }catch(IOException e1){
 e1.printStackTrace();
 }
 }
 } // end of main
}

 Java Programming for Kids, Parents and Grandparents 135

Class File

Class java.io.File has a number of handy methods, which allow to
rename a file, delete a file, check if the class exists, etc. Say your
program saves some data in a file, and it needs to display a message
to the user warning if such file already exists. To do this, you have to
create an instance of the object File giving the name of the file, and
then call the method exists(). If this method returns true, the file
abc.txt is found and you should display a warning, otherwise there is
no such file:

Constructor of the class File does not actually create a file – it just
creates an instance of this object in memory that points at the actual
file. If you really need to create a file, use the method
createNewFile()instead.

Some of the useful methods of the class File are listed next.

Method name What it does
createNewFile() Creates a new, empty file named

according to the file name used during the
File instantiation. It creates a new file
only if a file with this name does not
exist.

delete() Deletes a file or a directory
renameTo() Renames a file
length() Returns the length of the file in bytes
exists() Returns true if the file exists
list() Returns an array of strings with names of

 files/directories located within a
particular directory

lastModified() Returns the time when the file was last
modified

mkDir() Creates a directory

The next code snippet below renames a file customers.txt to
customers.txt.bak. If the .bak file already exists, it will be
overridden.

File aFile = new File("abc.txt");

if (aFile.exists()){
 // Print a message or use a JOptionPane
 // to display a warning
}

Even though this chapter was about working with files located on your
computer’s disk, Java allows you to create streams pointing to remote
machines on the computer network. Such computers can be located
pretty far apart from each other. For example, NASA uses Java to
control Mars rovers, and I’m sure that they just pointed their streams
at Mars. J

File file = new File("customers.txt");
File backup = new File("customers.txt.bak");

if (backup.exists()){
 backup.delete();
}
file.renameTo(backup);

 Java Programming for Kids, Parents and Grandparents 137

Additional Reading

1.JVM command line options
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/java.html

2. How to use File Streams:
http://java.sun.com/docs/books/tutorial/essential/io/filestreams
.html

Practice

Write a file copy program called FileCopy
by combining the code fragments from the
section on byte streams.

Open two streams (input and output) and
call the methods read() and write() in
the same loop. Use command line
arguments to pass the names of the original
file and its new destination to the program,
for example :

java FileCopy c:\\temp\\scores.txt
 c:\\backup\\scores2.txt

Practice for Smarty Pants

Create a Swing program that will allow
users select file names to copy using the
class JFileChooser, which creates a
standard file selection window. This window
should pop up when the user clicks one of
the Browse buttons. You’ll have to write a
couple of lines of code to display selected file
name in the appropriate text field.

When the user clicks on the button Copy, the
code in the method actionPerformed()
should copy selected file. Try to reuse the
code from the previous assignment without
doing copy/paste.

 Java Programming for Kids, Parents and Grandparents 139

Chapter 10. More Java Building Blocks

We’ve had a chance to use quite a bit of different Java

elements in the previous chapters, and even created a Tic-Tac-Toe
game. But I’ve skipped some of the important Java elements and
techniques, and it’s time to catch up on them.

Working with Date and Time Values

Each computer has an internal clock. Any Java program can find out
what’s the current date and time, and display it in different formats,
for example 06/15/2004 or June 15, 2004. Java has multiple classes
that deal with dates, but two of them - java.util.Date and
java.text.SimpleDateFormat will take care of most of your
dat/time needs.

It’s easy to create an object that stores the current system date and
time up to the millisecond:

Date today = new Date();
System.out.println("The date is " + today);

The output of these lines may look similar to this one:

The date is Fri Feb 27 07:18:51 EST 2004

The class SimpleDateFormat allows you to display date and time in
different formats. First, you have to create an instance of this class
with format that you need, and then call its method format() passing
a Date object as an argument. The next program formats and prints
the current date in several different formats.

Compile and run the class MyDateFormat, and it will print
something like this:

The date is Fri Feb 27 07:34:41 EST 2004
The date(dd-mm-yy) is 02-27-04
The date(dd-mm-yyyy) is 27-02-2004
The date(EEE, MMM d, ''yy) is Fri, Feb 27, '04
The time(hh:mm:ss a) is 07:34:41 AM

Java documentation for the class SimpleDateFormat describes more
formats. You can also find more methods that deal with dates in other
Java class called java.util.Calendar.

Method Overloading

import java.util.Date;
import java.text.SimpleDateFormat;

public class MyDateFormat {

 public static void main(String [] args) {
 // Create an object Date
 // and print it in a default format
 Date today = new Date();
 System.out.println("The date is " + today);

 // Format that prints dates like 02-27-04
 SimpleDateFormat sdf=
 new SimpleDateFormat("MM-dd-yy");
 String formattedDate=sdf.format(today);
 System.out.println("The date(dd-mm-yy) is "
 + formattedDate);

 // Format that prints dates like 27-02-2004
 sdf = new SimpleDateFormat("dd-MM-yyyy");
 formattedDate=sdf.format(today);
 System.out.println("The date(dd-mm-yyyy) is "
 + formattedDate);

 // Format that prints dates like Fri, Feb 27, ‘04
 sdf = new SimpleDateFormat("EEE, MMM d, ''yy");
 formattedDate=sdf.format(today);
 System.out.println(
 "The date(EEE, MMM d, ''yy) is "+ formattedDate);

 // Format that prints time like 07:18:51 AM
 sdf = new SimpleDateFormat("hh:mm:ss a");
 formattedDate=sdf.format(today);
 System.out.println("The time(hh:mm:ss a) is "
 + formattedDate);
 }
}

 Java Programming for Kids, Parents and Grandparents 141

A class may have more than one method with the same name, but with
different argument lists. This is called method overloading. For
example, a method println() of the class System can be called
with different types of arguments: String, int, char, and others:

System.out.println("Hello");

System.out.println(250);

System.out.println('A');

Even though it looks like we’re calling the same method println()
three times, in fact, we are calling different ones. You may say why
don’t create methods with different names, for example
printString(), printInt(), printChar()?. One of the reasons is
that it’s easier to remember one name of a print method than several
ones. There are other reasons as well for using method overloading,
but those reasons are a bit complicated to explain and should be
discussed in more advanced books.

If you remember, our class Fish from Chapter 4, which has a method
dive() that expects one argument:

public int dive(int howDeep)

Let’s create yet another version of this method that does not need any
arguments. This method will force a fish to dive for five feet, unless the
current depth becomes more than 100 feet. The new version of the
class Fish has a new final variable DEFAULT_DIVING that has a
value five feet.

Now the class Fish has two overloaded methods dive().

The FishMaster can now call any of the overloaded methods dive():

public class Fish extends Pet {
 int currentDepth=0;
 final int DEFAULT_DIVING = 5;

 public int dive(){
 currentDepth=currentDepth + DEFAULT_DIVING;
 if (currentDepth > 100){
 System.out.println("I am a little fish and " +
 " can't dive below 100 feet");
 currentDepth=currentDepth - DEFAULT_DIVING;
 }else{
 System.out.println("Diving for " +
 DEFAULT_DIVING + " feet");
 System.out.println("I'm at " + currentDepth +
 " feet below the sea level");
 }
 return currentDepth;
 }
 public int dive(int howDeep){
 currentDepth=currentDepth + howDeep;
 if (currentDepth > 100){
 System.out.println("I am a little fish and " +
 " can't dive below 100 feet");
 currentDepth=currentDepth - howDeep;
 }else{
 System.out.println("Diving for " + howDeep +
 " feet");
 System.out.println("I'm at " + currentDepth +
 " feet below the sea level");
 }
 return currentDepth;
 }

 public String say(String something){
 return "Don't you know that fishes do not talk?";
 }
 // constructor
 Fish(int startingPosition){
 currentDepth=startingPosition;
 }
}

 Java Programming for Kids, Parents and Grandparents 143

Constructors can also be overloaded, but only one of them will be used
when an object is being created. JVM will call the constructor that has
a matching argument list. For example, if you add a no-arguments
constructor to the class Fish, the FishMaster can create its instance
using one of the following ways:

Fish myFish = new Fish(20);

or

Fish myFish = new Fish();

Reading Keyboard Input

In this section you’ll learn how a program can print questions in the
command window and understand the responses that a user enters
from the keyboard. This time we’ll remove from the class
FishMaster all hard-coded values that it passes to the class Fish.
Now the program will ask the question How Deep?, and the fish will
dive according to the user’s responses.

You should be pretty comfortable by now with using standard output
System.out. By the way, the variable out is of a data type
java.io.OutputStream. Now I’ll explain you how to deal with
standard input System.in, and as you can guess, the type of the
variable in is java.io.InputStream.

The next version of the class FishMaster displays a prompt on the
system console and waits for the user’s response. After the user types
one or more characters and presses the button Enter, JVM places these

public class FishMaster {

 public static void main(String[] args) {

 Fish myFish = new Fish(20);

 myFish.dive(2);

 myFish.dive(); // a new overloaded method

 myFish.dive(97);
 myFish.dive(3);

 myFish.sleep();
 }
}

characters into the object InputStream and pass them to the
program.

A dialog between the user and the program FishMaster can look like
this:

Ready to dive.How deep?
14
Diving for 14 feet
I'm at 34 feet below the sea level
Ready to dive.How deep?
30
Diving for 30 feet
I'm at 64 feet below the sea level
Ready to dive.How deep?
Q
Good bye!

import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;

public class FishMaster {

 public static void main(String[] args) {

 Fish myFish = new Fish(20);
 String feetString="";
 int feets;
 // create a input stream reader connected to
 // System.in, and pass it to the buffered reader
 BufferedReader stdin = new BufferedReader
 (new InputStreamReader(System.in));

 // Keep diving until the user presses "Q"
 while (true) {
 System.out.println("Ready to dive.How deep?");
 try {
 feetString = stdin.readLine();
 if (feetString.equals("Q")){
 // Exit the program
 System.out.println("Good bye!");
 System.exit(0);
 }else {
 // Convert the feetString into an integer and
 // Dive according to the value of variable feet
 feets = Integer.parseInt(feetString);
 myFish.dive(feets);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 } // End while
 } // End main
}

 Java Programming for Kids, Parents and Grandparents 145

First, the FishMaster creates the BufferedReader stream that is
connected to the standard input System.in. After that it displays the
message Ready to dive. How deep? and the method readLine() pauses
the program until the user hits the Enter button. The entered value
comes as a String, that’s why the FishMaster converts it to an
integer and calls the method dive() on the class Fish. These action
repeat in a loop until the user types the letter Q to exit the program.
The line feetString.equals("Q") compares the value of the String
variable feetString with the letter Q.

We were using the method readLine() to get the entire line entered
by the user at once, but there is another method System.in.read()
that allows you to process user’s input one character at a time.

More on Java Packages

When programmers work on large projects that have lots of classes,
they usually organize them in different packages. For example, one
package can have all classes that display windows (screens), while
another one can contain event listeners. Java also keeps its classes in
packages, for example java.io for classes responsible for
input/output operation, or javax.swing for Swing classes.

Let’s create a new project in Eclipse called PingPong. This project will
have classes in two packages: screens and engine. Now create a
new class PingPongTable and enter the word screens in the field
Package:

Press the button Finish and Eclipse will generate code that include the
line with the package name.

By the way, if your class includes the line with the keyword package,
you are not allowed to write anything but comments above this line.

Since each package is stored in a different folder on the disk, Eclipse
creates the folder screens and put the file PinPongTable.java
there. Check it out – there should be a folder

package screens;

public class PingPongTable {

 public static void main(String[] args) {
 }
}

 Java Programming for Kids, Parents and Grandparents 147

c:\eclipse\workspace\PingPong\screens on your disk with files
PingPongTable.java and PingPongTable.class.

Now create another class called PingPongEngine and enter the word
engine as the package name. The PingPong project has two
packages now:

Since our two classes are located in two different packages (and
folders), the class PingPongTable won’t see the class
PingPongEngine unless you add the import statement.

Java packages not only help better organize your classes, but they can
be also used to restrict access to their classes from the “foreigners”
sitting in other packages.

Access Levels

Java classes, methods and member variables could have public,
private, protected and package access levels. Our class
PingPongEngine has public access level. This means than any class
can access it. Let’s make a simple experiment – remove the keyword
public from the declaration of the class PingPongEngine. Now the
class PingPongTable won’t even compile giving an error
PingPongEngine can not be resolved or is not a type. This means that
the class PingPongTable does not see the class PingPongEngine
anymore.

Similarly, if you forget to give a public access to methods of the class
PingPongEngine, the PingPongTable will complain saying that
these methods are not visible. You’ll see how the access levels are used
in the next chapter while creating a ping pong game.

package screens;

import engine.PingPongEngine;

public class PingPongTable {

 public static void main(String[] args) {
 PingPongEngine gameEngine = new PingPongEngine();
 }
}

If no access level is specified, the class will have a package
access level. This means that it will be available only for the
classes located in the same package.

 Java Programming for Kids, Parents and Grandparents 149

The private access level is used to hide class variables or methods
from the outside world. Think of a car – most of the people have no clue
how many parts are there under the hood, and what actually happens
when a driver pushes the brake pedal.

Look at the next code sample - in Java, we can say that the object Car
exposes only one public method – brake(), which internally may call
several other methods that a driver does not need to know about. For
example, if the driver pushes the brake pedal too hard, the car’s
computer may apply special anti-lock brakes. I already mentioned
before that Java programs control such complicated robots as Mars
rovers, let alone simple cars.

There is one more Java keyword protected that controls access level.
If you use this keyword in a method signature, this method will be
visible inside the class, from its subclasses, and from other classes
located in the same package. But it won’t be available for independent
classes located in other packages.

public class Car {

 // This private variable can be used inside
 // this class only
 private String brakesCondition;

 // A public method brake() calls private methods
 // to decide which brakes to use
 public void brake(int pedalPressure){
 boolean useRegularBrakes;
 useRegularBrakes=
 checkForAntiLockBrakes (pedalPressure);

 if (useRegularBrakes==true){
 useRegularBrakes();
 }else{
 useAntiLockBrakes();
 }
 }

 // This private method can be called inside
 // this class only
 private boolean checkForAntiLockBrakes(int pressure){
 if (pressure > 100){
 return true;
 }else {
 return false;
 }
 }

 // This private method can be called inside this
 // class only
 private void useRegularBrakes(){
 // code that sends a signal to regular brakes
 }

 // This private method can be called inside this
 // class only
 private void useAntiLockBrakes(){
 // code that sends a signal to anti-lock brakes
 }
}

One of the main features of object-oriented languages is
called encapsulation, which is an ability to hide and protect
elements of a class.

 Java Programming for Kids, Parents and Grandparents 151

When you design a class, hide methods and member variables that
should not be visible from outside. If car designers would not hide
control of some of the under-the-hood operations, the driver would
have to deal with hundreds of buttons, switches and gauges.

In the next section you can find a class Score that hides its attributes
in private variables.

Getting Back to Arrays

In Chapter 9 the program ScoreWriter has created an array of
String objects that stored names and scores of players in a file. It’s
about time to learn how to use arrays for storing any objects.

This time we’ll create an object to represent a game score, and it will
have such attributes as player’s first and last names, score, and the
last date when the game was played.

The class Score is next. It has getters and setters for each of its
attributes, which are declared private. Well, it might not be obvious
why the caller class can not just set the value of the attribute score
just like this:

Score.score = 250;
instead of

Score.setScore(250);

Try to think out of the box. What if later on we decide that our
program has to play some music whenever a player reaches the score
of 500. If the class Score have a method setScore(), you just need to
modify only this method to add code that checks the score and plays
music if needed. The caller class will keep calling the musical version
of the method setScore() the same way. If the caller class would set the
value directly, the musical changes had to be implemented in this
caller. And what if you’d like to re-use the class Score in two different
game programs? In case of direct attribute changes you’d have to
implement these changes in two caller classes, but if you have a setter
method, the changes are encapsulated there and will immediately start
working for each caller class.

import java.util.Date;

public class Score {
 private String firstName;
 private String lastName;
 private int score;
 private Date playDate;

 public String getFirstName(){
 return firstName;
 }
 public void setFirstName(String firstName){
 this.firstName = firstName;
 }
 public String getLastName(){
 return lastName;
 }
 public void setLastName(String lastName){
 this.lastName = lastName;
 }
 public int getScore(){
 return score;
 }
 public void setScore(int score){
 this.score=score;
 }
 public Date getPlayDate(){
 return playDate;
 }
 public void setPlayDate(Date playDate){
 this.playDate=playDate;
 }
// Concatenate all attributes into a String
// and add a new line character at the end.
// This method is handy if the caller class needs
// to print all values in one shot, for example
// System.out.println(myScore.toString());
 public String toString(){
 String scoreString = firstName + " " +
 lastName + " " + score + " " + playDate +
 System.getProperty("line.separator");
 return scoreString;
 }
}

 Java Programming for Kids, Parents and Grandparents 153

The program ScoreWriter2 will create instances of the object Score
and assign the values to their attributes.

Class ScoreWriter2 (part 1 of 2)

import java.io.FileWriter;
import java.io.BufferedWriter;
import java.io.IOException;
import java.util.Date;

public class ScoreWriter2 {

/**
 The method main performs the following actions:
 1. Create an instance of array
 2. Create Score objects and populate array with them
 3. Write the scores data into a file
*/
 public static void main(String[] args) {

 FileWriter myFile = null;
 BufferedWriter buff = null;

 Date today = new Date();
 Score scores[] = new Score[3];

 // The player #1
 scores[0]=new Score();
 scores[0].setFirstName("John");
 scores[0].setLastName("Smith");
 scores[0].setScore(250);
 scores[0].setPlayDate(today);

 // The player #2
 scores[1]=new Score();
 scores[1].setFirstName("Anna");
 scores[1].setLastName("Lee");
 scores[1].setScore(300);
 scores[1].setPlayDate(today);

 // The player #3
 scores[2]=new Score();
 scores[2].setFirstName("David");
 scores[2].setLastName("Dolittle");
 scores[2].setScore(190);
 scores[2].setPlayDate(today);

Class ScoreWriter2 (part 2 of 2)

If a program tries to access an array element that is beyond the arrays
length, i.e. scores[5].getLastName(), Java throws the
ArrayIndexOutOfBoundsException.

Class ArrayList

The package java.util includes classes that are quite handy when a
program needs to store several instances (a collection) of some objects
in memory. Some of the popular collection classes from this package
are ArrayList, Vector, HashTable, HashMap and List. I’ll show
you how to use the class java.util.ArrayList.

The drawback of regular arrays is that you have to know the number
of array elements in advance. Remember, to create an instance of an
array you have to put a number between the brackets:

String[] myFriends = new String[5];

Class ArrayList does not have this restriction – you can create an
instance of this collection without knowing how many objects will be
there – just add more elements as needed.

 try {
 myFile = new FileWriter("c:\\scores2.txt");
 buff = new BufferedWriter(myFile);

 for (int i=0; i < scores.length; i++) {
 // Convert each of the scores to a String
 // and write it into scores2.txt
 buff.write(scores[i].toString());
 System.out.println("Writing " +
 scores[i].getLastName());
 }
 System.out.println("File writing is complete");

 }catch (IOException e){
 e.printStackTrace();
 } finally {
 try{
 buff.flush();
 buff.close();
 myFile.close();
 }catch(IOException e1){
 e1.printStackTrace();
 }
 }
 }
}

 Java Programming for Kids, Parents and Grandparents 155

Why use arrays, let’s just always use ArrayList! Unfortunately,
nothing comes for free, and you have to pay the price for a
convenience – ArrayList is a little slower than a regular array, and
you could only store objects there, for example you can not just store a
bunch of int numbers in an ArrayList.

To create and populate an ArrayList object, you should instantiate
it first, create instances of the objects you are planning to store there,
and add them to the ArrayList by calling its method add(). The
next little program will populate an ArrayList with String objects
and print the content of this collection.

This program will print the following lines:

Friend #0 is Mary
Friend #1 is Ann
Friend #2 is David
Friend #3 is Roy

The method get()extracts from an ArrayList the element located at
a particular position. Since you can store any objects in a collection, the
method get() returns each element as a Java Object, and it’s a
responsibility of the program to cast this object to a proper data type.
We did not have to do it in the previous example only because we
stored String objects in the collection friends, and Java converts an
Object to a String automatically. But if you decide to store in
ArrayList some other objects, for example instances of the class
Fish, the proper code to add and extract a particular Fish may look as

import java.util.ArrayList;

public class ArrayListDemo {
 public static void main(String[] args) {
 // Create and populate an ArrayList
 ArrayList friends = new ArrayList();
 friends.add("Mary");
 friends.add("Ann");
 friends.add("David");
 friends.add("Roy");

 // How many friends are there?
 int friendsCount = friends.size();

 // Print the content of the ArrayList
 for (int i=0; i<friendsCount; i++){
 System.out.println("Friend #" + i + " is "
 + friends.get(i));
 }
 }
}

in the program FishTank that comes next. First, this program creates
a couple of instances of the class Fish, assigns some value to color,
weight and current depth and stores them in the ArrayList called
fishTank. Then, the program gets the objects from this collection,
casts them to the class Fish and prints their values.

Here’s an output of the program FishTank:

Got the Red fish that weighs 2.0 pounds. Depth:20
Got the Green fish that weighs 5.0 pounds. Depth:10

Now that you’ve read about the Java access levels, classes Pet and
Fish can be modified a bit. Such variables as age, color, weight
and height should be declared as protected, and the variable
currentDepth should be private. You should add new public
methods such as getAge() to return the value of the variable age,
and setAge() has to set the value of this variable, an so on.

Programmers with good manners do not allow one class directly modify
properties of another one – the class should provide methods that
modify its internals. That’s why the class Score from the previous

import java.util.ArrayList;

public class FishTank {
 public static void main(String[] args) {
 ArrayList fishTank = new ArrayList();
 Fish theFish;

 Fish aFish = new Fish(20);

 aFish.color = "Red";
 aFish.weight = 2;
 fishTank.add(aFish);

 aFish = new Fish(10);
 aFish.color = "Green";
 aFish.weight = 5;
 fishTank.add(aFish);

 int fishCount = fishTank.size();

 for (int i=0;i<fishCount; i++){
 theFish = (Fish) fishTank.get(i);
 System.out.println("Got the " +
 theFish.color + " fish that weighs " +
 theFish.weight + " pounds. Depth:" +
 theFish.currentDepth);
 }
 }
}

 Java Programming for Kids, Parents and Grandparents 157

section was designed with private variables, which could be changed
with setters and getters.

In this chapter I’ve shown you different Java elements and techniques
that seem to be unrelated to each other. But all these elements are
often used by professional Java programmers. After completion of the
practical assignments for this chapter you should have a better
understanding of how these elements work together.

Additional Reading

1. Java Collections:
http://java.sun.com/docs/books/tutorial/collections/intro/

2. Class ArrayList:
http://java.sun.com/j2se/1.5.0/docs/api/java/util/ArrayList.htm
l

3. Class Vector:
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

4. Class Calendar:
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html

Practice

1.Add an overloaded no-argument
constructor to the class Fish. This
constructor should set the starting position
to 10 feet. The class FishMaster will create
an instance of the object Fish just like this:

Fish myFish = new Fish();

2. Add a four-argument constructor to the
class Score. Create a program
ScoreWriter3 that will populate the
instances of the Score objects not by using
setters, but rather at the time when the
score are created, for example

Score aScore =
 new Score("John", "Smith", 250, today);

 Java Programming for Kids, Parents and Grandparents 159

Practice for Smarty Pants

Learn online how to use the class Vector and try
to create a program VectorDemo that is similar to
the program ArrayLiastDemo.

Chapter 11. Back to Graphics – the Ping
Pong Game

In chapters 5, 6 and 7 we’ve used some of AWT and Swing

components. Now I’ll show you how you can draw and move such
objects as ovals, rectangles and lines in a window. You’ll also learn how
to process mouse and keyboard events. To add a little fun to these
boring subjects, in this chapter we’ll be learning all these thing while
creating a ping pong game. This game will have two players and I call
them the kid and computer.

The Strategy

Let’s come up with some rules of the game:

1. The game lasts until one of the players (the kid or computer)
will reach the score of 21.

2. Kid’s racket movements will be controlled by the computer
mouse.

3. Game score has to be displayed at the bottom of the window.
4. A new game starts when a player presses the N key on the

keyboard, Q ends the game, and S serves the ball.
5. Only the kid can serve the ball.
6. To win a point the ball should go beyond the racket’s vertical

line when the racket is not blocking the ball.
7. When computer bounces the ball, it can move only horizontally

to the right.
8. If the ball contacts the kid’s racket in the upper half of the table,

the ball should be moving in the up-and-left direction. If the
ball was located in the bottom part of the table, it should move
in the down-and-left direction.

 Java Programming for Kids, Parents and Grandparents 161

You must be thinking that it’s
going to be too difficult to
program. The trick is to split a
complicated task into a set of
smaller and simpler tasks, and
try to solve each of them one at a
time.

This trick is called analytical
thinking, and it helps not only in
programming, but everywhere in
your life – do not get frustrated if
you can’t achieve a big goal, split
it in a set of the smaller ones an
reach them one at time!

That’s why the first version of the
game will have only some of

these rules implemented – it’ll just paint the table, move the racket
and display coordinates of the mouse pointer when you click the mouse
button.

The Code

This game will consist of the following three classes:

• Class PingPongGreenTable will take care of the visual
part. During the game it’ll be displaying the table, rackets
and the ball.

• Class PingPongGameEngine will be responsible for

calculations of the ball and rackets’ coordinates, starting and
ending the game, and serving the ball. The engine class will
pass the current coordinates of components to
PingPongGreenTable, which will repaint itself accordingly.

• Interface GameConstants will contain declarations of all

constants that the game needs, for example width and height
of the table, starting positions of the rackets and so on.

The ping pong table will look like this:

Instead of just saying “My
computer does not work” (a big
problem), try to see what
exactly does not work (find the
smaller one).

1.Is computer plugged into the
power outlet (yes/no)? Yes.
2. When I start the computer,
do I see the screen with all
these icons (yes/no)? Yes.
3. Can I move the mouse on the
screen (yes/no)? No.
4. Is the mouse cable plugged
in properly (yes/no)? No.

Just plug in the mouse and
computer will start working
again! A big problem came
down to fixing a loose mouse
cable.

The first version of this game will do only three things:

• Display a green ping pong table.
• Display coordinates of the mouse pointer when you click on

the mouse.
• Move the kid’s racket up and down.

Two pages later you can see our PingPongGreenTable class that is a
subclass of the Swing’s JPanel. Look at the code while reading the
text below.

Since our game needs to know exact coordinates of the mouse pointer,
constructor of the PingPongGreenTable class will create an instance
of the event listener class PingPongGameEngine. This class will
perform some actions when the kid clicks on the mouse button or just
moves the mouse.

The method addPaneltoFrame() creates a label that will display
coordinates of the mouse.

This class is not an applet, and that’s why instead of the method
paint() it uses the method paintComponent(). This method is
called either by JVM when it needs to refresh the window, or when our
program calls a method repaint(). You’ve read it right, method
repaint() internally calls paintComponent() and provides your
class with an object Graphics so you can paint on the window. We’ll
call this method every time after recalculating coordinates of the
rackets or the ball to display them in the proper position.

To paint a racket, set the color first, and then fill a rectangle with this
paint using the method fillRect(). This method needs to know X
and Y coordinates of the top left corner of the rectangle and its width

 Java Programming for Kids, Parents and Grandparents 163

and height in pixels. The ball is painted using the method
fillOval(), and it needs to know coordinates of the center of the
oval, its height and width. When the height and width of the oval are
the same, it looks like a circle.

X coordinate in a window grows from left to right, and Y coordinate
increases from top to bottom. For example, the width of this rectangle
is 100 pixels, and the height is 70:
 X
 (0,0) (100,0)

 Y

 (0,70) (110,70)

X and Y coordinates of the corners of this rectangle are shown in
parentheses.

Another interesting method is getPreferredSize(). We create an
instance of a Swing class Dimension to set the size of the table. JVM
needs to know dimensions of the window, that’s why it calls the
method getPreferredSize() of the PingPongGreenTable object.
This method returns to JVM an object Dimension that we’ve created
in the code according to the size of our table.

Both table and engine classes use some constant values that do not
change. For example, class PingPongGreenTable uses the width and
height of the table, and PingPongGameEngine needs to know ball
movement increments – the smaller the increment, the smoother the
movement. It’s convenient to keep all the constants (final variables)
in an interface. In our game the name of the interface is
GameConstants. If a class needs these values, just add implements
GameConstants to the class declaration and use any of the final
variables from this interface as if they were declared in the class itself!
That’s why both table and engine classes implement GameConstants
interface.

If you decide to change the size of the table, ball, or racket you’ll need
to do it only in one place – in the GameConstants interface. Let’s look
at the code of the class PingPongGreenTable and the interface
GameConstants.

Class PingPongGreenTable (part 1 of 3)

package screens;

import javax.swing.JPanel;
import javax.swing.JFrame;
import javax.swing.BoxLayout;
import javax.swing.JLabel;
import javax.swing.WindowConstants;
import java.awt.Point;
import java.awt.Dimension;
import java.awt.Container;
import java.awt.Graphics;
import java.awt.Color;
import engine.PingPongGameEngine;
/**
* This class paints a green ping pong table
* and displays coordinates of the point
* where the user clicked the mouse
*/
public class PingPongGreenTable extends JPanel
 implements GameConstants{
 JLabel label;
 public Point point = new Point(0,0);

 public int ComputerRacket_X =15;
 private int kidRacket_Y =KID_RACKET_Y_START;

 Dimension preferredSize = new
 Dimension(TABLE_WIDTH,TABLE_HEIGHT);

 // This method sets the size of the frame.
 // It's called by JVM
 public Dimension getPreferredSize() {
 return preferredSize;
 }

 Java Programming for Kids, Parents and Grandparents 165

Class PingPongGreenTable (part 2 of 3)

 // Constructor. Creates a listener for mouse events
 PingPongGreenTable(){

 PingPongGameEngine gameEngine =
 new PingPongGameEngine(this);
 // Listen to mouse clicks to show its coordinates
 addMouseListener(gameEngine);
 // Listen to mouse movements to move the rackets
 addMouseMotionListener(gameEngine);
 }

 // Add a panel with a JLabel to the frame
 void addPaneltoFrame(Container container) {
 container.setLayout(new BoxLayout(container,
 BoxLayout.Y_AXIS));
 container.add(this);
 label = new JLabel("Click to see coordinates");
 container.add(label);
 }

 // repaint the window. This method is called by JVM
 // when it needs to refresh the screen or when a
 // method repaint() is called from PingPointGameEngine
 public void paintComponent(Graphics g) {

 super.paintComponent(g);
 g.setColor(Color.GREEN);
 // paint the table green
 g.fillRect(0,0,TABLE_WIDTH,TABLE_HEIGHT);

 g.setColor(Color.yellow);

 // paint the right racket
 g.fillRect(KID_RACKET_X_START,kidRacket_Y,5,30);
 g.setColor(Color.blue);

 // paint the left racket
 g.fillRect(ComputerRacket_X,100,5,30);

 g.setColor(Color.red);
 g.fillOval(25,110,10,10); //paint the ball

 g.setColor(Color.white);
 g.drawRect(10,10,300,200);
 g.drawLine(160,10,160,210);

Class PingPongGreenTable (part 3 of 3)

 // Display a point as a small 2x2 pixels rectangle
 if (point != null) {
 label.setText("Coordinates (x,y): " +
 point.x + ", " + point.y);
 g.fillRect(point.x, point.y, 2, 2);
 }
 }

 // Set the current position of the kid's racket
 public void setKidRacket_Y(int xCoordinate){
 this.kidRacket_Y = xCoordinate;
 }

 // Return the current position of the kid's racket
 public int getKidRacket_Y(int xCoordinate){
 return kidRacket_Y;
 }

 public static void main(String[] args) {
 // Create an instance of the frame
 JFrame f = new JFrame("Ping Pong Green Table");
 // Ensure that the window can be closed
 // by pressing a little cross in the corner
 f.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);

 PingPongGreenTable table =
 new PingPongGreenTable();
 table.addPaneltoFrame(f.getContentPane());
 // Set the size and make the frame visible
 f.pack();
 f.setVisible(true);
 }
}

 Java Programming for Kids, Parents and Grandparents 167

The next is the interface GameConstants. All values of the variables
are in pixels. Use capital letters to name final variables:

A running program can not change vales of these variables, because
they were declared as final. But if, for example you decide to
increase the size of the table, you’ll need to change the values of
TABLE_WIDTH and TABLE_HEIGHT and then recompile the
GameConstants interface.

Decision-maker in this game is the class PingPongGameEngine,
which implements two mouse-related interfaces. The MouseListener
will have code only in the method mousePressed(). On every mouse
click this method will draw a small white point on the table and
display its coordinates. Actually, this code is useless for our game, but
it’ll show you in a simple way how to get coordinates of the mouse
from the MouseEvent object that is given to the program by JVM.

A method mousePressed() sets the coordinates of the variable
point depending on where the mouse poiner was when the player
pressed its button. After coordinates are set, it asks JVM to repaint
the table.

The MouseMotionListener reacts on movements of the mouse over
the table, and we’ll use its method mouseMoved() to move the kid’s
racket up or down.

A method mouseMoved() calculates the next position of the kid’s
racket. If the mouse pointer is above the racket (the Y coordinate of the
mouse is less then Y coordinate of the racket), it ensures that the
racket will not go over the top of the table.

When constructor of the table creates the engine object, it passes to the
engine a reference to the table’s instance (the keyword this represents
a reference to memory location of the object PingPongGreenTable).
Now the engine can “talk” to the table, for example set new
coordinates of the ball or repaint the table if needed. If this part is not

package screens;

public interface GameConstants {
 public final int TABLE_WIDTH = 320;
 public final int TABLE_HEIGHT = 220;
 public final int KID_RACKET_Y_START = 100;
 public final int KID_RACKET_X_START = 300;
 public final int TABLE_TOP = 12;
 public final int TABLE_BOTTOM = 180;

 public final int RACKET_INCREMENT = 4;
}

clear, you may want to re-read a section about passing data between
classes in Chapter 6.

In our game rackets move vertically from one position to another
using four pixel increment as defined in the interface GameConstants
(the engine class implements this interface). For example, the next
line subtracts four from the value of the variable kidRacket_Y:

kidRacket_Y -= RACKET_INCREMENT;

For example, if the Y coordinate of the racket was 100, after this line of
code its value becomes 96, which means that the racket has to be
moved up. You can get the same result using the following syntax:

kidRacket_Y = kidRacket_Y - RACKET_INCREMENT;

If you remember, we’ve talked about different ways of changing
variable values in Chapter 3.

The class PingPongGameEngine is next.

 Java Programming for Kids, Parents and Grandparents 169

package engine;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.event.MouseMotionListener;
import screens.*;
public class PingPongGameEngine implements
 MouseListener, MouseMotionListener, GameConstants{

 PingPongGreenTable table;
 public int kidRacket_Y = KID_RACKET_Y_START;
 // Constructor. Stores a reference to the table
 public PingPongGameEngine(PingPongGreenTable
 greenTable){
 table = greenTable;
 }
// Methods required by the MouseListener interface
 public void mousePressed(MouseEvent e) {
 // Get X and Y coordinates of the mouse pointer
 // and set it to the "white point" on the table
 table.point.x = e.getX();
 table.point.y = e.getY();
//The method repaint internally calls the table's
// method paintComponent() that refreshes the window
 table.repaint();
 }
 public void mouseReleased(MouseEvent e) {};
 public void mouseEntered(MouseEvent e) {};
 public void mouseExited(MouseEvent e) {};
 public void mouseClicked(MouseEvent e) {};

// Methods required by the MouseMotionListener interface
 public void mouseDragged(MouseEvent e) {}

 public void mouseMoved(MouseEvent e) {
 int mouse_Y = e.getY();
 // If a mouse is above the kid's racket
 // and the racket did not go over the table top
 // move it up, otherwise move it down
 if (mouse_Y < kidRacket_Y && kidRacket_Y > TABLE_TOP){
 kidRacket_Y -= RACKET_INCREMENT;
 }else if (kidRacket_Y < TABLE_BOTTOM) {
 kidRacket_Y += RACKET_INCREMENT;
 }
 // Set the new position of the racket table class
 table.setKidRacket_Y(kidRacket_Y);
 table.repaint();
 }
}

Java Threads Basics

So far, all our programs perform actions in a sequence – one after
another. If a program calls two methods, the second method waits until
the first one completes. In other words, each of our programs has only
one thread of execution.

In a real life though, we can do several things at the same time, for
example eat, talk on the phone, watch TV, and do the homework. To do
all these actions in parallel we use several processors: hands, eyes,
and mouth.

Some of the more expensive computers also have two or more
processors. But most likely your computer has only one processor that
performs calculations, sends commands to the monitor, disk, remote
computers, and so on.

But even one processor can perform several actions at once if a
program uses multiple threads. One Java class can start several
threads of execution that will take turns in getting slices of the
processor’s time.

 Java Programming for Kids, Parents and Grandparents 171

A good example of a program that creates multiple threads is a Web
browser. You can browse the Internet while downloading some files –
one program runs two threads of execution.

The next version of our ping pong game will have one thread that
displays the table. The second thread will calculate coordinates of the
ball and rackets and will send commands to the first thread to repaint
the window. But first, I’ll show you two very simple programs to give
you a better feeling of why threads are needed.

Each of these sample programs will
display a button and a text field.

When you press the button Kill Time, the
program will start a loop that will
increment a variable thirty thousand
times. The current value of the variable-
counter will be displayed on

the title bar of the window. The class NoThreadsSample has only
one thread of execution, and you won’t be able to type anything in the
text field until the loop is done. This loop takes all processor’s time,
that’s why the window is locked.

Compile and run this class and see for yourself that the window is
locked for some time. Note that this class creates an instance of
JTextField and passes it to the content pane without declaring a
variable for this instance. If you are not planning to get or set
attributes of this object in this program, you do not need such
reference variable.

import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class NoThreadsSample extends JFrame
 implements ActionListener{
 // Constructor
 NoThreadsSample(){
 // Create a frame with a button and a text field
 GridLayout gl =new GridLayout(2,1);
 this.getContentPane().setLayout(gl);
 JButton myButton = new JButton("Kill Time");
 myButton.addActionListener(this);
 this.getContentPane().add(myButton);
 this.getContentPane().add(new JTextField());
 }
 // Process button clicks
 public void actionPerformed(ActionEvent e){
 // Just kill some time to show
 // that window controls are locked
 for (int i=0; i<30000;i++){
 this.setTitle("i="+i);
 }
 }

 public static void main(String[] args) {
 // Create an instance of the frame
 NoThreadsSample myWindow = new NoThreadsSample();
 // Ensure that the window can be closed
 // by pressing a little cross in its corner
 myWindow.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);

 // Set the frame's size – top left corner
 // coordinates, width and height
 myWindow.setBounds(0,0,150, 100);
 //Make the window visible
 myWindow.setVisible(true);
 }
}

 Java Programming for Kids, Parents and Grandparents 173

The next version of this little window will create and start a separate
thread for the loop, and the main window’s thread will allow you to
type in the text field while the loop is running.

You can create a thread in Java using one of the following ways:

1. Create an instance of the Java class Thread and pass to this
instance an object that implements Runnable interface. If your class
implements Runnable interface the code will look like this:

Thread worker = new Thread(this);

This interface requires you to write in the method run() the code that
must be running as a separate thread. But to start the thread, you
have to call the method start(), that will actually call your method
run(). I agree, it’s a bit confusing, but this is how you start the
thread:

worker.start();

2. Make a subclass of the class Thread and implement the method
run() there. To start the thread call the method start().

I’ll be using the first method in the class ThreadsSample because this
class already extends JFrame, and you can’t extend more than one
class in Java.

public class MyThread extends Thread{

 public static void main(String[] args) {
 MyThread worker = new MyThread();
 worker.start();
 }
 public void run(){
 // your code goes here
 }
}

import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class ThreadsSample extends JFrame
 implements ActionListener, Runnable{

 // Constructor
 ThreadsSample(){
 // Create a frame with a button and a text field
 GridLayout gl =new GridLayout(2,1);
 this.getContentPane().setLayout(gl);
 JButton myButton = new JButton("Kill Time");
 myButton.addActionListener(this);
 this.getContentPane().add(myButton);
 this.getContentPane().add(new JTextField());
 }

 public void actionPerformed(ActionEvent e){
 // Create a thread and execute the kill-time-code
 // without blockiing the window
 Thread worker = new Thread(this);
 worker.start(); // this calls the method run()
 }

 public void run(){
 // Just kill some time to show that
 // window controls are NOT locked
 for (int i=0; i<30000;i++){
 this.setTitle("i="+i);
 }
 }

 public static void main(String[] args) {

 ThreadsSample myWindow = new ThreadsSample();
 // Ensure that the window can be closed
 // by pressing a little cross in the corner
 myWindow.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);

 // Set the frame's size and make it visible
 myWindow.setBounds(0,0,150, 100);
 myWindow.setVisible(true);
 }
}

 Java Programming for Kids, Parents and Grandparents 175

Class ThreadsSample starts a new thread when you click on the
button Kill Time. After this, the thread with a loop and the main
thread take turn in getting slices of the processor’s time. Now you can
type in the text field (the main thread), while the other thread runs the
loop!

Threads deserve much better study that these couple of pages, and I
encourage you to do some additional reading on this topic.

Finishing Ping Pong Game

After a brief introduction of threads, we are ready to modify the code
of our ping pong game classes.

Let’s start with the class PingPongGreenTable. We do not need to
display a white point when the user clicks the mouse – this was just an
exercise to learn how to display coordinates of the mouse pointer.
That’s why we’ll remove the declaration of the variable point and the
lines that paint the white point from the method paintComponent().
Also, constructor does not need to add MouseListener anymore,
because it only displays the point’s coordinates.

On the other hand, this class should react to some of the keyboard
buttons (N for new game, S for serving the ball, and Q to quit the
game). The method addKeyListener() will take care of this.

To make our code a little more encapsulated, I’ve also moved the
repaint() calls from the engine class to PingPongGreenTable. Now
this will be responsible for repainting itself when needed.

I’ve also added methods to change positions of the ball, computer’s
racket and to display messages.

Class PingPongGreenTable (part 1 of 3)

package screens;

import javax.swing.JPanel;
import javax.swing.JFrame;
import javax.swing.BoxLayout;
import javax.swing.JLabel;
import javax.swing.WindowConstants;
import java.awt.Dimension;
import java.awt.Container;
import java.awt.Graphics;
import java.awt.Color;
import engine.PingPongGameEngine;
/**
* This class paints the green ping pong table,
* ball, rackets and displays the score
*/
public class PingPongGreenTable extends JPanel
 implements GameConstants{
 private JLabel label;

 private int computerRacket_Y =
 COMPUTER_RACKET_Y_START;
 private int kidRacket_Y = KID_RACKET_Y_START;
 private int ballX = BALL_START_X;
 private int ballY = BALL_START_Y;

 Dimension preferredSize = new
 Dimension(TABLE_WIDTH,TABLE_HEIGHT);

 // This method sets the size of the frame.
 // It's called by JVM
 public Dimension getPreferredSize() {
 return preferredSize;
 }

 // Constructor. Creates a listener for mouse events
 PingPongGreenTable(){

 PingPongGameEngine gameEngine =
 new PingPongGameEngine(this);
 // Listen to mouse movements to move the rackets
 addMouseMotionListener(gameEngine);
 //Listen to the keyboard events
 addKeyListener(gameEngine);
 }

 Java Programming for Kids, Parents and Grandparents 177

Class PingPongGreenTable (part 2 of 3)

 // Add a panel with a JLabel to the frame
 void addPaneltoFrame(Container container) {
 container.setLayout(new BoxLayout(container,
 BoxLayout.Y_AXIS));
 container.add(this);
 label = new JLabel(
 "Press N for a new game, S to serve or Q to quit");
 container.add(label);
 }

 // repaint the window. This method is called by JVM
 // when it needs to refresh the screen or when a
 // method repaint() is called from PingPointGameEngine
 public void paintComponent(Graphics g) {

 super.paintComponent(g);
 g.setColor(Color.GREEN);
 // paint the table green
 g.fillRect(0,0,TABLE_WIDTH,TABLE_HEIGHT);

 g.setColor(Color.yellow);
 // paint the right racket
 g.fillRect(KID_RACKET_X, kidRacket_Y,
 RACKET_WIDTH, RACKET_LENGTH);
 g.setColor(Color.blue);
 // paint the left racket
 g.fillRect(COMPUTER_RACKET_X, computerRacket_Y,
 RACKET_WIDTH,RACKET_LENGTH);
 // paint the ball
 g.setColor(Color.red);
 g.fillOval(ballX,ballY,10,10);
 //draw the white lines
 g.setColor(Color.white);
 g.drawRect(10,10,300,200);
 g.drawLine(160,10,160,210);
 // Set the focus to the table, so the key
 // listenerwill send commands to the table
 requestFocus();
 }

 // Set the current position of the kid's racket
 public void setKidRacket_Y(int yCoordinate){
 this.kidRacket_Y = yCoordinate;
 repaint();
 }

Class PingPongGreenTable (part 3 of 3)

 // Return current posiition of the kid's racket
 public int getKidRacket_Y(){
 return kidRacket_Y;
 }

// Set the current position of the computer's racket
 public void setComputerRacket_Y(int yCoordinate){
 this.computerRacket_Y = yCoordinate;
 repaint();
 }

 // Set the game's message
 public void setMessageText(String text){
 label.setText(text);
 repaint();
 }

 // Set the game's message
 public void setBallPosition(int xPos, int yPos){
 ballX=xPos;
 ballY=yPos;
 repaint();
 }

 public static void main(String[] args) {

 // Create an instance of the frame
 JFrame f = new JFrame("Ping Pong Green Table");

 // Ensure that the window can be closed
 // by pressing a little cross in the corner
 f.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
 PingPongGreenTable table = new PingPongGreenTable();
 table.addPaneltoFrame(f.getContentPane());

 // Set the frame's size and make it visible
 f.setBounds(0,0,TABLE_WIDTH+5, TABLE_HEIGHT+40);
 f.setVisible(true);
 }
}

 Java Programming for Kids, Parents and Grandparents 179

I’ve added some more final variables to the interface
GameConstants, and you should be able to guess what they are for
just by looking at the variable names.

Below are the highlights of the changes I’ve made in the class
PingPongGameEngine:

ü I have removed the interface MouseListener and all its

methods, because we’re not processing mouse clicks anymore.
MouseMotionListener will take care of all mouse movements.

ü This class now implements Runnable interface, and you can
find decision-making code in the method run(). Look at the
constructor – I create and start a new thread there. The method
run() applies game strategy rules in several steps, and all

package screens;
/**
 * This interface contains all definitions of the
 * final variables that are used in the game
 */
public interface GameConstants {
 // Size of the ping pong table
 public final int TABLE_WIDTH = 320;
 public final int TABLE_HEIGHT = 220;
 public final int TABLE_TOP = 12;
 public final int TABLE_BOTTOM = 180;

 // Ball movement increment in pixels
 public final int BALL_INCREMENT = 4;

 // Maximum and minimum allowed ball coordinates
 public final int BALL_MIN_X = 1+ BALL_INCREMENT;
 public final int BALL_MIN_Y = 1 + BALL_INCREMENT;
 public final int BALL_MAX_X =
 TABLE_WIDTH - BALL_INCREMENT;
 public final int BALL_MAX_Y =
 TABLE_HEIGHT - BALL_INCREMENT;

 // Starting coordinates of the ball
 public final int BALL_START_X = TABLE_WIDTH/2;
 public final int BALL_START_Y = TABLE_HEIGHT/2;

 //Rackets' sizes, positions and movement increments
 public final int KID_RACKET_X = 300;
 public final int KID_RACKET_Y_START = 100;
 public final int COMPUTER_RACKET_X = 15;
 public final int COMPUTER_RACKET_Y_START = 100;
 public final int RACKET_INCREMENT = 2;
 public final int RACKET_LENGTH = 30;
 public final int RACKET_WIDTH = 5;

 public final int WINNING_SCORE = 21;

//Slow down fast computers - change the value if needed
 public final int SLEEP_TIME = 10; //time in miliseconds

}

these steps are programmed inside the if statement
if(ballServed). It’s a short version of
if(ballServed==true).

ü Please note the use of conditional if statement that assigns a
value to the variable canBounce in step 1. Depending on the
highlighted expression, this variable will get the value of either
true, or false.

ü The class implements KeyListener interface, and the method
keyPressed() checks what letter was keyed in to start/quit the
game, or to serve the ball. The code of this method allows the
user to type both capital and small letters, for example N and n.

ü I’ve added several private methods like displayScore(),
kidServe() and isBallOnTheTable(). These methods are
declared private because they are used within this class only,
and other classes do not even have to know about them. This is
an example of encapsulation in action.

ü Some computers are too fast, and this makes the ball
movements difficult to control. That’s why I’ve slowed the game
down by calling a method Thread.sleep(). A static method
sleep() will pause this particular thread for a number of
milliseconds given as an argument of this method.

ü To add a little fun to the game, when the kid’s racket hits the
ball it moves diagonally. That’s why code changes not only the
X coordinate of the ball, but Y as well.

 Java Programming for Kids, Parents and Grandparents 181

Class PingPongGameEngine (part 1 of 5)

package engine;

import java.awt.event.MouseMotionListener;
import java.awt.event.MouseEvent;
import java.awt.event.KeyListener;
import java.awt.event.KeyEvent;
import screens.*;
/**
 * This class is a mouse and keyboard listener.
 * It calculates ball and racket movements,
 * changes their coordinates.
 */
public class PingPongGameEngine implements Runnable,
 MouseMotionListener, KeyListener, GameConstants{

 private PingPongGreenTable table;//reference to table
 private int kidRacket_Y = KID_RACKET_Y_START;
 private int computerRacket_Y=COMPUTER_RACKET_Y_START;
 private int kidScore;
 private int computerScore;
 private int ballX; // ball's X position
 private int ballY; // ball's Y position
 private boolean movingLeft = true;
 private boolean ballServed = false;

 //Value in pixels of the vertical ball movement
 private int verticalSlide;

 // Constructor. Stores a reference to the table
 public PingPongGameEngine(
 PingPongGreenTable greenTable){
 table = greenTable;
 Thread worker = new Thread(this);
 worker.start();
 }
 // Methods required by MouseMotionListener
 // interface (some of them are empty, but must be
 // included in the class anyway)

 public void mouseDragged(MouseEvent e) {
 }

Class PingPongGameEngine (part 2 of 5)

 public void mouseMoved(MouseEvent e) {

 int mouse_Y = e.getY();

 // If a mouse is above the kid's racket
 // and the racket did not go over the table top
 // move it up, otherwise move it down
 if (mouse_Y<kidRacket_Y && kidRacket_Y>TABLE_TOP){
 kidRacket_Y -= RACKET_INCREMENT;
 }else if (kidRacket_Y < TABLE_BOTTOM) {
 kidRacket_Y += RACKET_INCREMENT;
 }

 // Set the new position of the racket on the table
 table.setKidRacket_Y(kidRacket_Y);
 }

 // Methods required by KeyListener interface
 public void keyPressed(KeyEvent e){
 char key = e.getKeyChar();
 if ('n' == key || 'N' == key){
 startNewGame();
 } else if ('q' == key || 'Q' == key){
 endGame();
 } else if ('s' == key || 'S' == key){
 kidServe();
 }
 }

 public void keyReleased(KeyEvent e){}

 public void keyTyped(KeyEvent e){}

 // Start a new Game
 public void startNewGame(){
 computerScore=0;
 kidScore=0;
 table.setMessageText("Score Computer: 0 Kid: 0");
 kidServe();
 }

 // End the game
 public void endGame(){
 System.exit(0);
 }

 Java Programming for Kids, Parents and Grandparents 183

Class PingPongGameEngine (part 3 of 5)

 // Method run() is required by Runnable interface
 public void run(){

 boolean canBounce=false;
 while (true) {

 if(ballServed){ // if ball is moving

 //Step 1. Is ball moving o the left?
 if (movingLeft && ballX > BALL_MIN_X){
 canBounce = (ballY >= computerRacket_Y &&
 ballY < (computerRacket_Y + RACKET_LENGTH)?
 true: false);
 ballX-=BALL_INCREMENT;

 // Add up or down slide to any left/right ball
 // movement
 ballY-=verticalSlide;

 table.setBallPosition(ballX,ballY);
 // Can bounce?
 if (ballX <= COMPUTER_RACKET_X && canBounce){
 movingLeft=false;
 }
 }

 // Step 2. Is ball moving to the right?
 if (!movingLeft && ballX <= BALL_MAX_X){
 canBounce = (ballY >= kidRacket_Y && ballY <
 (kidRacket_Y + RACKET_LENGTH)?true:false);

 ballX+=BALL_INCREMENT;
 table.setBallPosition(ballX,ballY);
 // Can bounce?
 if (ballX >= KID_RACKET_X && canBounce){
 movingLeft=true;
 }
 }

 // Step 3. Move computer's racket up or down
 // to block the ball

Class PingPongGameEngine (part 4 of 5)

 if (computerRacket_Y < ballY
 && computerRacket_Y < TABLE_BOTTOM){
 computerRacket_Y +=RACKET_INCREMENT;
 }else if (computerRacket_Y > TABLE_TOP){
 computerRacket_Y -=RACKET_INCREMENT;
 }
 table.setComputerRacket_Y(computerRacket_Y);

 // Step 4. Sleep a little
 try {
 Thread.sleep(SLEEP_TIME);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Step 5. Update the score if the ball is in the
 // green area but is not moving
 if (isBallOnTheTable()){
 if (ballX > BALL_MAX_X){
 computerScore++;
 displayScore();
 }else if (ballX < BALL_MIN_X){
 kidScore++;
 displayScore();
 }
 }
 } // End if ballServed
 } // End while
 }// End run()

// Serve from the current position of the kid's racket
 private void kidServe(){

 ballServed = true;
 ballX = KID_RACKET_X-1;
 ballY=kidRacket_Y;

 if (ballY > TABLE_HEIGHT/2){
 verticalSlide=-1;
 }else{
 verticalSlide=1;
 }

 table.setBallPosition(ballX,ballY);
 table.setKidRacket_Y(kidRacket_Y);
 }

 Java Programming for Kids, Parents and Grandparents 185

Class PingPongGameEngine (part 5 of 5)

Congratulations! You’ve completed your second game. Compile the
classes and play the game. After you feel more comfortable with the
code, try to modify it – I’m sure you’ll have some ideas of how to make
this game better.

What to Read Next on Game Programming

1. CodeRally is an IBM sponsored Java-based, real-time programming
game based on the Eclipse platform. It allows users unfamiliar with
Java to easily compete while they learn the Java language. Players
develop a rally car and make decisions about when to speed up, turn,
or slow down based on the location of other players or checkpoints,
their current fuel level, and other factors.

http://www.alphaworks.ibm.com/tech/codeRally

2. Robocode is a fun programming game that teaches Java by letting
you create Java Robots.

http://www.alphaworks.ibm.com/tech/robocode

 private void displayScore(){
 ballServed = false;

 if (computerScore ==WINNING_SCORE){
 table.setMessageText("Computer won! " +
 computerScore + ":" + kidScore);
 }else if (kidScore ==WINNING_SCORE){
 table.setMessageText("You won! "+ kidScore +
 ":" + computerScore);
 }else{
 table.setMessageText("Computer: "+ computerScore
 + " Kid: " + kidScore);
 }
 }

// checks if ball did not cross the top or bottom
 // borders of the table
 private boolean isBallOnTheTable(){
 if (ballY >= BALL_MIN_Y && ballY <= BALL_MAX_Y){
 return true;
 }else {
 return false;
 }
 }
}

Additional Reading

Java Threads Tutorial:
http://java.sun.com/docs/books/tutorial/essential/threads/

Introduction to Java Threads:
http://www-106.ibm.com/developerworks/edu/j-dw-
javathread-i.html

Class java.awt.Graphics:
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Graphics.html

Practice

1. The class PingPongGameEngine sets the
coordinates of the white point using the code
like this:
 table.point.x = e.getX();.

In the class PingPongGreenTable make
the variable point private and add a public
method setPointCoordinates(int x,
int y).

Change the code of the engine class to use
this method.

2. Our ping pong game has a bug: after a
winner is announced, you can still press the
key S on the keyboard and the game will
continue. Fix this bug.

Practice for Smarty Pants

1. Try to change the values of the
RACKET_INCREMENT and
BALL_INCREMENT. Higher values
increase the speed of racket and ball
movements. Change the code to allow
selection of the player’s level from 1 to 10.

 Java Programming for Kids, Parents and Grandparents 187

 Use selected values as ball and racket
increments.

2. When the kid’s racket bounces the ball in
the top part of the table, the ball moves
diagonally an upward and quickly falls off
the table. Modify the program to move the
ball diagonally down from the top part of the
table, and diagonally up from the bottom
part.

Appendix A. Java Archives - JARs

Computer users pretty often need to exchange files. They could

either copy files on floppy disks, CD, use e-mail, or just send the data
across the network. There are special programs that can compress
multiple files into a single archive file .

The size of such archive is usually
smaller than combined sizes of each
file, and this makes copying faster
and also saves space on your disks.

Java comes with a program called
jar that is used to archive multiple
Java classes and other files into a
file having the name extension
.jar.

Internal format of jar files is the
same as in a popular program called
WinZip (we used it in Chapter 2).

The following tree commands illustrate the use of the jar tool:

To create a jar that will contain all files with extension .class, open
this black command window, get into the folder where your classes
are, and type the following command:

jar cvf myClasses.jar *.class

 Java Programming for Kids, Parents and Grandparents 189

After the word jar you have to specify the options for this command.
In the last example c is for creating a new archive, v is for displaying
what goes in there, and f means that the file name of the new archive
is provided.

Now you can copy this file to another disk or email it to your friend. To
unjar (extract) the files from the archive myClasses.jar, type the
following command:

jar xvf myClasses.jar

All files will be extracted into the current directory. In this example
the option x is for extracting files from the archive.

If you just want to see the content of the jar without extracting the
files, use the next command where t is for tables of contents:

jar tvf myClasses.jar

Actually, I prefer using the program WinZip to see what’s in the jar
file.

In many cases real-world Java applications consist of multiple classes
that live in jars. Even though there are many other options that could
be used with the jar program, three examples from this chapter is all
you need to know for most of your future projects.

Additional Reading

Java Archive Tool:
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html

Appendix B. Eclipse Tips

Eclipse has many little convenient commands that make Java

programming a little faster. I’ve listed some of the useful Eclipse tips
here, but I’m sure you’ll find more of them when you start using this
tool.

ü If you see a little asterisk in the tab with the class, this means

that the class has some unsaved code changes.

ü Highlight the name of the class or a method that is used in your

code and press the button F3 on your keyboard. This will take
you to the line where this class or method was declared.

ü If some of the lines are marked with red error circles, move the

mouse over the circle to see the error text.

ü Press Ctrl-F11 to run the last-launched program again.

ü Place the cursor after a curly brace and Eclipse will mark the

matching brace.

ü To change the superclass when creating a new class, click on the

button Browse, delete the class java.lang.Object and enter
the first letter of the class you’d like to use. You’ll see a list of
available classes to choose from.

ü To copy a class from one package to another, select the class and

press Ctrl-C. Select the destination package and press Ctrl-V.

ü To rename a class, a variable or a method, right-click on it and

select Refactor and Rename from the popup menu. This will
rename every occurrence of this name.

 Java Programming for Kids, Parents and Grandparents 191

ü If your project needs some external jars, right-click on the
project name, select Properties, Java Build Path and press the
button Add External Jars.

Eclipse Debugger

The rumor has it, that about 40 years ago, when computers were large
and would not even fit in your room, all of a sudden one of the
programs started giving wrong results. All these troubles were caused
by a small bug that was sitting inside the computer somewhere in the
wires. When people removed the bug, the program started working
properly again. Since then, to debug a program means to find out why
it does not give the expected results.

Do not confuse bugs with the compilation errors. Say for example,
instead of multiplying the variable by 2, you’ll multiply it by 22. This
typo will not generate any compilation errors, but the result will be
incorrect. Debuggers allow you to step through a running program
one line at a time, and you can see and change values of all variables
at each point of the program execution.

I’ll show you how to use Eclipse debugger using the FishMaster
program from Chapter 4.

A breakpoint is a line in the code where you’d like program to pause so
you can see/change current values of the variables, and some other
run-time information. To set a breakpoint just double click on the gray
area to the left of the line where you want a program to stop. Let’s do
it in the FishMaster class on the line myFish.dive(2). You’ll see a
round bullet on this line which is a breakpoint. Now, select the menus

Run, Debug…. Select the application FishMaster and press the
button Debug.

FishMaster will start running in the debug mode, and as soon as the
program reaches the line myFish.dive(2), it will stop and will wait for
your further instructions.

You will see a window similar to the next one.

In the left bottom part of the debug perspective, you see that the line
with the breakpoint is highlighted. The blue arrow points at the line
that is about to be executed. On the right side (in the Variables view)
click on the little plus sign by the variable myFish. Since this variable
points at the object Fish, you will see all member variables of this
class and their current values, for example currentDepth=20.

The arrows in the top left area allow you to continue execution of the
program in different modes. The first yellow arrow means step into the
method. If you press this arrow (or F5), you’ll find yourself inside the
method dive(). The window changes and you see the values of the
argument howDeep=2 as in the next screenshot. Click on the little
plus by the word this to see what are the current values of member
variables of this object.

To change the value of the variable, right-click on the variable and
enter the new value. This can help when you are not sure why the
program does not work correctly and would like to play what if game.

 Java Programming for Kids, Parents and Grandparents 193

To continue execution one line at a time, keep pressing the next arrow
step over (or the button F6).

If you want to continue program in the fast mode, press a small green
triangle or the button F8.

To remove the breakpoint just double-click on the little round bullet
and it’ll disappear. I like using debugger even if my program does not
have a bug – it helps me better understand what exactly happens
inside the running program.

Where to put a breakpoint? If you have an idea which method gives
you problems, put it right before suspicious line. If you are not sure,
just put in the first line of the method main() and slowly walk
through the program.

Appendix C. How to Publish a Web Page

Internet pages consist of HTML files, images, sound files, etc.

HTML was briefly mentioned in Chapter 7, but if you are planning to
become a Web designer, you should spend more time learning HTML,
and one of the good places to start is a Web page www.w3chools.com.
Actually, there are many Web sites and programs that allow you
create a Web page in a several minutes without even knowing how it’s
being done. These programs will generate HTML anyway, but they
just hide this from you. But if you’ve mastered this book, I declare you
a Junior Java Programmer (I’m not kidding!), and learning HTML
for you is a piece of cake.

To develop a Web page, you usually create one or more HTML files on
your computer’s disk, but the problem is that your computer is not
visible to other Internet users. That's why, when the page is finished,
you need to copy (upload) these files to a place that everybody can see.
Such place is a disk located in the computer of the company that is
your Internet Service Provider (ISP).

First of all, you need to have your own folder on your ISP's computer.
Contact your ISP by phone or e-mail, saying that you created an
HTML page and want to publish it. They will usually respond with the
following information:

• The network name of their computer (host machine).
• Name of the folder on their computer where they allow you

to keep your files.
• A Web address (URL) of your new page - you will be giving it

to anyone who is interested in seeing your page.
• The user id and the password that you’ll need to upload new

or modify old files.

 Java Programming for Kids, Parents and Grandparents 195

These days, most of the ISP's will give you at least 10MB of space on
their disk for free, which is more than enough for most of people.

Now you will need a program that will allow you to copy files from your
machine to your ISP's computer. Copying files from your machine onto
the Internet’s computer is called uploading, and copying files from the
Internet to your machine is called downloading. You can upload or
download files using so-called FTP client program.

One of the simple and easy to use FTP clients is FTP Explorer and you
can download it from www.ftpx.com. Install this program and add
your ISP machine to connection list of your FTP client - start FTP
Explorer and the first window you see is a connection screen. You can
also click on the Connection item in the Tools menu.

Press the button Add, and enter the host, login id and the password
that you've got from your ISP. Just type in the name of your ISP in the
Profile Name field. If you did everything right, you will see your new
connection profile in the list of available FTP servers. Press the button
Connect and you’ll see the folders on your ISP's machine. Find your
folder over there and start the uploading process that is described
next.

The toolbar has two blue arrows. The arrow that points up is for
uploading. Press this arrow, and you will see a standard window that
will allow you to get into the folder with your HTML files. Select the
files that you are planning to upload and press the button Open. In a
couple of seconds you will see these files on your ISP's machine.

Pay attention to the bottom part of this window to make sure that
there were no problems during uploading.
Name the main file of your page index.html. This way your URL
will be shorter and people will not need to type the file name at the end
of your URL. For example, if the name of the folder in the ISP disk is
www.xyz.com/~David, and the main file of your Web page is
myMainPage.html, the address of your Web page would be
www.xyz.com/~David/myMainPage.html. But if the name of the main
page is index.html, the URL of your page is shorter –
www.xyz.com/~David. From now on, everyone who knows this URL,
will be able to see your page online. If, later on, you decide to modify
this Web page, you will repeat the same process again - make
corrections on your disk, and after that just upload it, to replace the
old files with the new ones.

If you decide to become a Web designer, the next language to learn is
JavaScript. This language is a lot simpler than Java and will allow you
to make your Web pages fancier.

 Java Programming for Kids, Parents and Grandparents 197

Additional Reading

1. Webmonkey for Kids:
http://hotwired.lycos.com/webmonkey/kids/

2.The World Wide Web
http://www.w3schools.com/html/html_www.asp

Practice

Create a Web page and publish the Tic-Tac-
Toe game from Chapter 7. To start, just
upload to your Web page files
TicTacToe.html and TicTacToe.class.

The End

Index
! 43
&& 43
|| 43
== 52
Access Levels 145
Adapters 90
algorithm 99
applet 92, 96, 97
argument 19, 31, 35
arguments.......................... 31
array 49, 50, 51
ArrayList 154, 155, 156
arrays 151
attributes 24, 28
AWT 55
BorderLayout 62
break 52
Buffered Streams 127
BufferedInputStream . 127
BufferedOutputStream129
CardLayout........................ 68
Casting............................... 79
catch 115, 117
class 22
CLASSPATH 5
command-line arguments129,

131
comments 40
concatenation 26
conditional if 44
constants 27
constructor 48
continue 52
Data Types 25
date 139
debug 191
debugger 88
Eclipse 11
else if 44
encapsulation 152
events 57, 74, 79
Exception 114
extends 33, 36
File 135
FileDialog 138

FileInputStream 125
FileOutputStream 126
FileReader 132
FileWriter 132
final 27
finally 118, 119
for 51
frame 56
FTP 195
Graphics 162
GridBagLayout 66
GridLayout 60
GUI 71
HTML 92, 93, 95
IDE 11
if statement 41
implement 75
import 56
inheritance 33
input stream 124
installation 2
instance 81
instance variables 47
instanceof 81
interfaces 74, 76, 89, 167, 179
Interfaces........................... 75
ISP 194, 196
jar 188, 189
Java Threads 169
Javadoc 40
JRE 9
JVM 1
layout manager 57, 59
Layout manager 57
Layout Manager 62
listeners 74, 77, 78
Logical Operators 43
Loops 51
Math................................... 47
member variable 47
message box 78
method 22
method overloading......... 140
Method Overriding............ 37
method signature 17
methods 29

MouseListener.............. 167
MouseMotionListener . 167
new 47
Object 83
object-oriented style 22
output stream 124
override 37
packages 55, 145, 146, 147
panel 57
Path 5
primitive 26, 27
primitive data types 26
private...................... 148, 149
protected 148
public....................... 18, 148
scope................................... 47
Scrapbook 26
source code 7
stack trace 113

static 18, 47
String 27, 43
subclass 33
superclass 33, 36
Swing 55, 56, 160
switch 45
SWT 55
system variables 4
this................................... 48
throw 119
throws 117
time 139
try 115, 117
try/catch block 114
void................................... 18
Web page publishing 194
while 53
WinZip 12, 189

