
Enterprise Development with Flex

Enterprise Development with Flex

Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Enterprise Development with Flex
by Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky

Copyright © 2010 Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky.. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Development Editor: Linda Laflamme
Production Editor: Adam Zaremba
Copyeditor: Nancy Kotary
Proofreader: Sada Preisch

Indexer: Ellen Troutman
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
March 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Enterprise Development with Flex, the image of red-crested wood-quails, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15416-5

[M]

1267723996

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xiii

1. Comparing Selected Flex Frameworks . 1
Frameworks Versus Component Libraries 1
Introducing Café Townsend 3

Employee List Without Frameworks 5
Cairngorm 7

Café Townsend with Cairngorm 7
To Use or Not to Use Cairngorm? 19
Report Card: Cairngorm 20

Mate 21
Report Card: Mate 27

PureMVC 29
Café Townsend with PureMVC 30
Report Card: PureMVC 42

Clear Toolkit 43
Café Townsend with Clear Toolkit 45
Report Card: Clear Toolkit 57

Final Framework Selection Considerations 59
References 61

2. Selected Design Patterns . 63
Singleton 64
Proxy 67
Mediator 74
Data Transfer Object 81
Asynchronous Token 91
Class Factory 93

A Class Factory from the Flex Framework 94
Creating UIStaticClassFactory 97
Creating UIClassFactory 103

v

3. Building an Enterprise Framework . 113
Upgrading Existing Flex Components 114

Introducing Component Library clear.swc 115
Creating a Value-Aware CheckBox 116
Creating a Centered CheckBox 118
Creating a Protected CheckBox 119
Upgrading ComboBox 121

Resources as Properties of UI Controls 127
Styles Versus Properties 130
The Base Class for Resources 131
DataGrid with Resources 134

Data Forms 138
The DataForm Component 139
The DataFormItem Component 143

Validation 151
Sample Application: DataFormValidation 153
The ValidationRule Class Explained 157
Embedding Validation Rules into a DataGrid 162

Minimizing the Number of Custom Events 169
Summary 174

4. Equipping Enterprise Flex Projects . 175
Staffing Considerations 176

GUI and Component Developers 176
Flex Architects 177
Designopers and Devigners 178

Flex Developer’s Workstation 180
IDE Choices 180
Preparing for Teamwork 181

Embedding .swf Files into HTML Pages 182
Adding a .swf to HTML with SWFObject 183

Interacting with HTML and JavaScript 185
The ExternalInterface Class 185
Flex AJAX Bridge 186
The flashVars Variable 186

Testing Flex RIA 188
Unit and Integration Testing 189
Functional Testing 191
Load Testing 194
Code Coverage 195

Application Modularization from 30,000 Feet 196
Build Scripts and Continuous Integration 197

Automation of Ant Script Creation 197

vi | Table of Contents

Maven Support 198
Continuous Integration 199

Logging with Log4Fx 200
Remote Logging with Log4Fx 201

A Grab Bag of Component Libraries 203
Integrating with the Java Spring Framework 205
Integrating with the Hibernate Framework 206
Project Documentation 208

Program Documentation with ASDoc 209
UML Diagrams 211

Accessibility of Flex RIA 211
Summary 213

5. Customizing the Messaging Layer of LCDS or BlazeDS . 215
Flex Messaging Unleashed 215
Server Messages: Shooting in the Dark 216
Sending the Client’s Heartbeats 217
Heartbeat Adapter 218
Testing the Client Heartbeat 220
Guaranteed Delivery of Server Messages 222
Building a Custom Acknowledging Channel 225
Resending Messages with QoSAdapter 228
Testing Guaranteed Delivery 233
When Message Order Matters 236

SerializingChannel 238
Guaranteed Delivery of Client Messages 244
The ReliableClientMessage Class 244
Acknowledging the Endpoint 246
Resending Channel Guarantees Delivery 247
Testing Guaranteed Delivery from the Client 251
Keeping Client Messages in Order 253
Testing Ordered Delivery of Client Messages 257
Summary 261

6. Open Source Networking Solutions . 263
BlazeDS Versus LCDS 264
Why Is AMF Important? 265

AMF Performance Comparison 266
AMF and Client-Side Serialization 268
HTTP Connection Management 269

The Hack to Increase a Web Browser’s Performance 270
Other Ways of Increasing a Web Browser’s Performance 271
What Is Comet? 273

Table of Contents | vii

Putting Streaming to Work 274
The Networking Architecture of BlazeDS 277

Setting Up a BlazeDS Sample Application on Jetty 278
Setting BlazeDS Messaging to Use the Jetty NIO API 279
NIO Performance Test 279
The Theory 279

Data Access Automation 283
Data Transfer Objects 284
ChangeObject 288
Assembler and DAO Classes 290
DataCollection Class 295

Deep Data Synchronization with BlazeDS 302
Nested DataCollections 302
Batching Remote Calls 306

Using AMF Message Headers 307
Data Push in Data Access 311
A Server as a Command Center 313

Reverse RPC 314
Extending the Protocol 318

Custom Serialization and AMF 320
Security Appliances 323
Third-Party Networking Solutions 324
Summary 325

7. Modules, Libraries, Applications, and Portals . 327
Flex Portals and Modularization 327
Basic Modularization: Image 327
Runtime Style Modules 329
Real Actors: Loader and URLLoader 333
Loading Modules with Module Loader 333
Preloading Modules with ModuleManager 334
Communicating with Modules 339
Introducing Application Domains 344
Paying Tribute to Libraries 349

RSLs: “Under”-Libraries 352
Bootstrapping Libraries as Applications 357

Sibling Domains and Multiversioning 361
Four Scenarios of Loading Portlets 362
Default Portlet Loading: Same Sandbox Child Domain 366
Loading Portlets for Multiversioning 372
Bootstrap Class Loading 375

Sample Flex Portal 379
Integrating Flex into Legacy JEE Portals 381

viii | Table of Contents

Summary 384

8. Performance Improvement: Selected Topics . 385
Planning for Modularization 386
It Takes Two to Perform 387
Application Startup and Preloaders 389

Dissecting LightweightPreloader.swf 390
The Main SWF Talks to LightweightPreloader.swf 398
Supporting Logout Functionality 404

Using Resource Shared Libraries 407
How to Link Flex Libraries 408
Flex Framework RSL 411

Optimizing RSL Loading 417
Creating Modules with Test Harness 417
Creating a Shell Application with a Custom RSL Loader 422

A Grab Bag of Useful Habits 433
Dealing with Memory Leaks 433
JIT Benefits and Implications 435
Using the Flash Builder Profiler 436
Performance Checklist 437

Summary 439

9. Working with Adobe AIR . 441
How AIR Is Different from Flex 443
HelloWorld in AIR 444
Native Windows 449
Working with Files 450

Commonly Used Directories 450
Reading and Writing to Files 452
Working with Local Databases 454

PharmaSales Application 461
Installing PharmaSales 462
The PharmaSales Application for Dispatchers 462
The PharmaSales Application for Salespeople 466
Detecting Network Availability 466
After the Salesman Logs On 470

OfflineDataCollection 478
Integrating with Google Maps 486

Summary 489

10. Developing Flex Applications for LiveCycle ES (Enterprise Suite) 491
Business Process Example: Vacation Request 492
Meet LiveCycle Workspace ES 494

Table of Contents | ix

Meet the Flexlet: Vacation Request 495
LiveCycle ES Architecture in a Nutshell 497

Endpoints 498
Custom Services 499
Tools 500

Creating Flex Applications Enabled for LiveCycle Workspace ES 501
Form Variable Declaration and Process Instantiation 502
Flexlet Mapping for User Activity 504
Controlling the View State of the Reusable Flexlet from the Process 504
Workspace: Flexlet Conversation Basics 504
Flexlet Code Walkthrough 509

Running Workspace from Adobe Sources 519
Business Example: Warehouse Processes 520

User Interface of the Retailer 521
User Interface of the Supplier 524
User Interface of the Manufacturer 525
Introducing Process Orchestration 526

The Warehouse Processes Under the Hood 528
Extending LiveCycle with Custom Services 529

Custom Providers for the User and Group Repository 529
Custom Solution Components 543

Orchestrating Processes with Asynchronous Events 550
Defining Events 551
Dispatching Events 553
Starting the Process on an Asynchronous Event 554

Blending the LiveCycle API with Custom Flex Applications 560
Invoking a LiveCycle Process on the Server 561
Starting a Process Instance from the Flex Application 563

Summary 569

11. Printing with Flex . 571
PDF Generation on the Server 574
PDF Generation on the Client 578

Basic Printing with AlivePDF 579
Enhancing AlivePDF 581
Printing Flex Containers 587

Extending Flex Components for PDF Generation in XDP Format 591
Adding Printing to the PharmaSales Application 607

Printing for Acme Pharm Dispatchers 607
Printing for Acme Pharm Salesmen 611

ClearBI: A Web Reporter for Flex 619
Summary 620

x | Table of Contents

12. Model-Driven Development with LCDS ES2 . 623
Introduction to Model-Driven Development 624

Starting Model-Driven Development with Flash Builder 4 625
Data Sources and RDS 626
What Has Been Generated? 631
Creating Master/Detail/Search View 632

Summary 635
Epilogue 636

Index . 637

Table of Contents | xi

Preface

Four years ago, the authors of this book were looking for a solid platform and a robust
component framework to develope rich Internet applications for enterprises. We
worked with AJAX. We worked with Java Swing. But when Adobe released the alpha
version of Flex 2, we realized that this was exactly what we’d been looking for. To prove
our convictions, we even created a company, Farata Systems, dedicated to the creation
of enterprise solutions that utilize Adobe Flex on the frontend.

Since then, we have worked on lots of large- and small-scale projects that involved
either Adobe Flex or AIR technologies. During these years, we have faced recurring
issues and have been able to apply the same or similar solutions over and over again.
Many solutions were about adding missing features to the UI (user interface) compo-
nents that came with Flex SDK. In some cases, we had to enhance the communication
layer of BlazeDS or LCDS. All these enhancements were possible because the Flex
framework was well designed as an open framework that allowed customization of its
parts that didn’t meet specific needs.

We’ve always shared our findings in the form of technical blogs or articles, but when
the amount of accumulated materials reached critical mass, it was clear that the time
was ripe for a book targeting enterprise RIA (Rich Internet Application) developers and
managers.

Having O’Reilly as a publisher of your book is an honor in itself, but you might not
know that to get this little “Adobe Developer Library” logo on the cover, our book
outline had to get approval from Adobe Flex team members—the most respected soft-
ware engineers in the field.

Typically, technical books on a particular software include the appropriate version
number in the title. This book is different, however; it doesn’t focus on an API that’s
specific to any version of the software. Rather, it explains the approach to efficient
design of scalable Flex applications, building component libraries, and dealing with
performance issues. Code examples from the book will work in Flex 3 and Flex 4 (in
beta at the time of this writing).

The last chapter of the book is dedicated to LCDS (LiveCycle Data Services) 3.0, which
was released just before press time and offers a new model-driven approach to

xiii

yfain11
Highlight
develop

developing data-intensive applications. Though the chapter on AIR is based on AIR
1.5, it offers a unique and original solution for data synchronization using AIR and
BlazeDS, which will work just fine with the AIR 2.0, which, as we write, is currently in
beta.

Who Is This Book For?
This book is intended for Flex and Java application architects, team leaders, and senior
developers who are interested in getting to know:

• How Flex framework works under the hood

• The pros and cons of some of the third-party libraries

• How to build reusable component libraries for their enterprises

• How to select and improve (if need be) Flex-to-Java communication

• What to watch for from a performance perspective

• How to modularize the Flex RIA

• Which design patterns to apply

• How to select third-party frameworks

This book will be very useful for Java EE (Enterprise Edition) developers who are still
not sure whether Flex SDK is a good fit for their cross-platform RIAs. We are positive
that after reading the first several chapters, you will appreciate the power and flexibility
of open source Flex SDK, third-party libraries, and their server-side tools.

This is not an introductory book, and we assume that the reader already has some
experience with developing Flex applications and a good understanding of object-
oriented design principles.

How the Book Is Organized
Even though this book doesn’t have to be read in any particular order, in some cases
we develop code samples or custom components based on materials presented earlier.
Following is a brief book outline, from which you can decide your own starting point:

Chapter 1, Comparing Selected Flex Frameworks
The goal of any framework is to make the process of software development and
maintenance easier; however, the ways of achieving this goal differ. Some people
prefer working with frameworks that are based on the Model-View-Controller
(MVC) pattern, and others like dealing with class libraries of components. Each
approach has its pros and cons. In this chapter, you’ll learn how to build the same
application using the MVC frameworks Cairngorm 2, Mate, and PureMVC. You’ll
also see a different, non-MVC approach for generating the code of a CRUD appli-
cation with components from the open source framework Clear Toolkit.

xiv | Preface

Chapter 2, Selected Design Patterns
Design patterns suggest solutions to common problems that arise during software
development. Flex is a domain-specific tool that’s aimed at creating a rich UI for
the Web, and in this chapter we’ll discuss the specifics of selected design patterns
when applied to the creation of a UI with Flex, namely:

• Singleton

• Proxy

• Mediator

• Data Transfer Object

• AsyncToken

• Class Factory

Chapter 3, Building an Enterprise Framework
For the majority of the enterprise applications, development comes down to a few
major activities:

• Creating data grids

• Working with forms

• Validating data

In this chapter, you’ll learn how to build components for your enterprise frame-
work that simplify dealing with these activities. We’ll identify some of the issues
with Flex 3 SDK components and show you how to extend and enhance them.

Chapter 4, Equipping Enterprise Flex Projects
Typical enterprise RIA projects are developed by mixed teams of client and server-
side developers. This chapter is essentially a laundry list of topics that development
managers and team leaders are facing:

• What skillsets are required for the project

• How to automate creation of build and deployment scripts

• What tools to use for testing

• What continuous integration is

• How to arrange for logging

• Which third-party component libraries might come in handy

Chapter 5, Customizing the Messaging Layer of LCDS or BlazeDS
This chapter starts with a quick example of how to perform the push by making a
direct call to a MessageBroker, which comes with LCDS and BlazeDS. It continues
with a discussion of the existing world of custom adapters and message channels.
You’ll see how to implement a messaging layer with guaranteed message delivery
and take care of the proper sequencing of messages using BlazeDS implementation
of the AMF (Action Message Format) protocol.

Preface | xv

Chapter 6, Open Source Networking Solutions
Open sourcing of Flex framework in general, and its communication protocols and
server-side components in particular, plays an important role in the adoption of
Flex by enterprises. Although large-scale applications are most likely powered by
LCDS, smaller ones will find open source server-side components very useful. This
chapter will unleash the power of AMF and provide illustrations of how to create
a robust platform for development of a modern RIA without paying hefty licensing
fees. It will discuss polling and server-side push techniques for client-server com-
munications, as well as how to extend the capabilities of BlazeDS. You’ll also learn
how to create a BlazeDS-based solution similar to LCDS’s Data Management Serv-
ices, where you’ll be creating ChangeObject, Assembler, and DAO classes that will take
care of automated data synchronization between Flex clients and Java servers.

Chapter 7, Modules, Libraries, Applications, and Portals
This chapter suggests an approach to creating every Flex application as a modu-
larized portal that loads and communicates with independently built and compiled
modules and subapplications. You’ll learn how to work with module loaders and
the difference between application, child, and sibling domains. We’ll explain how
to properly design module-to-module communications. You’ll get familiar with an
original technique for compiling RSLs (Runtime Shared Libraries) that are self-
initialized, and finally, you will learn how to integrate existing Flex applications as
legacy JEE portals.

Chapter 8, Performance Improvement: Selected Topics
This chapter continues the conversation started in Chapter 7. We’ll talk about
actual versus perceived performance of RIA and discuss the use of application pre-
loaders to make the first page of your RIA appear as soon as possible. We’ll also
describe how to improve the process of initial loading of RSLs, which serves the
same goal: minimizing the amount of code that travels from the server to the client
computer. You’ll learn how to build every application as a portal while providing
an independent testing environment for multideveloper teams. The chapter ends
by focusing on issues that affect the performance of most Flex applications.

Chapter 9, Working with Adobe AIR
Adobe AIR is a cross-platform development environment and runtime that adds
an API required for desktop applications, comes with a local DBMS (Database
Management System), and substantially simplifies embedding HTML into RIA by
offering a full-featured embedded web browser engine. This chapter starts by cov-
ering the basics of AIR development, but quickly turns into a project for a fictitious
pharmaceutical company that demonstrates a solution for data synchronization
between local and remote databases when the network is not always available but
the application must remain operational. This solution works with occasionally
connected AIR/BlazeDS as well as AIR/LCDS applications. As a bonus, the sample
application also demonstrates how to integrate Google Maps into an AIR
application.

xvi | Preface

Chapter 10, Developing Flex Applications for LiveCycle ES (Enterprise Suite)
LiveCycle is an SOA (Service Oriented Architecture) platform that runs on Java EE
application servers, and this chapter is about creating enterprise workflows using
this tool. You will learn how to use a web browser–based UI written in Flex to
streamline the part of the workflow that requires user interaction. We’ll cover the
process of extending LiveCycle with your application-specific services, and the
creation of complex PDF documents. The larger portion of this chapter explains
how to integrate LiveCycle ES functionality with your existing Flex-based
applications.

Chapter 11, Printing with Flex
Printing is often one of the most time-consuming tasks in developing Flex enter-
prise applications. Just using the Flex printing API would require allocation of
substantial budget and human resources. In this chapter, we’ll discuss an open
source solution for generating PDF documents on the client. This printing func-
tionality will be applied to the sample pharmaceutical application introduced in
Chapter 9.

Chapter 12, Model-Driven Development with LCDS ES2
In this chapter, you’ll see how to create a CRUD application in which Flex talks to
a remote database via recently released LCDS 3.0. The good part is that no pro-
gramming is required. You’ll create a data model and the rest of the code will be
generated automatically.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Preface | xvii

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Enterprise Development with Flex, by Ya-
kov Fain, Victor Rasputnis, and Anatole Tartakovsky. Copyright 2010 Yakov Fain,
Victor Rasputnis, and Anatole Tartakovsky, 978-0-596-15416-5.” If you feel your use
of code examples falls outside fair use or the permission given here, feel free to contact
us at permissions@oreilly.com.

The source code for this book is available online; each chapter is in a single zipped
folder. To download the sample code for a chapter, enter the directory URL followed
by the name of the chapter with the extension .zip. For example, the code for Chap-
ter 5 can be accessed at the following URL:

http://faratasystems.com/entflex_sc/chapter5/chapter5.zip

If you see a directory called Flex4 in some of the .zip files, it contains a port of the Flex
3 code samples. Please note that the folder for Chapter 4 doesn’t exist, as there is no
sample code in that chapter. The folder for Chapter 6 doesn’t exist either, because all
of the source code for enhanced Flex components is included in the clear.swc library
in the Clear Toolkit CVS repository at SourceForge. To save space, Chapters 7 and
10 contain only manually written code.

Most of the chapters contain Flex projects copied from the workspaces of the authors
of this book. In certain cases, supporting libraries were not included (such as Chap-
ter 8), as some of the projects were more than 300 MB! To use the code in these cases,
create a new project in Flash Builder and copy the source code into the newly created
project.

xviii | Preface

mailto:permissions@oreilly.com
http://faratasystems.com/entflex_sc/chapter5/chapter5.zip

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596154165

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
Writing a book requires very serious support from family members, and we’d like to
thank them—especially our children, who got used to the idea that after coming home
from work, dads still have to be glued to those computers to work on some boring
technical book.

Preface | xix

http://oreilly.com/catalog/9780596154165
mailto:bookquestions@oreilly.com
http://oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

We’d like to thank all the members of the Flex community who appreciated our work
in the past and encouraged us to continue sharing every little bit of knowledge we’ve
gained.

We are grateful to the excellent software engineers from the Adobe Flex team, who put
their trust in our ability to write such a complex and advanced book. Our special thanks
to one unknown member of the Flex team who allegedly said during the book approval
process something like, “I don’t agree with many of the things that these authors write
about Flex, and I’d rather not approve them, but I will because there are not many
people in the industry who are capable of writing such a book.” We don’t know your
name, but we consider this assessment to be the best compliment we’ve received so far.

Our praise goes to the cover designers, who correctly visualized the authors of this book
without ever seeing them.

We’d like to thank Aliaksandr Yuzafovich for his research and contribution into the
data synchronization solution described in Chapter 9.

Our hats off to Linda Laflamme, an excellent development editor from O’Reilly. After
reading some of her comments, we had the feeling that she understands technical ma-
terials better than we do.

And mainly, we thank you, our readers, for reading this book.

—Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky

Technical Editor Bios
Kaushik Datta is currently working at Mercedes-Benz USA, LLC, where he and his
team have built Flex-based web applications. He has been using Flex since the beta
Royale days. Kaushik spends his off-hours reading blogs on various other Adobe prod-
ucts and looking for better designer–developer workflows. He also enjoys cricket and
theater. You can reach him at kaudata@yahoo.com.

Greg Jastrab is presently a technical project manager at SmartLogic Solutions in Bal-
timore, MD. He’s been using Flex since version 1.5 and occasionally speaks at local
Adobe user groups. Outside of work, Greg enjoys relaxing with his wife and dog, and
playing the guitar, video games, and poker. You can follow him at http://blog.smartlo
gicsolutions.com, and on Twitter at @gjastrab.

Igor Lachter is currently a Senior Developer at SAIC, where he is involved in devel-
oping a procurement system using Flex technology. He’s been working with Flex since
version 3, utilizing many of the approaches described in this book. When not pro-
gramming, he tutors SAT Math and plays soccer with his three daughters. You can
reach him online at igor_gl@yahoo.com.

xx | Preface

mailto:kaudata@yahoo.com
http://blog.smartlogicsolutions.com
http://blog.smartlogicsolutions.com
http://twitter.com/gjastrab
mailto:igor_gl@yahoo.com

CHAPTER 1

Comparing Selected Flex Frameworks

The first 90% of the code accounts for the first 90% of
the development time. The remaining 10% of the code

accounts for the other 90% of the development time.

—Tom Cargill

Frameworks Versus Component Libraries
Whenever the subject of third-party architectural frameworks is raised at a gathering
of Flex developers, the developers are quick to start explaining how they use and like
a particular framework. But a simple question like “Why do you use this framework?”
often catches them off guard. Many enterprise developers, especially those who came
to Flex after spending some time developing Java EE applications, just know that using
these frameworks is the right thing to do. Is it so? What are the benefits of using ar-
chitectural frameworks? This chapter offers some answers as to what you should expect
of a framework built on top of the Flex framework.

The goal of any well-designed framework is to make the process of software develop-
ment and maintenance easier. There are different ways of achieving this goal. Some
people prefer working with frameworks that are based on the Model-View-Controller
pattern; others like dealing with libraries of components. Each approach has its benefits
and costs. In this chapter, you will learn how to build the same application using several
frameworks or component libraries used by Flex developers.

First let’s define the term framework versus component library. Imagine a new housing
development. For some pieces of property, the builder has already erected the frames
for certain house models, but some of the pieces of property have only piles of con-
struction materials guarded by specially trained dogs. By the entrance to the new
community, you see completely finished model house with lots of upgrades.

You have three options:

• Purchase the model house and move in a month.

1

• Purchase one of five prearchitected models (see those houses that are framed?).
The frames are pretty much ready; you just need to select windows, flooring, and
kitchen appliances.

• Purchase a custom house using a mix of builder’s and your own materials.

Now, to draw some analogies from the software engineering world, Case A is the
equivalent of purchasing an all-encompassing enterprise software package that comes
with 2,000 database tables and thousands of lines of code, with a promise to cover all
the needs of your organization.

Case B is the equivalent of a software framework that you must code in ways that
operate by the rules of framework, adding your own application-specific logic where
appropriate. Often such frameworks are intrusive—you have to include in your appli-
cation code hooks to build your software on the pillars of selected framework.

Case C gives you complete freedom of choice, as long as you have all the components
and the know-how to put them together. For some people, it’s the most appealing
option, but for others it is the most intimidating option, because it has such freedom;
these people select option B to ensure that their house will not be blown away by the
Big Bad Wolf, as in the fairy tale “The Three Little Pigs” (http://en.wikipedia.org/wiki/
Three_Little_Pigs).

Adobe Flex provides you with an extendable framework that you can use as a solid
starting point for your business application. Along with that, there are a number of
third-party frameworks and component libraries created with the same noble goal: to
make your life easier.

As Flex is already a framework, you should have very strong reasons to create another
one. Flex has extendable components and events, and when you work in a team of
developers, each of them may have a different understanding of how custom compo-
nents should find and communicate with each other, how to properly organize the
project, and how to make a team work more productively. At the time of this writing,
there are about a dozen Flex frameworks from which you can choose to help you or-
ganize your Flex project. Each of these frameworks has the same goal: to increase each
developer’s productivity.

In this chapter, you’ll get familiar with three architectural frameworks and one toolkit,
which includes additional productivity plug-ins and a component library. Of course,
as the readers of this book may have a different understanding of what easy means, the
authors decided to show you how you can build the same application using each of the
frameworks or libraries. (Each of the reviewed products is offered at no charge.)

The sample application that you will build is based on Café Townsend, a small program
that was originally developed by creators of the Cairngorm framework. This application
allows the end user to maintain data for Café Townsend’s employees. The application
reads data from the database, displays a list of employees, and allows the user to add
a new employee or edit an existing employee.

2 | Chapter 1: Comparing Selected Flex Frameworks

http://en.wikipedia.org/wiki/Three_Little_Pigs
http://en.wikipedia.org/wiki/Three_Little_Pigs

The chapter starts by introducing the original Cairngorm Café Townsend application
on the Adobe website at http://www.adobe.com/go/cairngorm. Next, it explores the
version of the application written in the Mate framework and published on the
AsFusion website at http://mate.asfusion.com. The chapter then analyzes the version of
the application written in the Cliff Hall’s PureMVC framework and published at http:
//www.puremvc.org. Finally, you’ll explore a version of the Café Townsend application
generated with the help of the open source Clear Toolkit (available at http://sourceforge
.net/projects/cleartoolkit). The Café Townsend application versions are posted on each
framework’s corresponding website, which is the best place to download the sample
application and the given framework, as it’s safe to assume that the authors of the
frameworks in each case have either written or approved the code.

Each of the following sections starts with a brief introduction of the framework or
library, followed by a code walkthrough and conclusions. Each framework will be ex-
plored, followed by a report card evaluation of the framework’s pros and cons.

Introducing Café Townsend
The original Café Townsend application consists of three views (Figures 1-1, 1-2, and
1-3). These views allow the user to log in, display the list of employees, and add a new
employee of the café. The application also has one image (the Café Townsend logo)
and a CSS file, main.css, for styling.

Figure 1-1. Café Townsend Employee Login view

Introducing Café Townsend | 3

http://www.adobe.com/go/cairngorm
http://mate.asfusion.com
http://www.puremvc.org
http://www.puremvc.org
http://sourceforge.net/projects/cleartoolkit
http://sourceforge.net/projects/cleartoolkit

Figure 1-2. Café Townsend Employee List view

The application retrieves data from Employee.xml, as shown in the following code
snippet:

<?xml version="1.0" encoding="utf-8"?>
<employees>
 <employee>
 <emp_id>1</emp_id>
 <firstname>Sue</firstname>
 <lastname>Hove</lastname>
 <email>shove@cafetownsend.com</email>
 <startdate>01/07/2006</startdate>
 </employee>
 ...
</employees>

Although retrieving data from an XML file simplifies the explanation of this framework
in this example, it is preferable that you pass the typed data from the server in real-
world projects, for example, Java value objects converted into their ActionScript
strongly typed peers. This technique eliminates the need to write a lot of mundane code
to convert the startdate from String to Date and the like.

At the end of this chapter, you’ll learn how to include a Java-to-ActionScript 3.0 version
of the Café Townsend application, which uses Flex remoting to populate the data.

4 | Chapter 1: Comparing Selected Flex Frameworks

Figure 1-3. Café Townsend Employee Details view

Employee List Without Frameworks
The title of this section is a bit of a misnomer, because Flex itself is a framework. But
we wanted to stress that you can create an application that reads XML and displays the
data in a list control without the use of any additional third-party framework or com-
ponent library.

The Flex framework already supports the MVC pattern by separating the view (the
List control) and the data that can be stored in a nonvisual data provider such as
ArrayCollection. Let’s write a quick-and-dirty version of the EmployeeList component
that does not use any frameworks.

This Café application uses HTTPService to read the file Employees.xml located in the
folder assets, and a List component displays the full name of the employee using the
label function fullName().

The data is stored in the data provider employees (a.k.a. MVC’s Model), and the List
controls play the role of MVC’s View. For simplicity, this version does not have error
processing, and the Add Employee and Logout buttons are nonfunctional.

The following application (Example 1-1) reads the list of employees using just the Flex
framework.

Introducing Café Townsend | 5

Example 1-1. EmployeeList using the Flex framework

<?xml version="1.0" encoding="utf-8"?>
<!-- The service call empService.send() plays the role of MVC Controller -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
 creationComplete="empService.send()">

 <mx:Panel title="Employee List" horizontalCenter="0">
 <mx:HBox paddingTop="25">
 <mx:Button label="Add New Employee" />
 <mx:Spacer width="100%" />
 <mx:Button label="Logout" />
 <mx:Spacer width="100%" height="20" />
 </mx:HBox>

 <!-- List of Employees a.k.a. View-->
 <mx:List id="employees_li" dataProvider="{employees}"
 labelFunction="fullName" width="100%"/>
 </mx:Panel>

 <mx:HTTPService id="empService" url="assets/Employees.xml"
 result="employeeDataHandler(event)" />

 <mx:Script>
 <![CDATA[
 import mx.rpc.events.ResultEvent;
 import mx.collections.ArrayCollection;

 //data provider for the list is an ArrayCollection a.k.a. model
 [Bindable]
 private var employees: ArrayCollection=new ArrayCollection;

 private function employeeDataHandler(event:ResultEvent):void{
 employees=event.result.employees.employee;
 }
 // format the names to display last and first names in the List
 public function fullName(empItem : Object) : String {
 return empItem.lastname + ", " + empItem.firstname;
 }
]]>
 </mx:Script>
</mx:Application>

Because real-world RIAs (rich Internet applications) are a lot more complex than this
simple application and may contain a hundred or more different views created by mul-
tiple developers with data coming from different sources, consider using one of the
additional frameworks or component libraries to simplify the programming of similar
tasks and to better organize the project.

Now let’s consider the Café application rewritten in Cairngorm, Mate, PureMVC, and
the Clear Toolkit.

6 | Chapter 1: Comparing Selected Flex Frameworks

Cairngorm
The architectural framework Cairngorm was created by Alistair McLeod and Steven
Webster while they were working at the company iteration::two (they are presently
employed by Adobe Consulting). Cairngorm implements several design patterns such
as MVC, Command, and Delegate. It was open sourced in the summer of 2008.

Cairngorm was designed to ensure that UI components do not need to know where
data is located. The business layer retrieves data from the servers and stores it in the
memory objects that represent the data model, which use binding to notify the UI
components about data arrival or changes. On the same note, changes in the UI are
propagated to the server side through this business layer.

The Cairngorm framework promotes the use of the MVC design pattern in the client
portion of your RIA. It offers a number of classes implementing Model, View, and
Controller tiers, and interaction between them.

The Model tier is represented by the class ModelLocator, which stores the application-
specific data (these are often collections of value objects a.k.a. data transfer objects).
ModelLocator’s data is bound to the View controls.

The View portion contains visual components required by your application, value ob-
jects, and Cairngorm-specific event classes used for communication with the Model
and Controller tiers.

The Controller tier is responsible for invoking appropriate code containing the business
logic of your application, which is implemented by using global FrontController and
ServiceLocator classes as well as additional Command and Delegate classes.

The Cairngorm framework’s documentation and sample applications are located at
http://www.cairngormdocs.org.

As this chapter was being written, Adobe decided to rebrand Cairn-
gorm; instead of a mere framework, they are promoting it as a set of
tools and methodologies containing various frameworks, including
what has been earlier known as the “Cairngorm framework.” You can
read about this Cairngorm 3 initiative at http://opensource.adobe.com/
wiki/display/cairngorm/Cairngorm+3. In this chapter, we refer to Cairn-
gorm 2, which was an MVC Flex framework and nothing else.

Café Townsend with Cairngorm
The “pure Flex” code shown in Example 1-1 includes representatives of each MVC tier.
The code knows that the data will be loaded into an ArrayCollection (the Model) by
the HTTP service pointing at the Employees.xml file by calling a send() method on the
creationComplete event (the Controller) of the application. The List component (the
View) knows about its model and is bound to it directly via its dataProvider property.

Cairngorm | 7

http://www.cairngormdocs.org
http://opensource.adobe.com/wiki/display/cairngorm/Cairngorm+3
http://opensource.adobe.com/wiki/display/cairngorm/Cairngorm+3

The data flow between Cairngorm components while displaying a list of café employees
is depicted in Figure 1-4.

FrontController

1. Dispatch
event

2. Execute
command

7. Update
model

8. Update bound
view component

6. Return
result/fault

5. Return
result/fault

3. Call business
function

4. Call remote
service

7. Update
model

8. Update bound
view component

ModelLocator

8. Update bound
view componentView

Command

DelegateServices

Figure 1-4. Cairngorm employee list data flow

The Cairngorm version of this application has the following six major participants:

Services
The UI portion does not know about implementation of services and can’t call
them directly, so you must move the HTTPService object into a special file called
Services.mxml.

FrontController
The view and the service layer can’t send events to each other directly, but rather
have to be registered with a singleton FrontController that maps all application
events to appropriate actions (commands).

Command
When a View component fires an event, FrontController finds the Command class
that was registered with this event and calls its method execute().

Delegate
The method execute() of the Command class creates an instance of the Delegate class
that knows which service to call (HTTPService, RemoteObject, WebService) and re-
turns the result or fault to the Command class.

8 | Chapter 1: Comparing Selected Flex Frameworks

ModelLocator
The Command class updates the data in the model (typically, a collection of value
objects) defined in the global ModelLocator.

View
Because each model located inside the ModelLocator is bound to a UI control, its
content gets updated automatically.

Use the source code of the Café Townsend Multi-View Contact Management applica-
tion that was converted to Cairngorm 2 by Darren Houle and is available under the
Creative Commons license (http://creativecommons.org/licenses/by/2.5/). You can
download the source code of this application at http://cairngormdocs.org/blog/?p=19.

In Figure 1-5 is the screenshot of the Café Townsend Flash Builder project. Please note
that the code for the six participants mentioned earlier is organized in separate packages
(folders). The business folder is for delegates and service components. The command
folder is for Command classes; control is for events and FrontController; the
ModelLocator is located in the model folder; and the folder view has visual components
as shown in Figures 1-1 through 1-3. The value objects of the application have been
placed in the folder called vo. Regardless of what framework you are going to use,
separating various application components in project subfolders helps make the project
more organized (Figure 1-5).

Figure 1-5. Café Townsend Cairngorm project structure

To make Cairngorm classes available to your application, just download Cairngorm’s
compiled version (binary) and add cairngorm.swc to the Library path of your Flex
project (use the Flex Build Path menu under your project’s properties).

Let’s get familiar with the Cairngorm workflow by tracing the data and events starting
from the main application object of Café Townsend, shown in Example 1-2. Please

Cairngorm | 9

http://creativecommons.org/licenses/by/2.5/
http://cairngormdocs.org/blog/?p=19

note the use of four global objects: AppModelLocator, Services, AppController, and
CairngormEventDispatcher.

Example 1-2. The application file of Café Townsend

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!--
 Cafe Townsend MVC Tutorial © 2006 Adobe
 Converted to Cairngorm 2 by Darren Houle
 lokka_@hotmail.com http://www.digimmersion.com
 This is released under a Creative Commons license.
 http://creativecommons.org/licenses/by/2.5/
-->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:business="com.adobe.cafetownsend.business.*"
 xmlns:control="com.adobe.cafetownsend.control.*"
 xmlns:view="com.adobe.cafetownsend.view.*" backgroundColor="#000000"
 creationComplete="loadEmployees();" layout="vertical
 viewSourceURL="srcview/index.html">

 <mx:Script>
 <![CDATA[
 import com.adobe.cairngorm.control.CairngormEventDispatcher;
 import com.adobe.cafetownsend.control.LoadEmployeesEvent;
 import com.adobe.cafetownsend.model.AppModelLocator;

 [Bindable]
 private var model: AppModelLocator =
 AppModelLocator.getInstance();

 private function loadEmployees() : void {
 var cgEvent : LoadEmployeesEvent = new LoadEmployeesEvent();
 CairngormEventDispatcher.getInstance().dispatchEvent(cgEvent);
 }
]]>
 </mx:Script>

 <business:Services id="services"/>

 <control:AppController id="appController"/>

 <mx:Style source="assets/main.css"/>
 <mx:Image source="assets/header.jpg" width="700"/>
 <mx:HBox backgroundColor="#ffffff" paddingBottom="10" paddingLeft="10"
 paddingRight="10" paddingTop="10" width="700">
 <mx:VBox paddingRight="10" verticalScrollPolicy="off" width="100%">
 <mx:ViewStack paddingBottom="10" paddingTop="10" resizeToContent="true"
 selectedIndex="{model.viewing}" width="100%">
 <view:EmployeeLogin/>
 <view:EmployeeList/>
 <view:EmployeeDetail/>
 </mx:ViewStack>
 </mx:VBox>
 </mx:HBox>
</mx:Application>

10 | Chapter 1: Comparing Selected Flex Frameworks

In the example code, CairngormEventDispatcher dispatches the cgEvent:

CairngormEventDispatcher.getInstance().dispatchEvent(cgEvent);

Cairngorm’s front controller (AppController) creates an instance of a command class
that was registered to process this event (see Example 1-4).

To eliminate the need to import CairngormEventDispatcher in every view, starting from
the Cairngorm 2.2 you can call the dispatch() method on the event itself, which uses
CairngormEventDispatcher internally, that is:

cgEvent.dispatch();

The three views of the Café Townsend application object are implemented as compo-
nents located in the ViewStack container.

On the application startup, the code dispatches LoadEmployeesEvent and, as if by magic,
the EmployeeList gets populated from Employees.xml. How did it happen? LoadEm
ployeesEvent is a subclass of CairngormEvent (Example 1-3).

Example 1-3. The class LoadEmployeesEvent

package com.adobe.cafetownsend.control {

 import com.adobe.cairngorm.control.CairngormEvent;
 import com.adobe.cafetownsend.control.AppController;

 public class LoadEmployeesEvent extends CairngormEvent {

 public function LoadEmployeesEvent() {
 super(AppController.LOAD_EMPLOYEES_EVENT);
 }
 }
}

This class creates an event with an ID AppController.LOAD_EMPLOYEES_EVENT, which
among other events has been registered and mapped to the command LoadEmployees
Command in the global AppController implementation shown in Example 1-4.

Example 1-4. The AppController implementation

package com.adobe.cafetownsend.control {

 import com.adobe.cairngorm.control.FrontController;
 import com.adobe.cafetownsend.command.*;

 public class AppController extends FrontController {

 public static const LOAD_EMPLOYEES_EVENT : String =
 "LOAD_EMPLOYEES_EVENT";
 public static const LOGIN_EMPLOYEE_EVENT : String =
 "LOGIN_EMPLOYEE_EVENT";
 public static const ADD_NEW_EMPLOYEE_EVENT : String =
 "ADD_NEW_EMPLOYEE_EVENT";
 public static const UPDATE_EMPLOYEE_EVENT : String =

Cairngorm | 11

 "UPDATE_EMPLOYEE_EVENT";
 public static const LOGOUT_EVENT : String =
 "LOGOUT_EVENT";
 public static const CANCEL_EMPLOYEE_EDITS_EVENT : String =
 "CANCEL_EMPLOYEE_EDITS_EVENT";
 public static const DELETE_EMPLOYEE_EVENT : String =
 "DELETE_EMPLOYEE_EVENT";
 public static const SAVE_EMPLOYEE_EDITS_EVENT : String =
 "SAVE_EMPLOYEE_EDITS_EVENT";

 public function AppController() {
 addCommand(AppController.LOAD_EMPLOYEES_EVENT, LoadEmployeesCommand);
 addCommand(AppController.LOGIN_EMPLOYEE_EVENT, LoginEmployeeCommand);
 addCommand(AppController.ADD_NEW_EMPLOYEE_EVENT, AddNewEmployeeCommand);
 addCommand(AppController.UPDATE_EMPLOYEE_EVENT, UpdateEmployeeCommand);
 addCommand(AppController.LOGOUT_EVENT, LogoutCommand);
 addCommand(AppController.CANCEL_EMPLOYEE_EDITS_EVENT,
 CancelEmployeeEditsCommand);
 addCommand(AppController.DELETE_EMPLOYEE_EVENT, DeleteEmployeeCommand);
 addCommand(AppController.SAVE_EMPLOYEE_EDITS_EVENT,
 SaveEmployeeEditsCommand);
 }
 }
}

The next point of interest is the class LoadEmployeesCommand. This command class im-
plements the Command implementation (Example 1-5), which forces you to implement
the method execute(), which can invoke the right delegate class that has the knowledge
of “who to talk to” when a specific command has been received. The method exe
cute() must have an argument—the instance of the CairngormEvent object that may or
may not encapsulate some application data, for example some Value Object, which is
not used in our scenario.

It also implements the interface IResponder, which requires you to add the result()
and fault() methods. By using these callbacks the delegate will return to the command
class the result (or error information) of the execution of the command in question.

Example 1-5. The Command implementation

package com.adobe.cafetownsend.command {

 import mx.rpc.IResponder;
 import com.adobe.cairngorm.commands.Command;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.adobe.cafetownsend.business.LoadEmployeesDelegate;
 import com.adobe.cafetownsend.model.AppModelLocator;

 public class LoadEmployeesCommand implements Command, IResponder {

 private var model : AppModelLocator = AppModelLocator.getInstance();

 public function execute(cgEvent:CairngormEvent) : void {

12 | Chapter 1: Comparing Selected Flex Frameworks

 // create a worker who will go get some data
 // pass it a reference to this command so the delegate
 // knows where to return the data
 var delegate : LoadEmployeesDelegate = new LoadEmployeesDelegate(this);

 // make the delegate do some work
 delegate.loadEmployeesService();
 }

 // this is called when the delegate receives a result from the service
 public function result(rpcEvent : Object) : void {
 // populate the employee list in the model locator with
 // the results from the service call
 model.employeeListDP = rpcEvent.result.employees.employee;
 }

 // this is called when the delegate receives a fault from the service
 public function fault(rpcEvent : Object) : void {
 // store an error message in the model locator
 // labels, alerts, etc can bind to this to notify the user of errors
 model.errorStatus = "Fault occured in LoadEmployeesCommand.";
 }
 }
}

Because this version of the Café Townsend application uses the HTTPService request
for retrieval, Flex automatically converts Employees.xml into ArrayCollection and does
not use the value object Employee.as. This leads to the need for additional coding to
convert the data to appropriate types. For example, employee startDate will be stored
as a string and will require code to convert it to Date if any date manipulations will be
required.

If you’ll be using Cairngorm in your projects, consider simplifying the application de-
sign by eliminating the delegate classes. Just move the business logic from the delegate
right into the execute() method of the command class itself.

Create a common ancestor to all your commands and define the fault method there to
avoid repeating the same code in each command class.

To load the employees, the Command class creates an instance of the proper delegate
passing the reference to itself (this is how the delegate know where to return the data)
and calls the method loadEmployeeService():

var delegate : LoadEmployeesDelegate = new LoadEmployeesDelegate(this);
delegate.loadEmployeesService();

Have you noticed that the Command class has also reached for the AppModelLocator to be
able to update the model?

private var model : AppModelLocator = AppModelLocator.getInstance();
...
model.employeeListDP = rpcEvent.result.employees.employee;
...
 model.errorStatus = "Fault occured in LoadEmployeesCommand.";

Cairngorm | 13

Now, let’s take a peek into the Delegate class from Example 1-6. It gets a hold of the
global ServiceLocator class, the only player that knows about who’s hiding behind the
mysterious name loadEmployeeService. The method loadEmployeesService() sends the
request to the execution and assigns the responder (the instance of LoadEmploy
eesCommand), engaging the AsyncToken design pattern described in Chapter 2.

Example 1-6. The Delegate implementation

package com.adobe.cafetownsend.business {

 import mx.rpc.AsyncToken;
 import mx.rpc.IResponder;
 import com.adobe.cairngorm.business.ServiceLocator;

 public class LoadEmployeesDelegate {

 private var command : IResponder;
 private var service : Object;

 public function LoadEmployeesDelegate(command : IResponder) {
 //constructor will store a reference to the service we're going to call
 this.service = ServiceLocator.getInstance().getHTTPService(
 'loadEmployeesService');
 // and store a reference to the command that created this delegate
 this.command = command;
 }

 public function loadEmployeesService() : void {
 // call the service
 var token:AsyncToken = service.send();
 // notify this command when the service call completes
 token.addResponder(command);
 }
 }
}

As mentioned previously, each Cairngorm application has a central registry that knows
about each and every service that may be used by the application (Example 1-7).

Example 1-7. The Services implementation

<?xml version="1.0" encoding="utf-8"?>
<cairngorm:ServiceLocator
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cairngorm="com.adobe.cairngorm.business.*">

 <mx:HTTPService id="loadEmployeesService" url="assets/Employees.xml" />

</cairngorm:ServiceLocator>

In our case it’s just one HTTPService, but in a real-world scenario, the Services.mxml file
may list dozens of services. As every service must have a unique ID (in our case, it’s
loadEmployeesService), the delegate class was able to find it by using the following line:

14 | Chapter 1: Comparing Selected Flex Frameworks

this.service = ServiceLocator.getInstance().getHTTPService(
 'loadEmployeesService');

If you’d need to call a service implemented as RemoteObject, the delegate would be
calling the method getRemoteObject() instead of getHTTPService(). For web services,
call the method getWebService().

Those who work with Data Management Services can use Cairngorm’s Enter
priseServiceLocator and its method getDataService().

ServiceLocator can be used not only as a repository of all services, but also as an au-
thorization mechanism that restricts access to certain application services based on
specified credentials. See its methods setCredentials() and setRemoteCredentials()
for details.

The final portion of the loading employees process goes as follows:

1. The loadEmployeesService class reads Employees.xml

2. The delegate gets the result and passes it to the result() method of the Command
class (see Example 1-5)

3. The Command class updates the model.employeeListDP via ModelLocator

4. The List component on the View gets automatically updated, because it’s bound
to model.employeeListDP (see Example 1-8)

Example 1-8. The View: EmployeesList.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*" width="100%"
 horizontalAlign="center">

 <mx:Script>
 <![CDATA[
 import com.adobe.cairngorm.control.CairngormEventDispatcher;
 import com.adobe.cafetownsend.control.AddNewEmployeeEvent;
 import com.adobe.cafetownsend.control.UpdateEmployeeEvent;
 import com.adobe.cafetownsend.control.LogoutEvent;
 import com.adobe.cafetownsend.model.AppModelLocator;

 [Bindable]
 private var model : AppModelLocator = AppModelLocator.getInstance();

 // mutate the add new employee button's click event
 public function addNewEmployee() : void {
 // broadcast a cairngorm event
 var cgEvent : AddNewEmployeeEvent = new AddNewEmployeeEvent();
 CairngormEventDispatcher.getInstance().dispatchEvent(cgEvent);

 //de-select the list item
 clearSelectedEmployee();
 }

 // mutate the List's change event
 public function updateEmployee() : void {

Cairngorm | 15

 //broadcast a cairngorm event that contains selectedItem from the List
 var cgEvent : UpdateEmployeeEvent = new UpdateEmployeeEvent(
 employees_li.selectedItem);
 CairngormEventDispatcher.getInstance().dispatchEvent(cgEvent);

 // de-select the list item
 clearSelectedEmployee();
 }

 // mutate the logout button's click event
 private function logout() : void {
 // broadcast a cairngorm event
 var cgEvent : LogoutEvent = new LogoutEvent();
 CairngormEventDispatcher.getInstance().dispatchEvent(cgEvent);
 }

 // format the names that are displayed in the List
 public function properName(dpItem : Object) : String {
 return dpItem.lastname + ", " + dpItem.firstname;
 }

 // de-select any selected List items
 private function clearSelectedEmployee() : void {
 employees_li.selectedIndex = -1;
 }
]]>
 </mx:Script>

 <mx:Panel title="Employee List" horizontalCenter="0">
 <mx:HBox paddingTop="25">
 <mx:Button label="Add New Employee" click="addNewEmployee()" />
 <mx:Spacer width="100%" />
 <mx:Button label="Logout" click="logout()" />
 <mx:Spacer width="100%" height="20" />
 </mx:HBox>
 <!-- data provider for the list is an ArrayCollection stored in
 the centralized model locator -->
 <mx:List id="employees_li" dataProvider="{ model.employeeListDP }"
 labelFunction="properName" change="updateEmployee()" width="100%"
 verticalScrollPolicy="auto"/>
 </mx:Panel>
</mx:VBox>

We’re almost there, but let’s not forget about the ModelLocator, the storage of your
application’s data. At the time of this writing, the code of the Café Townsend appli-
cation published at http://cairngormdocs.org still implements the ModelLocator
interface, but recently has been renamed to IModelLocator.

In Example 1-9 the class AppModelLocator implements IModelLocator.

Example 1-9. The ModelLocator of Café Townsend Cairngorm

package com.adobe.cafetownsend.model {

 import mx.collections.ArrayCollection;

16 | Chapter 1: Comparing Selected Flex Frameworks

http://cairngormdocs.org

 import com.adobe.cairngorm.model.ModelLocator;
 import com.adobe.cafetownsend.vo.Employee;
 import com.adobe.cafetownsend.vo.User;

 [Bindable]
 public class AppModelLocator implements ModelLocator {

 // this instance stores a static reference to itself
 private static var model : AppModelLocator;

 // available values for the main viewstack
 // defined as constants to help uncover errors at compile time
 public static const EMPLOYEE_LOGIN : Number = 0;
 public static const EMPLOYEE_LIST : Number = 1;
 public static const EMPLOYEE_DETAIL : Number = 2;
 // viewstack starts out on the login screen
 public var viewing : Number = EMPLOYEE_LOGIN;

 // user object contains uid/passwd
 // its value gets set at login and cleared at logout but nothing
 // binds to it or uses it retained since it was used in the
 // original Adobe CafeTownsend example app
 public var user : User;

 // variable to store error messages from the httpservice
 // nothing currently binds to it, but an Alert or the login box
 // could to show startup errors
 public var errorStatus : String;

 // contains the main employee list, which is populated on startup
 // mx:application's creationComplete event is mutated into a
 // cairngorm event that calls the httpservice for the data
 public var employeeListDP : ArrayCollection;

 // temp holding space for employees we're creating or editing
 // this gets copied into or added onto the main employee list
 public var employeeTemp : Employee;

 // singleton: constructor only allows one model locator
 public function AppLocator(){
 if (AppModelLocator.model != null)
 throw new Error(
 "Only one ModelLocator instance should be instantiated");
 }

 // singleton always returns the only existing instance to itself
 public static function getInstance() : AppModelLocator {
 if (model == null)
 model = new AppModelLocator();
 return model;
 }
 }
 }

Cairngorm | 17

This model locator stores the data and the state of this application—in particular, the
variable employeeListDP, which is the place where the list of employees is being stored.

Please note that as ActionScript 3 does not support private constructors, the public
constructor of this class throws an error if someone tries to improperly instantiate it
(i.e., using the new command) but the instance of this object already exists.

We went through the entire process of displaying the initial list of employees, but just
to ensure that the Cairngorm data flow is clear, we’ll include a brief explanation of yet
another use case from Café Townsend.

The user presses the Add New Employee button (see Figure 1-2), enters the detail info
for a new employee on the View component shown on Figure 1-3, and presses the
Submit button. This is what’s happening between this button click and the moment
when the new employee appears in the employee list:

If you want to follow along, please download the source code of Café
Townsend and start from EmployeeDetail.mxml on the following line:

<mx:Button label="Submit" click="saveEmployeeEdits()"
id="submit" />

1. The SaveEmployeeEditsEvent event is dispatched:

var cgEvent : SaveEmployeeEditsEvent = new
 SaveEmployeeEditsEvent(model.employeeTemp.emp_id, firstname.text,
 lastname.text,startdate.selectedDate, email.text);

CairngormEventDispatcher.getInstance().dispatchEvent(cgEvent);

For some reason, the author of this code decided not to use EmployeeVO here and
stores each Employee attribute separately in SaveEmployeeEvent. This is not the best
way of encapsulating data inside a custom event, but let’s keep the original code
intact.

2. The FrontController receives this event and passes it to the registered command
SaveEmployeeEditsCommand (see Example 1-4) for execution.

3. The execute() method of SaveEmployeeEditsCommand does not use any delegates, as
it just needs to add a newly inserted Employee to the model. Because this application
does not save modified data anywhere other than in memory, no other service calls
are made to pass the changed data to the server side for persistence.

4. The view portion of the employee list gets updated automatically as a result of data
binding.

While planning for your application with Cairngorm, think of all events, services, value
objects, and business services and then create appropriate classes similarly to the way
it was done in the Café Townsend example.

18 | Chapter 1: Comparing Selected Flex Frameworks

To Use or Not to Use Cairngorm?
Online you may encounter lots of debate regarding whether Cairngorm should be used
in Flex projects. With all due respect to the creators of Cairngorm, we don’t believe
that Cairngorm makes a Flex team more productive and that most enterprise projects
would not benefit from it. We prefer working with frameworks that offer enhanced
Flex components rather than just separation of work among team members. If you have
to develop a project without experienced Flex developers on your team, however,
Cairngorm can give your project a structure that will prevent it from failing.

So is Cairngorm right for your project? Read Chapters 2, 3 and 6, and then decide
whether you prefer working with the components described there or one of the archi-
tectural MVC frameworks. Meanwhile, keep these observations about Cairngorm in
mind:

• Cairngorm’s architecture is based on components dispatching events to a global
event handler without knowing what the latter will do with them. The problem
with this approach is in the global nature of such an event handler. The
FrontController object serves as a central registry of all Cairngorm events. Al-
though keeping all application events in one place simplifies their maintenance, it
leads to tighter coupling of the application components.

• Using a centralized ModelLocator also makes multiple components dependent on
the knowledge of the properties of the model. If your project will start growing,
the ModelLocator may not scale well.

• Modularizing Flex applications is one of the major ways of minimizing the size of
the downloadable SWF files. The other benefit is reusability of the modules. Now
imagine a midsize web application that consists of 10 modules. If this application
has been built using Cairngorm, each of these modules becomes dependent on the
central FrontController located in the main .swf file.

• Application developers have to write lots of boilerplate code. For example, you
have to create additional event and command classes for every event that can be
dispatched in your application. Even in a midsize application this can translate to
a hundred or more additional Cairngorm-specific classes. To minimize the amount
of manually written code, consider using Cairngen, an open source code generator
for Cairngorm. It’s available at http://code.google.com/p/cairngen/.

• FrontController allows you to map only one command per event, yet your appli-
cation may need to have several event listeners per command.

• Even though data binding can help in writing less code, because Cairngorm en-
forces data binding as the only mechanism of updating the views, it makes them
nonreusable. For example, you can’t just simply reuse the EmployeeList.mxml from
Example 1-8 in another application, because it has an intimate knowledge of the
internals of the model and relies on the fact that the model has a public variable

Cairngorm | 19

http://code.google.com/p/cairngen/

employeeListDP. Just simple renaming of this variable in the ModelLocator will re-
quire changes in one or more views that are bound to it.

• Having no other choice but data binding for updating the UI may cause perform-
ance problems. The global ModelLocator object defines multiple bindable variables
representing different models, and the Flex compiler may generate additional Even
tDispatcher objects on the class level (this depends on the types of the variables).
Suppose you have 10 [Bindable] String variables in the ModelLocator. If one of
them will get updated, not only will its listener get notified to update the view, but
the other nine will get this event too.

• The fact that Cairngorm is built around a Command pattern with a centrally lo-
cated command repository can be very convenient for some projects that require
audit or undo functionality. Every command arrives at the same place and you can
conditionally hook up, say, an undo module that remembers old/new states of
some data or logs every user request (this can be a must in some financial trading
applications).

• Cairngorm has been around longer than any other Flex framework. As of today,
it’s the most popular framework, and many Flex developers around the world
already know it, which may be an important factor for development managers who
put together large project teams, especially when the teams consist of a large num-
ber of junior Flex developers.

Report Card: Cairngorm
Cairngorm separates business- and UI-related work into different layers, which means
that the work of the project team can be split between developers responsible for the
visual portion and those who are coding just the business logic of the application. The
fact that all services are located in a central place allows us to quickly reconfigure the
data sources, i.e., switch to QA or production servers.

Development managers who have to work with distributed teams of beginner or mid-
level Flex developers and need a safety net to split the project work into smaller con-
trollable tasks (e.g., John works on the server side and Srinivas works only on the views)
may consider using Cairngorm. Here’s the report card followed by more detailed
explanations.

The pros are:

• It’s a popular framework—many Flex developers know it.

• It allows separate responsibilities of developers.

• It lowers the requirements for developers’ skillsets.

The cons are:

• It requires developers to write lots of additional classes, which adds to project
timeline.

20 | Chapter 1: Comparing Selected Flex Frameworks

• It’s built on global singletons, which complicates modularization.

• It allows only one-to-one mapping between events and commands.

• The framework design is based on singletons, which leads to tight object coupling.

Mate
Mate is an event- and tag-based Flex framework. The API is in MXML tags. Mate-based
applications are built using implicit invocation caused by dispatching and dependency
injection of the results into views.

With implicit invocation, any interested object can listen to the events that are listed
(with their handlers) in one or more MXML components of type <EventMap>. Any im-
portant action in the application should generate one of the events listed in this map.
In Mate, as opposed to Cairngorm, an application developer can configure multiple
handlers for each event and specify the sequence in which they should be invoked by
assigning priorities in the event handler.

This section walks you through the Mate framework by analyzing its version of Café
Townsend, created by a Mate team, which we encourage you to download from http:
//mate.asfusion.com/page/examples/cafe-townsend.

The data flow between Mate components while displaying a list of café employees is
depicted in Figure 1-6.

7. Optionally
chain

business
functions

3. Find
corresponding
EventHandler

2. Event
bubbles up

1. Dispatch
system or

custom event
8. Update

model
6. Call

business
function

10. Inject
data into

view

9. Injection
gets
data

5. Return
result/fault

4. Call
service

MyEventMap.mxml

custom event MyEvent

7. Optionally

6. Call

<EventHandler>

10. Inject
data into

view

9. Injection
gets

1. Dispatch
system or

custom event

10. Inject

<PropertyInjector>

MyComponent Remote
service

9. Injection

MyModel

View

Figure 1-6. Bringing a list of employees with Mate

Mate | 21

http://mate.asfusion.com/page/examples/cafe-townsend
http://mate.asfusion.com/page/examples/cafe-townsend

Mate is a much less intrusive framework than Cairngorm, as it does not force developers
to add lots of boilerplate code in their applications. Figure 1-7 shows the project struc-
ture of the Café. The folder maps contains objects added to the Café project, because
it’s written using Mate (at least one event map is required). These objects are included
in the main application as follows:

<maps:MainEventMap />
<maps:ModelMap />

All events that bubble up in Café will reach these map objects, which will process them
according to the event handlers defined in these event maps.

Cairngorm relies on central repositories of events, services, and models; Mate promotes
decoupling between business logic, events, and services. Mate does not force you to
extend any classes. Just create an <EventMap> in your application object, define
<EventHandler> tags there, and declare the services required for processing of these
events inside the handlers, i.e., <RemoteObjectInvoker>, <HTTPServiceInvoker>, or
<WebServiceInvoker>. When your application grows, consider creating multiple Even
tMap objects to keep them manageable.

Example 1-10 depicts about a half of the code of the MainEventMap.mxml from Café
Townsend.

Example 1-10. Fragment of MainEventMap.mxml

<?xml version="1.0" encoding="utf-8"?>
<EventMap xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns="http://mate.asfusion.com/">

 <mx:Script>
 <![CDATA[
 import mx.events.*;
 import com.cafetownsend.events.*;
 import com.cafetownsend.business.*;
]]>
 </mx:Script>

Figure 1-7. Café Townsend Mate project structure

22 | Chapter 1: Comparing Selected Flex Frameworks

 <!-- FlexEvent.PREINITIALIZE -->

 <EventHandlers type="{FlexEvent.PREINITIALIZE}">
 <ObjectBuilder generator="{AuthorizationManager}"
 constructorArguments="{scope.dispatcher}" />
 </EventHandlers>

 <!-- FlexEvent.APPLICATION_COMPLETE -->

 <EventHandlers type="{FlexEvent.APPLICATION_COMPLETE}">

 <HTTPServiceInvoker instance="{employeesService}">
 <resultHandlers>
 <MethodInvoker generator="{EmployeeParser}"
 method="loadEmployeesFromXML"
 arguments="{resultObject}" />

 <MethodInvoker generator="{EmployeeManager}"
 method="saveEmpoyeeList" arguments="{lastReturn}" />
 </resultHandlers>
 </HTTPServiceInvoker>

 </EventHandlers>

 <!-- LoginEvent.LOGIN -->

 <EventHandlers type="{LoginEvent.LOGIN}">
 <MethodInvoker generator="{AuthorizationManager}" method="login"
 arguments="{[event.username, event.password]}" />

<!-- Because there is no server request, we just send the response right away.
 Normally, we would do this inside the resultSequence -->
 <ResponseAnnouncer type="loginResultResponse">
 <Properties loginResult="{lastReturn}"/>
 </ResponseAnnouncer>
 </EventHandlers>

 <!-- EmployeeEvent.SAVE -->

 <EventHandlers type="{EmployeeEvent.SAVE}">
 <MethodInvoker generator="{EmployeeManager}"
 method="saveEmployee" arguments="{event.employee}"/>
 <!-- assume everything was ok, make employee list show up -->
 <EventAnnouncer generator="{NavigationEvent}"
 type="{NavigationEvent.EMPLOYEE_LIST}"/>
 </EventHandlers>

...
 <mx:HTTPService id="employeesService" url="assets/data/Employees.xml"
 resultFormat="e4x" />
</EventMap>

In the example code, note the declaration of the handler of the system Flex event
APPLICATION_COMPLETE with nested HttpServiceInvoker to get the data from Employ-
ees.xml via employeesService, which is defined at the very end of this map using the

Mate | 23

familiar <mx:HTTPService> tag. EventHandler objects match the type of the received event
with the one specified in the type attribute in the map file.

When your application receives the result of the call to employeesService, it invokes
the functions defined in the resultHandlers nested inside the service invoker. In our
case, two methods listed in the result handler section are called sequentially: Employee
Parser.loadEmployeesForXML() and EmployeeManager.saveEmployeeList().

<resultHandlers>
 <MethodInvoker generator="{EmployeeParser}"
 method="loadEmployeesFromXML"
 arguments="{resultObject}" />

 <MethodInvoker generator="{EmployeeManager}"
 method="saveEmpoyeeList" arguments="{lastReturn}" />
 </resultHandlers>

The first method, loadEmployeeList(), gets the resultObject returned by the
HTTPService. The second one, saveEmployeeList(), gets the value returned by the first
method via a predefined Mate variable called lastReturn. This way you can chain sev-
eral method calls if needed.

Example 1-11 shows that that the method loadEmployees() converts XML into an Ac-
tionScript Array object and returns it to Mate, which, according to the event map,
forwards it to the method saveEmployeeList() for further processing (see Exam-
ple 1-12). The name saveEmployeeList() is a bit misleading, because this method does
not persist data, but rather stores it in memory in an ArrayCollection object.

Example 1-11. EmployeeParser.as

package com.cafetownsend.business{
 import com.cafetownsend.vos.Employee;

 public class EmployeeParser {
 public function loadEmployeesFromXML(employees:XML):Array {
 var employeeList:Array = new Array();

 for each(var thisEmployee:XML in employees..employee){
 var employee:Employee = new Employee();
 employee.email = thisEmployee.email;
 employee.emp_id = thisEmployee.emp_id;
 employee.firstname = thisEmployee.firstname;
 employee.lastname = thisEmployee.lastname;
 employee.startdate = new
 Date(Date.parse(thisEmployee.startdate));
 employeeList.push(employee);
 }
 return employeeList;
 }
 }
}

24 | Chapter 1: Comparing Selected Flex Frameworks

The EmployeeManager plays the role of the model here—it stores employees in the col-
lection employeeList and information about the selected/new employee in the variable
employee.

Example 1-12. The model: EmployeeManager.as

package com.cafetownsend.business{
 import com.cafetownsend.vos.Employee;
 import flash.events.Event;
 import flash.events.EventDispatcher;
 import mx.collections.ArrayCollection;

 public class EmployeeManager extends EventDispatcher {

 private var _employeeList:ArrayCollection;
 private var _employee:Employee;

 [Bindable (event="employeeListChanged")]
 public function get employeeList():ArrayCollection{
 return _employeeList;
 }

 [Bindable (event="employeeChanged")]
 public function get employee():Employee{
 return _employee;
 }

 public function saveEmpoyeeList(employees:Array):void {
 _employeeList = new ArrayCollection(employees);
 dispatchEvent(new Event('employeeListChanged'));
 }

 public function selectEmployee(employee:Employee):void {
 _employee = employee;
 dispatchEvent(new Event('employeeChanged'));
 }

 public function deleteEmployee (employee:Employee) : void {
 _employeeList.removeItemAt(_employeeList.getItemIndex(employee));
 selectEmployee(null);
 }

 public function saveEmployee (employee:Employee) : void {
 var dpIndex : int = -1;

 for (var i : uint = 0; i < employeeList.length; i++) {
 // does the the incoming emp_id exist in the list
 if (employeeList[i].emp_id == employee.emp_id) {
 // set our ArrayCollection index to that employee position
 dpIndex = i;
 }
 }

 if (dpIndex >= 0) {
 // update the existing employee

Mate | 25

 (employeeList.getItemAt(dpIndex) as Employee).copyFrom(employee);
 } else {
 // add the employee to the ArrayCollection
 var tempEmployee:Employee = new Employee();
 tempEmployee.copyFrom(employee);
 employeeList.addItem(tempEmployee);
 }
 // clear out the selected employee
 selectEmployee(null);
 }
 }
}

So far, so good. The array of employees will be passed to the function saveEm
ployeeList() and placed for storage in the employeeList collection. But where’s the link
between the model and the view?

EmployeeList.mxml, located in the package view, has the fragment shown in
Example 1-13.

Example 1-13. Fragment from the view: EmployeeList.mxml

 [Bindable]
public var employees:ArrayCollection = null;
...
<mx:List id="employees_li" dataProvider="{employees}"
labelFunction="properName" change="updateEmployee()" width="100%" />

And now let’s take a peek at the content of the second mapping object, called
ModelMap.mxml, show in in Example 1-14. It uses Mate’s PropertyInjector object,
which “injects” the value into the variable EmployeeList.employee from EmployeeMan
ager.employeeList (there is one more PropertyInjector, which is irrelevant for our
discussion).

Example 1-14. ModelMap.mxml

<?xml version="1.0" encoding="utf-8"?>
<EventMap xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="http://mate.asfusion.com/">
 <mx:Script>
 <![CDATA[
 import com.cafetownsend.business.*;
 import com.cafetownsend.views.*;
]]>
</mx:Script>

 <Injectors target="{EmployeeDetail}" >
 <PropertyInjector targetKey="selectedEmployee"
 source="{EmployeeManager}" sourceKey="employee" />
 </Injectors>

 <Injectors target="{EmployeeList}">
 <PropertyInjector targetKey="employees"
 source="{EmployeeManager}" sourceKey="employeeList" />

26 | Chapter 1: Comparing Selected Flex Frameworks

 </Injectors>
</EventMap>

If you sense a Dependency Injection design pattern, you’re right.

This pattern really helps you create loosely coupled components. Let’s revisit the code
fragment of the view shown in Example 1-13. It’s written “assuming” that the some
outsider object will populate the variable employees. This code does not reach out for
another specific component, demanding, “Give me the data!” It waits until someone
injects the data.

And this someone is declared in ModelMap.mxml as follows:

<PropertyInjector targetKey="employees"
 source="{EmployeeManager}" sourceKey="employeeList" />

At this point, software developers familiar with Java Spring framework should feel at
home. It’s the same concept. Objects never reach out for other object’s data—the
plumbing is done in third-party declarative components (XML in Spring and MXML
in Mate). The benefits are obvious: components don’t depend on one another. Just
write the mapping file like ModelMap.mxml and specify the source and target for the
data.

Another benefit is simplified testing—if the real data feed is not ready, create a mock
model object and use it in the PropertyInjector tag. Switching to a real data model is
just a matter of changing a couple of properties in this injector.

Creators of the Mate version of the Café Townsend application have decided to use
EmployeeParser and EmployeeManager objects, but the Mate framework does not force
you to separate parsing or any other business logic from the model. In this case, the
parser could have injected the data directly to the view without even performing this
loop converting XML into an array.

In the case of Cairngorm, a view that needs some data would reach out for the model
by making a call like ModelLocator.getModelLocator().employeeList, which mean that
the view is tightly coupled with a ModelLocator object.

In case of Mate injectors, the view waits to receive employeeList without making any
RPC (Remote Procedure Call) calls.

Report Card: Mate
Mate is a nonintrusive MXML framework that offers flexible separation of the appli-
cation views and processing logic. The application developers are not forced to do all
of their plumbing exclusively via Mate and are free to use standard Flex event processing
along with the EventMap object offered by Mate. Because it is tag-based, Flex developers
will find it easy to program with. The learning curves of Mate and Cairngorm are com-
parable. Here’s the report card:

The pros are:

Mate | 27

• Mate is nonintrusive—Mate-specific code can be encapsulated in a handful of
objects.

• It’s MXML-based and allows you to keep using the Flex event model.

• It promotes loose coupling between components by implementing dependency
injection.

• It’s well documented.

The cons are:

• It hasn’t been officially released yet.

• It doesn’t support working with Data Management Services offered by LCDS, and
because of this you’d need to code this part manually.

As opposed to Cairngorm, using Mate in your application does not require developers
to create many additional classes or components just to support the life cycle of the
framework itself. This explains why the Mate version of the released Café Townsend
SWF is about 10 percent smaller.

Mate promotes loose coupling between components by implementing a Dependency
Injection design pattern. But loose coupling comes at a price—all communications in
Mate are done via events, which have more overhead compared to making direct func-
tion calls. Events require additional object instances to be created, as you don’t just call
a function on some component, but have to create an instance of some event and dis-
patch it to that component. The receiving party has to create additional event listeners,
which may become a source of memory leaking.

Function calls do not have these issues and offer additional benefit-type checking of
arguments and returned values.

Mate also uses singletons, but they do not have to be instantiated by application de-
velopers. Application components are also instantiated by the framework as per MXML
tags included in the EventMap object, which also performs the role of a class factory with
lazy instantiation—if the event that required an instance of EmployeeManager was never
triggered, the instance is not created. A special Boolean attribute cache on
MethodInvoker and ObjectBuilder ensures that the instance will be garbage-collected.

Currently, Mate offers over 30 MXML tags, but this number can be increased by ap-
plication developers. For example, by subclassing Mate’s AbstractServiceInvoker
class, you can create a new tag that implements a service that’s specific to your appli-
cation and can be invoked from EventMap, the same way other services can.

If your application uses Flex modules, Mate documentation suggests that you can place
EventMap objects in the main application as well as in modules. But as with any frame-
work that uses global objects (EventMap in this case), you can run into conflicts between
events defined in the module’s map and the main application’s map. Of course, if
modules are created to be used with only one application, you can come up with some
naming conventions to ensure that every event has a unique name, but this may cause

28 | Chapter 1: Comparing Selected Flex Frameworks

issues if you’d like to treat modules as functional black boxes that can be reused in
multiple applications.

Mate does not offer UI controls; it does not include code generators to automate the
development process. It does not support automatic data synchronization between the
client and the server (LCDS Data Management Service) and would require manual
programming in this area.

Mate is the youngest of all frameworks reviewed in this chapter. But even though (at
the time of this writing) Mate hasn’t been released yet, it’s well documented.

PureMVC
PureMVC is not Flex but rather an ActionScript (AS) framework. PureMVC concen-
trates on the task of creating generic a framework for low-level AS objects; Flex comes
with “prebuilt suggestions” of how a Model/View/Controller might work—and it of-
fers lots of hooks throughout the data and UI classes that help implement MVC. But
because Flex, AIR, and Flash understand this language, PureMVC can be used in any
applications built in any of these environments.

Similarly to Cairngorm, PureMVC is built on singletons. The Model, View, Controller,
and Facade classes are singletons. In Cairngorm, developers need to write code to in-
stantiate each singleton; in PureMVC, only the Facade class has to be instantiated in
the application code and creation of the Model, View, and Controller classes is done by
the Facade class itself.

In Cairngorm, you create an application-specific FrontController and register event-
command pairs; in PureMVC, you create a Facade class and register notification-
command pairs there. With PureMVC, you can execute multiple commands as a re-
action to a notification.

Object-oriented programming languages arrange event-driven communication be-
tween the objects by implementing the Observer design pattern. An observer object is
registered with one or more observable objects that generate notifications to be con-
sumed by the observer.

Cliff Hall, the author of PureMVC, went the same route to ensure that this framework
can be used even in other than Flash environments that don’t offer
flash.events.Event and EventDispatcher classes.

Views are controlled by their mediator objects, which maintain maps of notifications
and their observers.

Notifications are a PureMVC implementation of event-driven communication between
application components. The author of PureMVC wanted to make this framework
portable to other languages; hence standard Flash events are not used in the framework,
even though Flex developers still can use regular events to process, say, button clicks.

PureMVC | 29

Although flash.events.Event is not leveraged by the PureMVC framework, the
Notification class has the property called body typed as Object, which is a place for
storing application-specific data that may need to be carried by a notification object.
In pure ActionScript, you’d have to create a custom event object providing a place-
holder for the custom data (on the other hand, in custom ActionScript events, the data
can be strongly typed as opposed to being just Objects).

Café Townsend with PureMVC
To better understand this framework, take a walk through the code of Café Townsend
that was ported to PureMVC by Michael Ramirez. Please download this application at
http://trac.puremvc.org/Demo_AS3_Flex_CafeTownsend.

The data flow between PureMVC components while displaying a list of café employees
is depicted in Figure 1-8.

Your goal remains the same: Walk the route that would display the list of café em-
ployees. Figure 1-9 shows the structure of this application in Flash Builder.

The code of the CafeTownsend.mxml application is shown in Example 1-15. You’ll see
a familiar ViewStack container that holds employee login, list, and detail views. It de-
clares the variable facade, which holds the reference to the ApplicationFacade singleton
that is created during initializing the value of this variable. Then the method
startup() is called on this ApplicationFacade object inherited from PureMVC’s
Facade class.

Example 1-15. CafeTownsend.mxml—the application

<?xml version="1.0"?>
<!-- PureMVC AS3 Demo - Flex CafeTownsend
 Copyright (c) 2007-08 Michael Ramirez <michael.ramirez@puremvc.org>
 Parts Copyright (c) 2005-07 Adobe Systems, Inc.
 Your reuse is governed by the Creative Commons Attribution 3.0 License -->

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:view="org.puremvc.as3.demos.flex.cafetownsend.view.components.*"
 xmlns:mvc="org.puremvc.as3.demos.flex.cafetownsend.*"
 layout="vertical" backgroundColor="#000000"
 creationComplete="facade.startup(this)">

 <mx:Script>
 <![CDATA[
 import org.puremvc.as3.demos.flex.cafetownsend.*;
 private var facade:ApplicationFacade =
 ApplicationFacade.getInstance();
]]>
 </mx:Script>

 <mx:Style source="assets/main.css" />
 <mx:Image source="@Embed('assets/header.jpg')" width="700" />
 <mx:HBox paddingBottom="10" paddingLeft="10" paddingRight="10"

30 | Chapter 1: Comparing Selected Flex Frameworks

http://trac.puremvc.org/Demo_AS3_Flex_CafeTownsend

 paddingTop="10" backgroundColor="#ffffff" width="700">
 <mx:VBox width="100%" verticalScrollPolicy="off"
 paddingRight="10">
 <mx:ViewStack id="vwStack" width="100%" paddingBottom="10"
 paddingTop="10" resizeToContent="true" creationPolicy="all">
 <view:EmployeeLogin id="employeeLogin" />
 <view:EmployeeList id="employeeList" />
 <view:EmployeeDetail id="employeeDetail" />
 </mx:ViewStack>
 </mx:VBox>
 </mx:HBox>
</mx:Application>

9. List
notifications

of interest

19. Update
view

8. Send
notification

0. Create
application

facade
10. Register
mediators

11. Retrieve
proxy()

1. Create
view

2. Create
model

3. Create
controller

8. Create
mediators

7. Create
main

mediator

12. Register
main

mediator
13. Retrieve

proxy

5. Create
proxy(ies)

6. Call remote
service

7. Return
result/fault

5. Register
proxy as

responder

4. Create
delegate

6. Register
proxy

4. Map
notifications to

commands

MyView1..n

notifications

19. Update 8. Send

MyMediator1..n

mediators

11. Retrieve
MyMainMediator

MyFacade

4. Map
notifications to

Controller

Model

1. Create

View

MyApplication

Optionally
add

subcommandssubcommandsMyModelCommandMyViewCommand

5. Register

4. Create
delegate

MyProxy1..n 5. Register

responder

MyDelegate1..n

Remote Service1..n

Figure 1-8. Bringing the employee list with PureMVC

PureMVC | 31

Figure 1-9. Café Townsend with PureMVC—the project structure

During creation of the Facade instance, PureMVC automatically initializes the instances
of Model, View, and Controller classes, and if you need to execute application-specific
code during this process, override the appropriate initialize method.

Example 1-16. ApplicationFacade.as

/* PureMVC AS3 Demo - Flex CafeTownsend
 Copyright (c) 2007-08 Michael Ramirez <michael.ramirez@puremvc.org>
 Parts Copyright (c) 2005-07 Adobe Systems, Inc.
 Your reuse is governed by the Creative Commons Attribution 3.0 License */
package org.puremvc.as3.demos.flex.cafetownsend{
 import org.puremvc.as3.interfaces.*;
 import org.puremvc.as3.patterns.proxy.*;
 import org.puremvc.as3.patterns.facade.*;

 import org.puremvc.as3.demos.flex.cafetownsend.view.*;
 import org.puremvc.as3.demos.flex.cafetownsend.model.*;
 import org.puremvc.as3.demos.flex.cafetownsend.controller.*;

32 | Chapter 1: Comparing Selected Flex Frameworks

zaremba
Sticky Note
this example needs an in-text xref before it

yfain11
Cross-Out

yfain11
Replacement Text
instance (see Example 1-16)

 /**
 * A concrete <code>Facade</code> for the <code>CafeTownsend</code>
 application.
 * The main job of the <code>ApplicationFacade</code> is to act as a single
 * place for mediators, proxies, and commands to access and communicate
 * with each other without having to interact with the Model, View, and
 * Controller classes directly. All this capability it inherits from
 * the PureMVC Facade class.</P>
 * This concrete Facade subclass is also a central place to define
 * notification constants which will be shared among commands, proxies, and
 * mediators, as well as initializing the controller with Command to
 * Notification mappings.</P>
 */
 public class ApplicationFacade extends Facade
 {
 // Notification name constants
 public static const STARTUP:String= "startup";
 public static const SHUTDOWN:String= "shutdown";
 public static const APP_LOGOUT:String= "appLogout";
 public static const APP_LOGIN:String= "appLogin";
 public static const LOAD_EMPLOYEES_SUCCESS:String="loadEmployeesSuccess";
 public static const LOAD_EMPLOYEES_FAILED:String="loadEmployeesFailed";
 public static const VIEW_EMPLOYEE_LOGIN:String= "viewEmployeeLogin";
 public static const VIEW_EMPLOYEE_LIST:String= "viewEmployeeList";
 public static const VIEW_EMPLOYEE_DETAIL:String= "viewEmployeeDetail";
 public static const ADD_EMPLOYEE:String= "addEmployee";
 public static const UPDATE_EMPLOYEE:String= "updateEmployee";
 public static const SAVE_EMPLOYEE:String= "saveEmployee";
 public static const DELETE_EMPLOYEE:String = "deleteEmployee";
 /**
 * Singleton ApplicationFacade Factory Method
 */
 public static function getInstance() : ApplicationFacade{
 if (instance == null) instance = new ApplicationFacade();
 return instance as ApplicationFacade;
 }
 /**
 * Register Commands with the Controller
 */
 override protected function initializeController() : void {
 super.initializeController();
 registerCommand(STARTUP, ApplicationStartupCommand);
 }

 public function startup(app:CafeTownsend):void{
 sendNotification(STARTUP, app);
 }
 }
}

In Example 1-16, during controller initialization, the STARTUP notification is regis-
tered with the command class ApplicationStartupCommand. So far it looks pretty similar
to Cairngorm’s FrontController from Example 1-4, doesn’t it?

PureMVC | 33

But PureMVC allows you to invoke more than one command as a response to a noti-
fication. For example, the author of this version of Café Townsend decided to invoke
two commands during the application startup—ModelPrepCommand and ViewPrepCom
mand. When your command class extends MacroCommand, you are allowed to register a
sequence of subcommands, and the ApplicationStartupCommand looks like
Example 1-17.

Example 1-17. ApplicationStartupCommand.as

/* PureMVC AS3 Demo - Flex CafeTownsend
 Copyright (c) 2007-08 Michael Ramirez <michael.ramirez@puremvc.org>
 Parts Copyright (c) 2005-07 Adobe Systems, Inc.
 Your reuse is governed by the Creative Commons Attribution 3.0 License*/
package org.puremvc.as3.demos.flex.cafetownsend.controller
{
 import org.puremvc.as3.patterns.com7mand.*;
 import org.puremvc.as3.interfaces.*;
 /**
 * A MacroCommand executed when the application starts.
 */
 public class ApplicationStartupCommand extends MacroCommand {
 override protected function initializeMacroCommand() :void{
 addSubCommand(ModelPrepCommand);
 addSubCommand(ViewPrepCommand);
 }
 }
}

We’ll follow the model preparation route at this point, but we’ll get back to
ViewPrepCommand in Example 1-22.

After the controller tier that routes commands come the proxy classes that deal with
both—data models and the service calls if need be. Let’s follow the ModelPrepCommand
(Example 1-18). It registers employee and user proxy classes with the Facade class, so
they know where to send notifications.

Example 1-18. ModelPrepCommand.as

/*PureMVC AS3 Demo - Flex CafeTownsend
 Copyright (c) 2007-08 Michael Ramirez <michael.ramirez@puremvc.org>
 Parts Copyright (c) 2005-07 Adobe Systems, Inc.
 Your reuse is governed by the Creative Commons Attribution 3.0 License */
package org.puremvc.as3.demos.flex.cafetownsend.controller {
 import org.puremvc.as3.interfaces.*;
 import org.puremvc.as3.patterns.command.*;
 import org.puremvc.as3.patterns.observer.*;
 import org.puremvc.as3.demos.flex.cafetownsend.*;
 import org.puremvc.as3.demos.flex.cafetownsend.model.*;
 /**
 * Create and register <code>Proxy</code>s with the <code>Model</code>.
 */
 public class ModelPrepCommand extends SimpleCommand{
 override public function execute(note:INotification) :void{

34 | Chapter 1: Comparing Selected Flex Frameworks

 facade.registerProxy(new EmployeeProxy());
 facade.registerProxy(new UserProxy());
 }
 }
}

We are about halfway through the process of getting the employee list with PureMVC.
This time, we’ll just get familiar with a fragment of the code for the EmployeeProxy class
(Example 1-19).

Example 1-19. A fragment of EmployeeProxy.as

public class EmployeeProxy extends Proxy implements IResponder {
 public static const NAME:String = "EmployeeProxy";
 public var errorStatus:String;

 public function EmployeeProxy (data:Object = null){
 super (NAME, data);
 }

 public function loadEmployees():void{
 // create a worker who will go get some data pass it a reference to
 // this proxy so the delegate knows where to return the data
 var delegate : LoadEmployeesDelegate =new LoadEmployeesDelegate(this);

 // make the delegate do some work
 delegate.loadEmployeesService();
 }

 // this is called when the delegate receives a result from the service
 public function result(rpcEvent : Object) : void{

 // populate the employee list in the proxy with the results
 // from the service call
 data = rpcEvent.result.employees.employee as ArrayCollection;
 sendNotification(ApplicationFacade.LOAD_EMPLOYEES_SUCCESS);
 }

 // this is called when the delegate receives a fault from the service
 public function fault(rpcEvent : Object) : void {
 data = new ArrayCollection();
 // store an error message in the proxy
 // labels, alerts, etc can bind to this to notify the user of errors
 errorStatus = "Could Not Load Employee List!";
 sendNotification(ApplicationFacade.LOAD_EMPLOYEES_FAILED);
 }

Proxies link the data model with services. The model is represented by the variable data
that’s predefined in the superclass. The service is available via the delegate class, which
in this version of Café Townsend is called LoadEmployeesDelegate. Because Employee
Proxy implements the iResponder interface, it must include the methods result() and
fault(). In the case of success, the variable data is populated with the retrieved list of
employees and notification LOAD_EMPLOYEES_SUCCESS is sent to whoever is interested in

PureMVC | 35

hearing about it—you can take a peek at the method listNotificationInterests() in
Example 1-21. In the case of failure, this version of Café Townsend just assigns a value
to the variable errorStatus and sends the notification LOAD_EMPLOYEES_FAILED.

As you can see in Example 1-20, the delegate class to load employees has nothing
specific to PureMVC—it just sets the responder and uses HTTPService to read the file
Employees.xml.

Example 1-20. LoadEmployeesDelegate.as

 /*
 PureMVC AS3 Demo - Flex CafeTownsend
 Copyright (c) 2007-08 Michael Ramirez <michael.ramirez@puremvc.org>
 Parts Copyright (c) 2005-07 Adobe Systems, Inc.
 Your reuse is governed by the Creative Commons Attribution 3.0 License
 */
package org.puremvc.as3.demos.flex.cafetownsend.model.business
{
 import mx.rpc.AsyncToken;
 import mx.rpc.IResponder;
 import mx.rpc.http.HTTPService;

 public class LoadEmployeesDelegate{
 private var responder : IResponder;
 private var service : HTTPService;

 public function LoadEmployeesDelegate(responder : IResponder) {
 this.service = new HTTPService();
 this.service.url="assets/Employees.xml";

 // store a reference to the proxy that created this delegate
 this.responder = responder;
 }

 public function loadEmployeesService() : void {
 // call the service
 var token:AsyncToken = service.send();

 // notify this responder when the service call completes
 token.addResponder(responder);
 }
 }
}

Now trace how the employees will arrive to the view. The view tier in PureMVC has
two players: the UI component and the mediator class. Chapter 2 discusses the Mediator
pattern, but in general, its role is to arrange the communication of two or more com-
ponents without them knowing about each other. For example, an application con-
tainer has a shopping cart component and a product list component. When the user
makes a selection, the product component sends an event carrying the selected product
to the mediator (e.g., an application), which forwards it to the shopping cart
component.

36 | Chapter 1: Comparing Selected Flex Frameworks

But PureMVC mediators play the role of middlemen between the UI components and
proxy objects (not controllers), and the need for these middlemen is questionable. In
our opinion, it would be cleaner to introduce a value object and pass it directly (in the
body of Notification) between the view and its controller rather than having the me-
diator reaching out to internals of both the proxy and the view. But it is what it is, and
the EmployeeList view interacts with the EmployeeListMediator, and the latter deals with
the controller’s notifications.

In Example 1-21, note the method listNotificationInterests(), where you, the de-
veloper, have to list all events this mediator is interested in (similar to a subscription
in messaging). The method handleNotification() will process notifications when they
arrive.

Example 1-21. EmployeeListMediator.as

/*
 PureMVC AS3 Demo - Flex CafeTownsend
 Copyright (c) 2007-08 Michael Ramirez <michael.ramirez@puremvc.org>
 Parts Copyright (c) 2005-07 Adobe Systems, Inc.
 Your reuse is governed by the Creative Commons Attribution 3.0 License
 */
package org.puremvc.as3.demos.flex.cafetownsend.view{
 import flash.events.Event;
 import org.puremvc.as3.interfaces.*;
 import org.puremvc.as3.patterns.mediator.Mediator;

 import org.puremvc.as3.demos.flex.cafetownsend.ApplicationFacade;
 import org.puremvc.as3.demos.flex.cafetownsend.view.components.*;
 import org.puremvc.as3.demos.flex.cafetownsend.model.EmployeeProxy;
 /**
 * A Mediator for interacting with the EmployeeList component
 */
 public class EmployeeListMediator extends Mediator{

 public static const NAME:String = "EmployeeListMediator";
 public function EmployeeListMediator(viewComponent:Object){
 // pass the viewComponent to the superclass where
 // it will be stored in the inherited viewComponent property
 super(NAME, viewComponent);

 employeeProxy = EmployeeProxy(facade.retrieveProxy(
 EmployeeProxy.NAME));

 employeeList.addEventListener(EmployeeList.APP_LOGOUT, logout);
 employeeList.addEventListener(EmployeeList.ADD_EMPLOYEE,
 addEmployee);
 employeeList.addEventListener(EmployeeList.UPDATE_EMPLOYEE,
 updateEmployee);
 }
 /**
 * List all notifications this Mediator is interested in.
 * Automatically called by the framework when the mediator
 * is registered with the view.

PureMVC | 37

 * @return Array the list of Notification names
 */
 override public function listNotificationInterests():Array{
 return [ApplicationFacade.LOAD_EMPLOYEES_SUCCESS,
 ApplicationFacade.LOAD_EMPLOYEES_FAILED];
 }

 /**
 * Handle all notifications this Mediator is interested in.
 * <P>
 * Called by the framework when a notification is sent that
 * this mediator expressed an interest in when registered
 * (see <code>listNotificationInterests</code>.</P>
 *
 * @param INotification a notification
 */
 override public function handleNotification(note:INotification):void{
 switch (note.getName()) {
 case ApplicationFacade.LOAD_EMPLOYEES_SUCCESS:
 employeeList.employees_li.dataProvider =
 employeeProxy.employeeListDP;
 break;
 case ApplicationFacade.LOAD_EMPLOYEES_FAILED:
 employeeList.error.text = employeeProxy.errorStatus;
 break;
 }
 }
 /**
 * Cast the viewComponent to its actual type.
 *
 * This is a useful idiom for mediators. The
 * PureMVC Mediator class defines a viewComponent
 * property of type Object. </P>
 *
 * @return EmployeeList the viewComponent cast to EmployeeList
 */
 protected function get employeeList():EmployeeList{
 return viewComponent as EmployeeList;
 }

 private function logout(event:Event = null):void{
 sendNotification(ApplicationFacade.APP_LOGOUT);
 }

 private function addEmployee(event:Event = null):void{
 sendNotification(ApplicationFacade.ADD_EMPLOYEE);
 }

 private function updateEmployee(event:Event = null):void{
 sendNotification(ApplicationFacade.UPDATE_EMPLOYEE,
 employeeList.employees_li.selectedItem);
 }

 private var employeeProxy:EmployeeProxy;

38 | Chapter 1: Comparing Selected Flex Frameworks

 }
}

The code of handleNotification() directly manipulates the internals of the view com-
ponents (e.g., employeeList.employees_li), which leads to tight coupling between the
mediator and the view. If the next version of the employeeList component will use a
DataGrid instead of the List component, the mediator’s code has to be refactored too.

The previous discussion of Example 1-17 did not cover the process of preparing the
view for receiving the events. Handling that process is the branch of code originated
by the following call:

addSubCommand(ViewPrepCommand);

Shown in Example 1-22, the ViewPrepCommand class registers the main application me-
diator (you’d have to write it), and asks the proxy to load the employee list.

Example 1-22. ViewPrepCommand.as

/* PureMVC AS3 Demo - Flex CafeTownsend
 Copyright (c) 2007-08 Michael Ramirez <michael.ramirez@puremvc.org>
 Parts Copyright (c) 2005-07 Adobe Systems, Inc.
 Your reuse is governed by the Creative Commons Attribution 3.0 License
 */
package org.puremvc.as3.demos.flex.cafetownsend.controller{
 import org.puremvc.as3.interfaces.*;
 import org.puremvc.as3.patterns.command.*;
 import org.puremvc.as3.patterns.observer.*;
 import org.puremvc.as3.demos.flex.cafetownsend.*;
 import org.puremvc.as3.demos.flex.cafetownsend.model.*;
 import org.puremvc.as3.demos.flex.cafetownsend.view.ApplicationMediator;
 /**
 * Prepare the View for use.
 * The Notification was sent by the Application, and a reference to that
 * view component was passed on the note body.
 * The ApplicationMediator will be created and registered using this
 * reference. The ApplicationMediator will then register
 * all the Mediators for the components it created.
 */
 public class ViewPrepCommand extends SimpleCommand{
 override public function execute(note:INotification) :void{
 // Register your ApplicationMediator
 facade.registerMediator(new ApplicationMediator(note.getBody()));

 // Get the EmployeeProxy
 var employeeProxy:EmployeeProxy = facade.retrieveProxy(
 EmployeeProxy.NAME) as EmployeeProxy;
 employeeProxy.loadEmployees();

 sendNotification(ApplicationFacade.VIEW_EMPLOYEE_LOGIN);
 }
 }
}

PureMVC | 39

This command class issues a request to load employees without even waiting for the
successful logon of the user. At the end of the execute() method, this code sends the
VIEW_EMPLOYEE_LOGIN notification, which displays the logon view.

For brevity, Example 1-23 does have most of the comments from the code of
ApplicationMediator. It builds all view components and registers the mediators for each
of them.

Example 1-23. ApplicationMediator.as

/* PureMVC AS3 Demo - Flex CafeTownsend
 Copyright (c) 2007-08 Michael Ramirez <michael.ramirez@puremvc.org>
 Parts Copyright (c) 2005-07 Adobe Systems, Inc.
 Your reuse is governed by the Creative Commons Attribution 3.0 License*/
package org.puremvc.as3.demos.flex.cafetownsend.view {
 public class ApplicationMediator extends Mediator{
 public static const NAME:String = "ApplicationMediator";
 public static const EMPLOYEE_LOGIN : Number = 0;
 public static const EMPLOYEE_LIST : Number = 1;
 public static const EMPLOYEE_DETAIL : Number = 2;

 public function ApplicationMediator(viewComponent:Object)
 {
 // pass the viewComponent to the superclass where
 // it will be stored in the inherited viewComponent property
 super(NAME, viewComponent);

 // Create and register Mediators for the Employee
 // components that were instantiated by the mxml application
 facade.registerMediator(new EmployeeDetailMediator(
 app.employeeDetail));
 facade.registerMediator(new EmployeeListMediator(
 app.employeeList));
 facade.registerMediator(new EmployeeLoginMediator(
 app.employeeLogin));

 // retrieve and cache a reference to frequently accessed proxys
 employeeProxy = EmployeeProxy(facade.retrieveProxy(
 EmployeeProxy.NAME));
 userProxy = UserProxy(facade.retrieveProxy(UserProxy.NAME));
 }

 override public function listNotificationInterests():Array
 {

 return [ApplicationFacade.VIEW_EMPLOYEE_LOGIN,
 ApplicationFacade.VIEW_EMPLOYEE_LIST,
 ApplicationFacade.VIEW_EMPLOYEE_DETAIL,
 ApplicationFacade.APP_LOGOUT,
 ApplicationFacade.UPDATE_EMPLOYEE
];
 }
 /**
 * Handle all notifications this Mediator is interested in.

40 | Chapter 1: Comparing Selected Flex Frameworks

 */
 override public function handleNotification(note:INotification
):void{
 switch (note.getName()){
 case ApplicationFacade.VIEW_EMPLOYEE_LOGIN:
 app.vwStack.selectedIndex = EMPLOYEE_LOGIN;
 break;
 case ApplicationFacade.VIEW_EMPLOYEE_LIST:
 employeeProxy.employee = null;
 app.vwStack.selectedIndex = EMPLOYEE_LIST;
 break;
 case ApplicationFacade.VIEW_EMPLOYEE_DETAIL:
 app.vwStack.selectedIndex = EMPLOYEE_DETAIL;
 break;
 case ApplicationFacade.APP_LOGOUT:
 app.vwStack.selectedIndex = EMPLOYEE_LOGIN;
 break;
 case ApplicationFacade.UPDATE_EMPLOYEE:
 app.vwStack.selectedIndex = EMPLOYEE_DETAIL;
 break;
 }
 }
 /**
 * Cast the viewComponent to its actual type.
 * The PureMVC Mediator class defines a viewComponent
 * property of type Object.
 */
 protected function get app():CafeTownsend{
 return viewComponent as CafeTownsend
 }
 // Cached references to needed proxies
 private var employeeProxy:EmployeeProxy;
 private var userProxy:UserProxy;
 }
}

The ApplicationMediator is also a central repository of all proxies that know how to
get the data (EmployeeProxy and UserProxy in our case). So the ViewPrepCommand creates
an instance of the ApplicationMediator (which creates other mediators and proxies to
be cached), registers it with the façade, and asks the façade for a newly created instance
of the EmployeeProxy, and calls its loadEmployees() method.

If the EmployeeProxy successfully retrieves the employee, it triggers the notification
LOAD_EMPLOYEES_SUCCESS, which the EmployeeMediator processes, puting the data in the
data provider of the EmployeeList (see Example 1-21):

case ApplicationFacade.LOAD_EMPLOYEES_SUCCESS:
 employeeList.employees_li.dataProvider = employeeProxy.employeeListDP;

The circle is closed. As you can see, the PureMVC way to bring Café Townsend’s em-
ployee list is a lot more complicated than the Cairngorm or Mate way.

Still, if you work with an application built on the PureMVC framework, consider using
a freeware product by Kap IT called PureMVC Console, available at

PureMVC | 41

http://lab.kapit.fr/display/puremvcconsole/PureMVC+Console. This tool comes handy
if you’ve joined a PureMVC project and need to hit the ground running. This console
allows you to monitor the internal flow of this framework in real time. The creators of
PureMVC Console offer a nice demo of monitoring Café Townsend—check it out at
http://lab.kapit.fr/display/puremvcconsole/PureMVC+Console.

The MultiCore version of PureMVC supports modular programming where singletons
are replaced with so-called Multiton Core actors.

We are having difficulty finding reasons for recommending an architectural framework
that requires developers to replace 20 lines of code from Example 1-1 with all the code
shown in Examples 1-15 through 1-23 to achieve the same goal: display the list of
employees from an XML file in a list control.

Report Card: PureMVC
The author of PureMVC wanted to create a framework that could have been ported to
other programming languages, and this approach inadvertently delivers a product that
underutilizes benefits offered by language-specific constructs. Because PureMVC was
not created specifically for Flex, it doesn’t take advantage of the declarative nature of
MXML, which would’ve substantially minimized the amount of handwritten code by
application developers. For the same reason, PureMVC doesn’t use standard Flex
events and data binding. As an old saying goes, “When in Rome, speak Latin.” It can
be rephrased as “When in Flex, speak MXML and ActionScript.”

The pros are:

• It’s well documented.

• It supports working with Flex modules.

• It’s available for developers who want to use only ActionScript (e.g., Flash pro-
grammers). For Flex programmers, that can’t be considered as a benefit though.

The cons are:

• It’s not a framework written for Flex, and thus does not use features offered by
MXML.

• It has too many layers, which are tightly coupled.

• It requires staffing projects with more senior developers.

• Developers have to write lots of additional classes, which adds to project timeline.

• Its standard version is built on singletons, and application code becomes cluttered
by making multiple calls to them.

One of the main Flex selling points is its MXML-to-ActionScript code generator, which
spares application developers from manually writing lots of code. PureMVC doesn’t
use MXML and forces developers to write more code, which makes them less
productive.

42 | Chapter 1: Comparing Selected Flex Frameworks

http://lab.kapit.fr/display/puremvcconsole/PureMVC+Console
http://lab.kapit.fr/display/puremvcconsole/PureMVC+Console

PureMVC notifications are more flexible than event maps of Mate, in that the latter
relies on the enabled event bubbling, and if the EventMap object is not located in the
ancestor of the object that triggers the event, it won’t get it. As a workaround, Mate
offers a special Dispatcher class to trigger events, say from a pop-up window that is not
a descendant of an Application object. But in PureMVC, any object can subscribe for
any other object’s notifications regardless of their relations. Also, since the Notifica
tion class already has the property body to carry additional payload, application devel-
opers don’t need to create subclasses for each notification object.

PureMVC has too many layers, dependencies, and singletons, and as a result has a
steeper learning curve than Cairngorm or Mate. Managers on the projects that use
PureMVC would need to hire more experienced developers than managers on projects
using Mate or Cairngorm.

PureMVC Console is a convenient tool allowing you to monitor the
Cairngorm and PureMVC applications; see http://lab.kapit.fr. To mon-
itor the PureMVC version of Café Townsend, click on the image of the
café at http://lab.kapit.fr/display/puremvcconsole/PureMVC+Console.

PureMVC documentation states, “The PureMVC framework has a very narrow goal.
That is to help you separate your application’s coding concerns into three discrete tiers;
Model View Controller.” The framework attempts to achieve this goal by forcing ap-
plication developers to write a lot of additional ActionScript code.

Unit testing of separate parts of the PureMVC application is nontrivial, because each
test case would require additional work to register notifications, mediators, and other
objects.

Clear Toolkit
So far, each framework that was reviewed in this chapter is an MVC-based architectural
framework. They try to achieve the goal of separating the data flow into different tiers
or classes based on the assumption that this would simplify the project management.
In Flex project teams, these frameworks help to ensure that the person who creates the
view doesn’t need to know where its model is. Why? Is this a real-world situation or
an artificial prerequisite that results in additional overhead in your application?

Clear Toolkit is not an architectural framework; it is a set of open source Flex compo-
nents and utilities that may be called an application framework. As opposed to archi-
tectural frameworks, application frameworks don’t just have a goal to organize devel-
oper’s code into tiers, but rather offer a set of enhanced classes and methodologies
making application developers more productive. Good examples of application frame-
works are Microsoft Foundation Classes, Ruby on Rails, Swing Application Framework
(JSR-296), and Powersoft Foundation Classes.

Clear Toolkit | 43

http://lab.kapit.fr
http://lab.kapit.fr/display/puremvcconsole/PureMVC+Console

You can download all or some of the Clear Toolkit components at http://sourceforge
.net/projects/cleartoolkit/ and see the interface in Figure 1-10.

The main goals of Clear Toolkit are:

• To make software developers write less code by offering automatic code generation

• To give enterprise developers a set of smart data-driven components (e.g., ad-
vanced data grid and form, explained in Chapter 3) that would help developers in
achieving the first goal—to write less code

The first version of this free and open source toolkit was developed by Farata Systems
in 2006. It wasn’t branded as Clear Toolkit back then, but the authors of this book
were using these components internally in multiple consulting projects. Two years
later, we decided to document these tools so that other Flex developers could also
benefit from them.

Library of Components clear.swc

AIR/BlazeDS Data Synchronization

http://sourceforge.net/projects/cleartoolkit

Clear Data
Builder Fx2AntLog4FxDT02Fx

Clear Toolkit

Figure 1-10. Components of Clear Toolkit

The components library is packaged in a clear.swc file that includes a number of en-
hanced Flex components like Datagrid, ComboBox, et al. Also included are:

Clear Data Builder
An Eclipse plug-in that can generate CRUD applications for BlazeDS or LCDS
based on a SQL statement or a Java data transfer object (DTO)

DTO2Fx
A utility that automatically generates ActionScript classes based on their Java peers

Log4Fx
An advanced logger (Eclipse plug-in) that is built on top of the Flex logging API
but automates and make the logging process more flexible and user-friendly

Fx2Ant
A generator of optimized ANT build scripts for Flash Builder projects

Clear Toolkit 3.2.1 includes the following additions:

44 | Chapter 1: Comparing Selected Flex Frameworks

http://sourceforge.net/projects/cleartoolkit/
http://sourceforge.net/projects/cleartoolkit/
yfain11
Inserted Text

• Flex UI controls to support PDF generation on the client

• A data synchronization solution for AIR/BlazeDS applications

Café Townsend with Clear Toolkit
This section demonstrates how to use Clear Data Builder (CDB) to generate an appli-
cation working with Café Townsend employees. In Chapter 3, you’ll learn how to
enhance some of the Flex components and work with those that are already included
in clear.swc.

We haven’t included a diagram for the Café application generated by Clear Data Builder
(CDB), because it just uses a DataCollection object with an encapsulated Flex
RemoteObject—no additional singletons, proxies, commands, or delegates are needed.

Before taking a deep dive into yet another version of Café Townsend, remember that
neither Mate nor PureMVC support autosynchronization of the data offered by Data
Management Services that are included in LiveCycle Data Services.

Using Employee.xml as a data source simplifies the explanation of the framework’s
basics, but in real-world situations, more often than not, you need to persist the data
on the server. If you’ve added a new employee, adding a new value object to an Array
Collection in memory is not enough. You need to persist it in a medium that survives
computer reboots and electrical blackouts.

Clear Data Builder offers automatic code generation for both retrieval and persistence
of the data, and to illustrate this, we’ll be populating Café Townsend’s employee list
not with the data from an XML file but from a MySQL Server employee table stored in
DBMS (Figure 1-11).

Figure 1-11. Employee table in MySQL Server database test

Clear Toolkit | 45

Installing the software for the CRUD example

At the time of this writing, the latest version of CDB is 3.2.1, which requires Eclipse
JEE, which comes with productivity plug-ins for web developers. You can download
Eclipse JEE at http://www.eclipse.org/downloads/. Installing Eclipse JEE is just a matter
of unzipping the downloaded file to a folder on your hard disk.

Installation of the plug-in version of Flex Builder 3 is also easy. Just go to http://www
.adobe.com/products/flex/features/flex_builder/ and select the plug-in version of Flex
Builder.

Get a free CDB license at the Clear Toolkit website. The latest CDB installation in-
structions can be found in the CDB User Guide (http://www.myflex.org/documentation/
CDB3.pdf).

To ensure that you have the latest instructions for installing CDB and
running a sample application, we highly recommend that you read the
appropriate section of the CDB User Guide.

To generate this version of Café, you’ll also need to download and install three more
pieces of software:

• The binary edition of Adobe BlazeDS 3.0 (http://opensource.adobe.com/wiki/dis
play/blazeds/download+blazeds+3; unzip it into some folder, for example,
C:\blazeds)

• Apache Tomcat 6 (Select Windows Service Installer from the Core Downloads
section at http://tomcat.apache.org/download-60.cgi)

• MySQL Community Server (http://dev.mysql.com/downloads/mysql/5.0.html
#downloads)

In addition, you must create a sample database called test using the SQL script provided
on the accompanying CD for this chapter. Create a user called dba with the password
sql and grant this user full access to the test database.

Important: CDB requires JDK 1.5 or later (note: JDK, not JRE). Select
Eclipse menu Window → Preferences → Java → Installed JREs and point
it to your JDK installation directory, as shown in Figure 1-12.

The last preparation step is installing DBMS—we use MySQL Community Server.
During the installation, we’ve entered dba as a user ID and sql as a password.

46 | Chapter 1: Comparing Selected Flex Frameworks

http://www.eclipse.org/downloads/
http://www.adobe.com/products/flex/features/flex_builder/
http://www.adobe.com/products/flex/features/flex_builder/
http://www.myflex.org/documentation/CDB3.pdf
http://www.myflex.org/documentation/CDB3.pdf
http://www.myflex.org/documentation/CDB3.pdf
http://opensource.adobe.com/wiki/display/blazeds/download+blazeds+3
http://opensource.adobe.com/wiki/display/blazeds/download+blazeds+3
http://tomcat.apache.org/download-60.cgi
http://dev.mysql.com/downloads/mysql/5.0.html#downloads
http://dev.mysql.com/downloads/mysql/5.0.html#downloads

Figure 1-12. Selecting installed JDK

Creating an Eclipse Dynamic Web Project with CDB facets

The first step in creating an Eclipse Dynamic Web Project is to start Eclipse JEE IDE
and create a new instance of the Tomcat 6 server (File → New → Other → Server). Create
a new Dynamic Web Project in Eclipse (File → New → Other → Web → Dynamic Web
Project) and name it Café Townsend CDB. Specify the Target Runtime as Apache
Tomcat 6.0 in the Dynamic Web Project configuration screen (Figure 1-13).

If you use Eclipse 3.4 or later, click the Modify button in the Configu-
rations section (not shown) and select the checkboxes in the MyFlex
section to include MyFlex facets required for proper code generation.

Click the Next button. Select the Clear Data Builder and Flex Web Project facets as
shown in Figure 1-14, then click Next.

In the next window, leave unchanged the next screen that suggests RIA_CRUD as a
context, WebContent as a content directory, and src as a directory for the Java code;
then click Next.

Clear Toolkit | 47

Figure 1-13. Creating a Dynamic project in Eclipse Java EE IDE

Figure 1-14. Adding CDB facets to the project

48 | Chapter 1: Comparing Selected Flex Frameworks

Specify that you are going to use BlazeDS on the server side and specify the location of
your blazeds.war, which in this case is C:\BlazeDS\blaseds.war (Figure 1-15). Click
Next.

Figure 1-15. Adding blazeds.war to the project

Specify that the application will be deployed under Tomcat, and select and configure
the database connection (Figure 1-16). Important: your database server has to be up
and running. Select the database DBMS, the driver, specify any name for your connec-
tion pool, and enter the URL of your database. By default, MySQL Server runs on port
3306, and the name of our sample database is test.

Don’t forget to press the Test Connection button to ensure that there are no problems
in that department. If you don’t see a message about successful connection, ensure that
you’ve started an instance of MySQL Server and that it runs on the same port specified
in the screen shown on Figure 1-16. Also, make sure that the test database exists.

Click the Finish button, and the new Dynamic Web Project will be created. This project
will contain both Flex and Java code. The DTO objects were autogenerated by CDB.
The resources folder contains special resource files, explained in Chapter 3. The folder
script has SQL scripts required to create a sample test database for various DBMSs
(Figure 1-17).

All these goodies were created based on the class Employee.java, explained next.

Now you need to create a small abstract class Employee with defined method signatures
to be used for retrieval of the employee data. Right-click on the folder

Clear Toolkit | 49

Java Resources:src, select New → Class, enter the package name com.farata, and select
the abstract checkbox.

The code of the generated Java class Employee will look like this:

package com.farata;

public abstract class Employee {

}

Specify the data location within CDB. For our Café project, we’ll add to Em-
ployee.java a couple of method signatures, annotated (we use doclets) with SQL state-
ments that will bring the data. We’ll need to specify what table is to be updated and
the primary key there. For example, we’ll define where to get the data on employees
and departments (see Example 1-24).

Example 1-24. Employee.java

package com.farata;
import java.util.List;
/**
 * @daoflex:webservice
 * pool=jdbc/test
 */

Figure 1-16. Configuring DBMS

50 | Chapter 1: Comparing Selected Flex Frameworks

public abstract class Employee{
 /**
 * @daoflex:sql
 * pool=jdbc/test
 * sql=:: select * from employee
 * ::
 * transferType=EmployeeDTO[]
 * keyColumns=emp_id
 * updateTable=employee
 */

 public abstract List getEmployees();
 /**
 * @daoflex:sql
 * sql=:: select * from department
 * ::
 * transferType=DepartmentDTO[]
 */
 public abstract List getDepartments();

}

Figure 1-17. Generated Flex/Java Dynamic Web Project

Clear Toolkit | 51

Double colons are used to specify the start and the end of the SQL statement. CDB can
help you with the syntax—just right-click inside the curly braces in the class
Employee, and you’ll see the menu shown in Figure 1-18.

Figure 1-18. CDB helps insert the right code templates

You can select “Inject SQL sync template” if you need to generate code that can read
and update the data or “Inject SQL fill template” if you are planning to create a read-
only application. CDB will insert commented code that will help you to write similar
code on your own.

Now we can go to Eclipse’s Project and Perform Clean menu, which will start the CDB
code generation and build process. The Clean process invokes the Ant build script
located under the folder daoflex.build. The only proper outcome of this process is the
message BUILD SUCCESSFUL in Eclipse console. If you do not see this message, most
likely you’ve done something wrong or in the wrong order.

After this build, the Java DTO and data access classes are generated and deployed in
our Tomcat servlet container.

Now run the Ant script daoflex-build.xml located in the daoflex.build directory. You
can find the generated Java code in the folder .daoflex-temp\gen. If you don’t see this
folder immediately, refresh your Eclipse project.

Technically, you do not need to keep these source files, as they are going to be jarred
by the CDB build process and deployed in the lib directory of your servlet container
under WEB-INF\lib in the files daoflex-runtime.jar, services-generated.jar, and services-
original.jar.

On the client side, CDB has generated the EmployeeDTO.as, which is an ActionScript
peer of the generated EmployeeDTO.java.

To deploy the application, add the project Café Townsend CDB to the configured
Tomcat server, using the Server view of the Eclipse JEE IDE. Right-click in the Server
view on Tomcat Server, select Add or Remove Projects, and add the project Café

52 | Chapter 1: Comparing Selected Flex Frameworks

zaremba
Comment on Text
is this menu name accurate?
The menu Project has a submenu Clean...
Replace the highlighted text with this:
Project menu and select the option Clean...

Townsend CDB to the Configured Projects panel. Start the server by using its right-
click menu.

CDB also generates a number of reference client Flex applications, which can be used
as the frontend of our Café application. We’ll use the one called Employee_getEmploy-
ees_GridFormTest.mxml, which not only creates a data grid, but also generates master/
detail support and opens a form view when the user selects and double-clicks on a grid
row.

Switch to Flex perspective, copy Employee_getEmployees_GridFormTest.mxml from
test/rpc/com/farata/ to flex_src and set it as the default application (right-click menu).

Create one small MXML file to support population of the Departments drop-down using
the function getDepartments() that we’ve declared in Employee.java, as shown in
Example 1-24.

Programming with resource files will be explained in Chapter 3. For now, just create a
new MXML file called DepartmentComboResource.mxml in the directory flex_src/com/
farata/resources (see Example 1-25).

Example 1-25. DepartmentComboResource.mxml

<?xml version="1.0" encoding="utf-8"?>
<resources:ComboBoxResource
 xmlns="com.farata.resources" xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:resources="com.theriabook.resources.*"
 width="160"
 dropdownWidth="160"
 destination="com.farata.Employee"
 keyField="DEPT_ID"
 labelField="DEPT_NAME"
 autoFill="true"
 method="getDepartments"
 >
</resources:ComboBoxResource>

Compile and run Employee_getEmployees_GridFormTest.mxml. Figure 1-19 shows the
resulting output window.

This window has been automatically generated based on the Java class Employee shown
in Example 1-24. If you select and double-click any row in this grid, you’ll see details
in a form window (Figure 1-20).

A very solid foundation for Café Townsend is ready, and the only code you had to write
is shown in Examples 1-24 and 1-25.

Example 1-26 provides the code snippet of the generated Employee_getEmploy-
ees_GridFormTest.mxml.

Clear Toolkit | 53

Example 1-26. The code fragment of Employee_getEmployees_GridFormTest.mxml

<?xml version="1.0" encoding="UTF-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:lib=" http://www.faratasystems.com/2008/components"
 creationComplete="onCreationComplete()">

<mx:ViewStack id="vs" height="100%" width="100%" >
<mx:Canvas height="100%" width="100%">
 <mx:Panel title="Employee::getEmployees()" width="100%"
 height="100%">
 <lib:DataGrid doubleClick="vs.selectedIndex=1" doubleClickEnabled="true"
 horizontalScrollPolicy="auto" width="100%" id="dg"
 dataProvider="{collection}" editable="true" height="100%">
 <lib:columns>
 <lib:DataGridColumn dataField="EMP_ID" editable="false"
 headerText="Emp Id"/>
 <lib:DataGridColumn dataField="MANAGER_ID" editable="false"
 headerText="Manager Id"/>
 <lib:DataGridColumn dataField="EMP_FNAME" editable="false"
 headerText="First Name"/>
 <lib:DataGridColumn dataField="EMP_LNAME" editable="true"
 headerText="Last Name"/>
 <lib:DataGridColumn dataField="DEPT_ID" editable="false"
 headerText="Department"
 resource="{com.farata.resources.DepartmentComboResource}"/>

Figure 1-19. Generated CRUD application to maintain employees

54 | Chapter 1: Comparing Selected Flex Frameworks

Figure 1-20. Detailed employee information

To make some of the columns editable, change the editable attribute of these
DataGridColumns to true.

The code in Example 1-26 uses the DataGrid object from the Clear Toolkit component
library clear.swc. The Department column (and the drop-down in Figure 1-19) has been
populated by the function getDepartments() declared in Employee.java without the
need to do any additional coding on your part.

The server-side code is deployed under the Tomcat server. While generating this
project, CDB has added a library, clear.swc, to the build path. It includes a number of
handy components that enhance the standard controls of the Flex framework and a
number of classes simplifying communication with the database layer.

The following autogenerated code illustrates another example of a useful component
from clear.swc. It uses a DataCollection object, which is a subclass of the Flex class
ArrayCollection. You can read more about DataCollection in Chapter 6.

Look at the code in the onCreationComplete() function in Example 1-27.
DataCollection is a smart, data-aware class that combines the functionality of Flex’s
ArrayCollection and RemoteObject, and some functionality of the Data Management
Services without the need for LCDS. Just set the values in the DataCollection properties
destination and the method to call, and call its method fill() or sync(). No need to

Clear Toolkit | 55

define the RemoteObject with result and fault handlers, as no server-side configuration
is required.

Example 1-27. Using DataCollection object from clear.swc

<mx:Button label="Fill" click="fill_onClick()"/>
<mx:Button label="Remove" click="collection.removeItemAt(dg.selectedIndex)"
enabled="{dg.selectedIndex != -1}"/>
<mx:Button label="Add" click="addItemAt(Math.max(0,dg.selectedIndex+1)) "/>
<mx:Button label="Commit" click="collection.sync()"
enabled="{collection.commitRequired}"/>
...

 import com.farata.dto.EmployeeDTO;

 Bindable]
 public var collection:DataCollection ;
 [Bindable]
 private var log : ArrayCollection;

 private function onCreationComplete() : void {
 collection = new DataCollection();
 collection.destination="com.farata.Employee";
 collection.method="getEmployees";
 //getEmployees_sync is the default for collection.syncMethod
 log = new ArrayCollection();
 collection.addEventListener(CollectionEvent.COLLECTION_CHANGE,
 logEvent);
 collection.addEventListener("fault", logEvent);
 fill_onClick();
 }
 private function fill_onClick():void {
 collection.fill();
 }

 private function addItemAt(position:int):void {
 var item:EmployeeDTO = new EmployeeDTO();
 collection.addItemAt(item, position);
 dg.selectedIndex = position;
 }

 private function logEvent(evt:Event):void {
 if (evt.type=="fault") {
 logger.error(evt["fault"]["faultString"]);
 } else {
 if (evt.type=="collectionChange") {
 logger.debug(evt["type"] + " " + evt["kind"]);
 } else {
 logger.debug(evt["type"]);
 }
 }
 }

56 | Chapter 1: Comparing Selected Flex Frameworks

To finalize Café Townsend, we’ll steal (copy) the assets folder from the original Café
to display the logo on top and apply the styles defined in main.css and make just a
couple of cosmetic changes:

• Remove the Application tag from Example 1-26, moving the declaration of name-
spaces and the creationComplete() event to its MXML tag ViewStack (you’ll also
need to remove three references to the autogenerated variable vs that was referring
to this ViewStack):

<mx:ViewStack height="100%" width="100%"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:lib="http://www.faratasystems.com/2008/components"
 creationComplete="onCreationComplete()">

• Create a small application Café_Townsend_CDB to include the styles, the logo,
and the main view (see Example 1-28).

Example 1-28. Café_Townsend_CDB.mxml

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns:views="*"
 backgroundColor="#000000" layout="vertical">
 <mx:Style source="assets/main.css"/>
 <mx:Image source="assets/header.jpg" width="700"/>
 <views:Employee_getEmployees_GridFormTest selectedIndex="0"/>
</mx:Application>

Compile and run the application, just to ensure that Café Townsend CDB looks as
good as possible (Figure 1-21).

The entire process of creating Café Townsend with Clear Data Builder has been pre-
recorded, and you can find this screencast in the Demos section at http://www.farata
systems.com.

Report Card: Clear Toolkit
Clear Toolkit is a collection of code generators, methodologies, and smart components.
Its components may be used either as an alternative to architectural framework or
together with them. If you are a development manager starting a Flex project with a
team that has at least one senior Flex architect, using Clear Toolkit is the productive
way to go.

If you have to deal with a number of junior developers, consider using the Mate frame-
work with some of the Clear Toolkit components, e.g., enhanced DataGrid, DataForm,
and a number of enhanced UI controls. Besides, having a good reporter, logger, Ant
script, and DTO generators is quite handy regardless of whether you use architectural
frameworks.

Clear Toolkit | 57

http://www.faratasystems.com
http://www.faratasystems.com

The pros are:

• It offers a library of enriched Flex components (supergrid, data-aware components,
etc.).

• It automatically generates code, which minimizes the amount of code to be written
by application developers.

• It offers data synchronization functionality in free BlazeDS, similar to Data Man-
agement Services from LCDS.

• Its components can be used à la carte on an as-needed basis.

• It automates creation of Ant build scripts.

• It automates creation of ActionScript data transfer objects.

The cons are:

• It doesn’t help in separating work between team members.

• Data exchange between the application’s views and modules must be coded
manually.

Figure 1-21. Café Townsend, as generated by Clear Data Builder

58 | Chapter 1: Comparing Selected Flex Frameworks

Final Framework Selection Considerations
If you are a Flex architect or a development manager in charge of selecting a third-party
Flex framework, ask yourself these questions: “Do I want to use intelligent objects that
encapsulate most of the framework functionality or prefer to deal with simple objects
and do explicit coding for each instance? Will I have senior developers in the project
team? Do I need to modularize the application to be developed? Do I trust code
generators?”

After answering these questions, take a detailed look at the implementation of several
frameworks, assess the benefits each of them brings to your application, and pick the
most appealing one that will give you confidence, that—given the size/nature/deliver-
ables/available human resources of the project—has the least probability of failing.

Always keep in mind that your application may grow and you’ll need to redesign it into
modules. Will your selected framework become your friend or foe in a modularized
application? In general, if you are going with modules, you need a multilayered frame-
work and intelligent registration services that are written specifically for the task.

Cairngorm, Mate, and PureMVC are architectural frameworks that utilize global ob-
jects. These may simplify project management by providing a structure and separating
developers’ work on the model, view, and controller. All these singletons, managers,
and event maps are a way to establish communication between the application parts.
By making this process more formal, you can build much smaller chunks, communi-
cating with each other, and in your mind the more formal process will yield better
maintainability. On the other hand, it will create more parts in your application that
require maintenance and testing.

Clear Toolkit is an application framework that consists of a mix of enhanced compo-
nents and code generators. Its goal is to make the development process more productive
by substantially reducing the need to write code manually.

If the word global gives you goosebumps, but you are uncomfortable with code gen-
erators too, consider Joe Berkovitz’s MVCS approach (see the following reference sec-
tion) as a middle ground between the two. This may work better for medium to large
teams that would have no access to code generators and data-driven/factories-based
architecture.

This book targets enterprise developers whose main concern is data processing. But
there are legions of Flex developers who do not care about DataGrid and the like. They
are into the creation of small visual components and do not need to use any application
frameworks. For example, if you Google image viewer Cairngorm, you’ll find an ex-
ample of a small application to display images built with this framework. This is clearly
overkill and an example of bad practice, because if you are the only developer working
on a small one-view application, introducing any architectural framework is plain
wrong. For these kinds of applications, all you need is the Flex framework and possibly
one or two self-contained components.

Final Framework Selection Considerations | 59

Large projects are different animals. Six months into the project, the functional speci-
fication may change. This can happen for a variety of reasons, for example:

• The business analyst realizes that she made a mistake.

• The business process changes.

• Another department needs some of your application’s functionality.

• Another line of business has to be handled by your application.

If this happens, commands need to be amended and recoded, views redesigned, and
events integrated with a different workflow. Now you are thinking to yourself, “Why
didn’t I go with code generators that could’ve made my application more agile?”

Using code generators and components is a way to get you through the “implementa-
tion” part faster while giving you maximum flexibility on the “design and functionality”
part. If you don’t have 80 percent of your application built in 20 percent of the time,
you will be late with the remaining 20 percent.

Flex itself is more of an application framework. It is not a library of patterns, but rather
a set of objects that are built to communicate and react. The Flex framework itself uses
code generators. The key here is automation of implementation tasks by minimizing
the amount of manually written code. That is done by explicitly checking the “related”
objects for specific interfaces. By not adhering to the implementation of these interfaces,
the external frameworks require serious application development effort to support
them.

After rebuilding Café Townsend, we decided to compare the sizes of the pro-
duced .swf file. We’ve been using Flex Builder 3’s Project → Export Release Build option
with all default settings. These are the results:

Cairngorm: 409 KB

Mate: 368 KB

PureMVC: 365 KB

The total size of the Café Townsend application produced by Clear Toolkit is 654 KB
on the client and 30 KB of Java JARs deployed on the server. The size is larger, but this
application includes full CRUD functionality; Cairngorm, Mate, and PureMVC don’t.
And you’ve had to write just a dozen lines of code manually. This is a reasonable size
for an application that has full CRUD functionality.

Of course, you can further reduce the size of the business portion of the Café written
with any of the frameworks by linking the Flex SDK as RSL.

When making your selection, consider the benefits you’ll be getting from the frame-
work of your choice. From the learning curve perspective, none of the reviewed frame-
works is overly difficult to master. You may spend a day or two with the manuals. But
ask yourself, “What will be different in my project development if I use this particular

60 | Chapter 1: Comparing Selected Flex Frameworks

framework?” Are you adding a small library to your project that helps you to organize
your project better, but still requires you to write a lot of code? Or are you adding a
larger library that makes you write less code and be more productive?

Of course we are biased—we created Clear Toolkit to help us develop the types of
applications we work on with our business clients, and it serves us well. Before making
your final decision on a framework for your application (especially if it’s not as small
as Café Townsend), ask yourself one more question: “If three months down the road
I realize that I’ve selected the wrong framework, how much time/money would it take
to remove it?” The answer to this question may be crucial in the selection process.

If you decide to use one of the architectural frameworks, it doesn’t mean that you can’t
throw in a couple of useful components from Clear Toolkit or other libraries mentioned
in the following section. You can also find some brief reviews and recommendations
of third-party libraries and tools that will make your Flex ecosystem more productive.

References
Due to space constraints, we reviewed only some of the Flex frameworks in this chapter.
What other Flex MVC frameworks would we have reviewed if space allowed? We rec-
ommend you to take a close look at Swiz and Parsley, which are light MVC frameworks
that implement the Inversion of Control design pattern. Here is a comprehensive list
of Flex frameworks and component libraries, in alphabetical order:

• as3corelib: http://code.google.com/p/as3corelib/

• Cairgen: http://code.google.com/p/cairngen/

• Cairngorm: http://opensource.adobe.com/wiki/display/cairngorm/Cairngorm

• Cairngorm extensions: http://code.google.com/p/flexcairngorm/

• Clear Toolkit: http://sourceforge.net/projects/cleartoolkit/

• EasyMVC: http://projects.simb.net/easyMVC/

• Flextras: http://www.flextras.com

• FlexLib Components: http://code.google.com/p/flexlib/

• FlexMDI: http://code.google.com/p/flexmdi/

• Guasax: http://www.guasax.com/guasax/web/en/index.php

• Mate: http://mate.asfusion.com/

• MVCS: http://www.joeberkovitz.com/blog/reviewtube/

• Model-Glue Flex: http://www.model-glue.com/flex.cfm

• Parsley: http://spicefactory.org/parsley/

• PureMVC: http://www.puremvc.org

• Swiz: http://code.google.com/p/swizframework/

• Tweener: http://code.google.com/p/tweener/

References | 61

http://code.google.com/p/as3corelib/
http://code.google.com/p/cairngen/
http://opensource.adobe.com/wiki/display/cairngorm/Cairngorm
http://code.google.com/p/flexcairngorm/
http://sourceforge.net/projects/cleartoolkit/
http://projects.simb.net/easyMVC/
http://www.flextras.com
http://code.google.com/p/flexlib/
http://code.google.com/p/flexmdi/
http://www.guasax.com/guasax/web/en/index.php
http://mate.asfusion.com/
http://www.joeberkovitz.com/blog/reviewtube/
http://www.model-glue.com/flex.cfm
http://spicefactory.org/parsley/
http://www.puremvc.org
http://code.google.com/p/swizframework/
http://code.google.com/p/tweener/
yfain11
Cross-Out

yfain11
Highlight
I removed the reference to Model Glue Flex as it's not supported any longer. Insert another bullet instead right above the Swiz line to maintain alphabetical order:

Spring ActionScript: http://www.springactionscript.org/

While analyzing frameworks, fill out the following questionnaire for each candidate:

• Will using this framework reduce the time required for development of my project?

• Does it offer enhanced Flex components or just help with separation of responsi-
bilities of developers?

• Is it well documented?

• Is it easy to master for developers that were assigned to this project?

• Is technical support available? If yes, is it provided by creators of this framework
or is it available via an online community?

• If I make the wrong choice, how long will it take to remove this framework from
the application code?

• Does it support modularized applications?

• How long has this framework been around? Has it been released or is it still in beta?

This chapter was a brief comparison of selected frameworks. If you’d like to get a better
understanding of how things work in Flex and maybe consider creating your own
framework of rich and reusable components, we encourage you to study Chapters 2,
3, and 6. The authors sincerely hope that after reading this book, you’ll be able to pick
the right Flex framework for your project!

62 | Chapter 1: Comparing Selected Flex Frameworks

CHAPTER 2

Selected Design Patterns

Life is like an ever-shifting kaleidoscope—a slight
change, and all patterns alter.

—Sharon Salzberg

Design patterns suggest an approach to common problems that arise during software
development regardless of programming language. For example, when you need to
ensure that your application allows only one instance of a particular class, you need to
implement a singleton design pattern. If you need to pass the data between different
objects, you create data transfer objects (a.k.a. value objects). There are a number of
books written about design patterns and their implementation in different program-
ming languages, including ActionScript 3.0 (see ActionScript 3.0 Design Patterns (http:
//oreilly.com/catalog/9780596528461/) by William Sanders and Chandima Cumarana-
tunge, O’Reilly). This chapter is not yet another tutorial on patterns. The goal of this
chapter is to highlight selected patterns, as you (the developer) may implement them
to take advantage of the Flex framework.

While going through the examples shown in this chapter, please keep in mind that Flex
is a domain-specific tool that’s aimed at creating rich UI for the Web and providing
efficient communication with the server-side systems.

We realize that there are people who don’t like using the dynamic features of Action-
Script, arguing that it makes the code less readable. In our opinion, there are lots of
cases when dynamic features of the language can make the code concise and elegant.

All code examples from this chapter are located in two Flash Builder projects: Pat-
terns and a Flex library project called Patterns_lib. You’ll need to import them from the
code accompanying this book.

In the previous chapter, you saw that each version of Café Townsend was built imple-
menting some of design patterns. After reading this chapter, you may want to revisit
the code of Chapter 1—you may have some new ideas about how to build yet another
version of Café.

63

http://oreilly.com/catalog/9780596528461/
http://oreilly.com/catalog/9780596528461/
http://oreilly.com/catalog/9780596528461/

Singleton
As the name singleton implies, only one instance of such a class can be instantiated,
which makes such classes useful if you’d like to create some kinds of global repositories
of the data so that various objects of your application can access them. In Chapter 1,
you saw examples of their use by various architectural Flex frameworks. For example,
ModelLocator from Cairngorm provides a repository for the data that was retrieved by
delegates so that the views can properly display it. But to get access to the data stored
in this singleton, your application class has to first get a hold of this singleton:

var model: AppModelLocator = AppModelLocator.getInstance();

After this is done, you can access the data stored in various properties of the object to
which the variable model refers.

If you need a Cairngorm singleton that can communicate with the server side, write the
following code:

service = ServiceLocator.getInstance().getHTTPService(
 'loadEmployeesService');

Pretty soon, your application code gets polluted with similar lines of code that try to
get a reference to one of the singletons.

Here’s the idea. Why not just use a singleton that already exists in any Flex application
instead of introducing new ones? This is a Flex Application object that’s always there
for you because it is part of the Flex framework. Thus you can be fairly sure that there
is only one instance of it.

The problem is that the Application class was not created as dynamic, and you need
to either extend it to act as a singleton with specific properties, or make it dynamic to
be able to add to the application singleton any properties dynamically. Example 2-1’s
dynamic class DynamicApplication is a subclass of the Flex class Application. It imple-
ments a Dictionary that allows you to register your services with the application.

Example 2-1. DynamicApplication class

package com.farata.core{
 import flash.utils.Dictionary;
 import mx.core.Application;

public dynamic class DynamicApplication extends Application implements
 IApplicationFacade{
 public function DynamicApplication(){
 super();
 }
 public static var services:Dictionary =
 new Dictionary();

// Consider using getter and setter if you need to override behavior
// but a work around with "static" problem in Flex
 public function getService(name:String) : Object {

64 | Chapter 2: Selected Design Patterns

 return services[name];
 }
 public function addService(name:String,value: Object): void {
 services[name] = value;
 }
 public function removeService(name:String) : void {
 delete services[name];
 }

 public function getServices() : Dictionary {
 return services;
 }
 }
}

This singleton class implements the IApplicationFacade interface (Example 2-2), which
defines the methods to add, remove, and get a reference to the objects that are required
by your application. The main reason to use the IApplicationFacade interface here is
that when you typecast an Application with this interface in your code, you get Flash
Builder’s “intellisense” support and compile-time error checking.

Example 2-2. IApplicationFacade interface

package com.farata.core
{
 import flash.utils.Dictionary;

 public interface IApplicationFacade {
 function getService(name:String) : Object ;
 function addService(name:String,value:Object):void ;
 function removeService(name:String) : void ;
 function getServices() : Dictionary ;
 }
}

Note that the test program shown in Example 2-3 is no longer a regular <mx:Applica
tion>, but rather an instance of the dynamic class shown in Example 2-1 and is located
in the Patterns_lib project. Upon application startup, it calls the function
addAllServices(), which dynamically adds myModel and myServices properties to the
application object. Now any other object from the application can access this global
repository just by accessing DynamicApplication.services followed by the property you
are trying to reach. This is illustrated in the functions getData() and setData() used in
Example 2-3.

Example 2-3. The application Singleton.mxml

<?xml version="1.0" encoding="utf-8"?>
<fx:DynamicApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
xmlns:fx="http://www.faratasystems.com/2009/components"
creationComplete="addAllServices();">
<mx:Script>
 <![CDATA[
 import com.farata.core.DynamicApplication;

Singleton | 65

 import mx.core.Application;

// Add required services to the Application object.
// For illustration purpose, we'll add myModel and
// myServices

private function addAllServices() :void {

// Add the model repository to the application object
DynamicApplication.services["myModel"]= new Object();

//Add the services to the application object
DynamicApplication.services["myServices"] = new Object();
}

private function getData(serviceName:String,
key:Object):Object{

return DynamicApplication.services[serviceName][key];
}

private function setData(serviceName:String, key:Object,
value:String):void{
 DynamicApplication.services[serviceName][key]=
new String(value);
}

]]>
</mx:Script>

<!--Adding values to myModel -->
<mx:Button label="Add to myModel" x="193" y="59"
click="setData('myModel',key.text, value.text)"/>

<mx:Label x="14" y="42" text="Key" fontWeight="bold"/>
<mx:Label x="14" y="14" fontWeight="bold" fontSize="14">
<mx:text>
Add one or more key/value pairs to the object MyModel
</mx:text>
</mx:Label>
<mx:Label x="91" y="42" text="Value" fontWeight="bold"/>
<mx:TextInput x="8" y="59" id="key" width="75"/>
<mx:TextInput x="89" y="59" id="value" width="96"/>

<!--Retrieving the value from a Singleton. -->
<mx:Button label="Show the value" x="8" y="122" click=
"retrievedValue.text=getData('myModel', key.text) as String"/>
<mx:Label x="135" y="121" width="95" id="retrievedValue" fontWeight="bold"
fontSize="15"/>
<mx:Label x="10" y="94" fontWeight="bold" fontSize="14">
<mx:text>
Retrieve and display the value from MyModel bykey
</mx:text>
</mx:Label>
</fx:DynamicApplication>

66 | Chapter 2: Selected Design Patterns

As Figure 2-1 shows, this application displays a window in which a user can add any
key/value pairs to the myModel object located in the singleton DynamicApplication. Then
you can access them by key by clicking on the button labeled “Show the value.”

Figure 2-1. Running Singleton.mxml

The point of this exercise was to show how you can use a somewhat modified Flex
Application object to create a global repository (a singleton) without the need to im-
plement the singleton design pattern on your own.

Proxy
A proxy is an object that represents another object and controls access to it. Think of
someone’s spokesperson or a secretary. If someone brings a package to a big shot, the
package is taken by the secretary, who would inspect the contents and then either
deliver the package to the boss or delegate its further processing to someone else (e.g.,
security personnel).

In object-oriented programming in general and in ActionScript specifically, you can
wrap the class XYZ in mx.util.ObjectProxy, which will be a proxy that controls access
to XYZ’s properties.

Let’s think of some concrete Flex examples that illustrate how proxies can control
access to object properties by dispatching propertyChange events. As a matter of fact,
your Flex programs that use data binding already implement a similar mechanism of
event notifications under the hood.

Data binding is a very useful technique that substantially increases the productivity of
Flex developers. If you start the declaration of a variable or a class with the meta tag
[Bindable], all of a sudden the variable starts emitting events about all changes that
can happen to it. The syntax to make this happen is very simple:

Proxy | 67

[Bindable]
var lastName:String;

How does this event notification mechanism get engaged by simply adding the magic
word [Bindable]? You are all seasoned programmers and don’t believe in the tooth
fairy. Someone has to write the code that will dispatch events when the value of the
property lastName changes. The compiler does it behind the scenes by creating a wrap-
per class that implements a getter and setter for the lastName property and then uses
that wrapper class. The setter contains the code-dispatching propertyChange event,
which carries such useful information as old and new values of the property that’s being
modified.

But you don’t always have to depend on the Flex compiler when you need to create an
event notification or any other customization or generalization outside of the original
class. For that, you create a proxy on your own using the class ObjectProxy as shown
in the following examples.

To illustrate the work of ObjectProxy, we have created a small application that changes
the values of the properties of the class Person wrapped into an instance of Object
Proxy (Example 2-4).

Example 2-4. Class Person

package com.farata{
 public dynamic class Person {
 public var lastName:String="Johnson";
 public var salary:Number=50000;
 }
}

The application code illustrating the use of ObjectProxy is shown in Example 2-5.

Example 2-5. PersonProxy.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx=http://www.adobe.com/2006/mxml
creationComplete="personProxy.addEventListener(PropertyChangeEvent.PROPERT
Y_CHANGE, changeHandler)"
layout="absolute">

<mx:Script>
<![CDATA[
import mx.events.PropertyChangeEvent;
import mx.utils.ObjectProxy;
import com.farata.Person;

var person:Person = new Person;
var personProxy:ObjectProxy = new ObjectProxy(person);

function changeHandler(event:PropertyChangeEvent):void{
 log.text+="event.kind: "+ event.kind + " property :"
+ event.property +" old value:" + event.oldValue +
" new value: " + event.newValue +"\n";

68 | Chapter 2: Selected Design Patterns

 }
]]>
</mx:Script>
<mx:Button x="46" y="31" label="Increase Salary by $3K"
 click="personProxy.salary += 3000;"/>

<mx:Button x="211" y="31" label="Change Last Name toMcCartney"
click="personProxy.lastName='McCartney'"/>

<mx:Button x="428" y="31" label="Directly Change Last Name to Allen"
click="person.lastName='Allen';"/>

<mx:Label x="47" y="61" text="Change Log" fontWeight="bold"
fontSize="14"/>
<mx:TextArea id="log" x="46" y="91" width="600"
height="250" fontWeight="bold" fontSize="14"/>

<mx:Button x="50" y="357" label="Add pension property "
 click="personProxy.pension='yes'"/>
<mx:Button x="216" y="357" label="Delete pension property"
 click="delete personProxy.pension"/>
<mx:Label text="{personProxy.lastName}" x="428" y="359"
 fontSize="14" fontWeight="bold"/>
</mx:Application>

There is one line in PersonProxy.mxml that wraps up the instance of the class Person
into an ObjectProxy:

var personProxy:ObjectProxy = new ObjectProxy(person);

This is all it takes to ensure that all changes to PersonProxy will be announced—the
PropertyChangeEvent will be triggered, and as you’ve added an event listener to the
instance of the Person class, notifications are being sent about every little change that
happens to that instance.

Figure 2-2 shows the output generated by this event handler after six sequential clicks:
top buttons one, two, three, two, followed by the clicks on the two buttons at the
bottom.

After the first click, the salary is increased by $3K, and the ObjectProxy notification
conveniently offers the old and the new values of the property salary. The click on the
second button changes the last name from Johnson to McCartney. The click on the
third button quietly changes the last name from McCartney to Allen, because you ap-
plied this change not to the personProxy instance, but directly to the Person, and to
make sure that the value has been changed, you click button two again, which goes
through the ObjectProxy and properly reports that the name has been changed from
Allen to McCartney.

The two buttons at the bottom just illustrate that because the class Person has been
declared as dynamic, you can add and remove properties on the fly and the person
Proxy will properly report on these events too.

Proxy | 69

Notice the addition of property change notifiers to the class Person
without changing a single line of this code. This technique may also
become handy when you don’t have the source code of a class but need
to enable property change notifications. In other words, you can enable
data binding on a class that you did not create. If you’ve had a chance
to deal with aspect-oriented programming, this may sound familiar—
you add the functionality to the application without changing the ap-
plication objects.

To give this example more business context, create a custom class MyPersonProxy by
subclassing ObjectProxy and adding some application logic to it. If the salary of a person
increases over $55K, say, that employee becomes entitled to the pension in the amount
of 2% of the salary. You want to add this functionality without touching the code of
the class Person.

When you create a subclass of ObjectProxy, you’ll be overriding at least two methods:
getProperty() and setProperty() from the namespace flash_proxy, the reason being
that if you write MyPersonProxy.lastName="McCartney", this object will call its own
method setProperty("lastName", "McCartney") and if you want to intercept this call
and add some additional processing to it, you just add it to the overridden method
setProperty(). The method getProperty() is being called when you are trying to read

Figure 2-2. Changing Person’s properties via ObjectProxy

70 | Chapter 2: Selected Design Patterns

a property of a Proxy object. The Proxy class defines a number of other useful functions,
but discussing them is out of the scope of this book.

Our class MyPersonProxy (see Example 2-6) is derived from ObjectProxy. Its constructor
receives and stores the instance of the Person class, and its setProperty() method is
overridden to add a new property pension as soon as the salary of the person goes over
$55K. Obviously, you can use any business logic to intercept the moment when some
“important” properties are being changed in your application and react accordingly.

Example 2-6. MyPersonProxy.as

package com.farata
{
 import mx.utils.ObjectProxy;
 import flash.utils.*;

use namespace flash_proxy;

 public dynamic class MyPersonProxy extends ObjectProxy
 {
 // The object to wrap up
 private var person:Person;

 public function MyPersonProxy(item:Person){
 super(item);
 person=item;
 }

 flash_proxy override function setProperty(name:*, value:*):void {

if (name == 'salary'&& value>55000) {
 // add a new property to this instance of the
 // class Person, which can be used in the calculations
 // of the total compensation
 setProperty("pension", 0.02);
 }
super.setProperty(name, value);
 }
 }
 }

In Example 2-7, the program CustomProxy illustrates the use of the MyPersonProxy class.

Example 2-7. CustomProxy.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"

creationComplete="personProxy.addEventListener(PropertyChangeEvent.PROPERTY_CHANGE,
changeHandler)">
 <mx:Script>
 <![CDATA[
import mx.events.PropertyChangeEvent;
//import mx.utils.ObjectProxy;

Proxy | 71

import com.farata.MyPersonProxy;
import com.farata.Person;

var person:Person = new Person;
var personProxy:MyPersonProxy = new MyPersonProxy(person);

function changeHandler(event:PropertyChangeEvent):void {
 log.text+="event.kind: "+ event.kind + " property :" + event.property +
 " old value:" + event.oldValue + " new value: " + event.newValue +"\n";
 }
]]>
 </mx:Script>
 <mx:Button x="46" y="31" label="Increase Salary by $3K"
 click="personProxy.salary += 3000;"/>
 <mx:Label x="47" y="61" text="Change Log" fontWeight="bold" fontSize="14"/>
 <mx:TextArea id="log" x="46" y="91" width="600" height="250" fontWeight="bold"
fontSize="14"/>

</mx:Application>

Run this program and you’ll see the output in Figure 2-3 after making three clicks on
the Increase Salary button. The second click properly reports the addition of the
pension property as well as the salary change. The third click doesn’t report the change
—the pension property was being assigned the same value on the third click; the proxy
did not dispatch a PropertyChangeEvent regarding the pension.

Figure 2-3. Output of CustomProxy.mxml

Here’s another example, RemoteObject:

<mx:RemoteObject id="ro" destination="MyEmployees" />

72 | Chapter 2: Selected Design Patterns

What exactly happens when you call a method on a remote destination that goes by
the nickname MyEmployees?

MyEmployees.getEmployees();

Flex is client software that does not need to know what powers the MyEmployees function
has on the server side. Is there a ColdFusion or a Java object that has the function
getEmployees() implemented? Flex doesn’t need to know or care.

In the Java world, if you want to implement client/server communication using Remote
Method Invocation between objects located in different Virtual Machines (VMs), you’d
have to explicitly define a stub class on the client (a proxy) that represents its peer
skeleton class on the server on the remote VM.

Flex spares you from creating stubs and automatically wraps these remote calls into
proxy objects and internally uses the invoke() method call to pass the name of the
remote method and its parameters.

Flex’s abilit to declaratively define a reaction to the changes in the data or components
state greatly simplifies programming and reduces errors related to low-level coding.

In order for binding to work, you need to make sure that the Flex framework knows
when the data changes. Unlike most dynamic language implementations, ActionScript
3.0 is built for speed and heavily utilizes direct access to properties and methods. In
this situation, the only way for data to notify the world about the changes is to embed
the code to fire change events.

The Flex compiler helps in a big way by introducing [Bindable] and [Managed] tags. If
you prefix your variable with the [Bindable] tag, the compiler does the following:

• Inspects every public property and setter of your variables class and generates
wrapper getters/setters that add event notification

• References these getters/setters instead of original properties every time a “binda-
ble” property is being used

Having a wrapper with a setter and a getter is technically the same as creating a proxy;
that is, the setter can include and execute additional code every time the value of this
specific property changes. Obviously, it does not work with untyped data coming from
the server. Such data is converted to a dynamic Object type. The problem is alleviated
a bit by the fact that the Flex framework would automatically wrap the Object in the
ObjectProxy if the default property of the RemoteObject makeObjectBindable=true were
not modified.

However, Flex will wrap only the top level and not the individual array members,
making changes to those undetectable. For example, sat you are passing a set of the
objects from a remote Java assembler class that sends Data Transfer Objects (DTOs)
that may include an array property. These DTOs will eventually become rows in a
DataGrid. The changes to these array elements are not going to dispatch change events
unless you explicitly wrap each array element in the ObjectProxy, for example:

Proxy | 73

private function onResult(r:ResultEvent) : void {
 var quotes:ArrayCollection = r.result.quotes;
 var wrappedQuotes = new ArrayCollection();

 for each (var quote in quotes)
 wrappedQuotes.addItem(new ObjectProxy(quote))
 view.dataProvider = wrappedQuotes;
}

Chapter 6 explores the subject of Flex proxies further.

ObjectProxy can make the code development process more productive, but keep in
mind that you are going to pay a high price for this as it introduces additional processing
during the runtime—dynamic objects are much slower than strongly typed ones. Even
more important, because of automatic wrapping the code might dispatch an event on
each data change. Data binding is great, but if you need to process larger data sets and
really need to use data binding, consider strongly typed classes that will support
[Bindable] on the class members level and even optimize dispatching of the events. If
you are doing massive updates of data, using ObjectProxy or any other form of data
binding can substantially affect performance and the ability to trace your applications.

The bottom line is this: implement the proxy design pattern whenever you need to
monitor the changes that are happening to a particular object. Yet another advantage
of using proxies is that you can modify the behavior of an object without the need to
modify its code.

Mediator
Almost any complex screen of a business application consists of a number of containers
and components. The era of developers being responsible for both functionality and
visuals is coming to an end, and a large portion of the enterprise RIA is created in a
collaboration between professional UI designers and developers.

Typically, a UI designer gives you a UI wireframe that he puts together using one of the
design tools. In the best-case scenario, the UI designer knows how to use Flash Builder
in the design mode or even uses Adobe Flash Catalyst to autogenerate MXML for the
UI. But even in this case, you, the developer, will need to rip this code apart and decide
what components to build to create this view and how they are going to communicate
with each other—you need to refactor the code.

Let’s see how you can arrange communication between custom Flex components. The
diagram in Figure 2-4 consists of a number of nested components and containers that
are numbered for easier reference.

For simplicity and better abstraction, this example does not use the actual components,
like panels and drop-downs, but you can extrapolate this image onto the wireframe of
the actual view you are about to start developing.

74 | Chapter 2: Selected Design Patterns

zaremba
Comment on Text
is this the correct xref?

yfain11
Cross-Out

1
2

4

3

5 6

8
7

Figure 2-4. An abstract UI design that includes eight custom components

A simple (but wrong) approach is to just put all these components in one container
(number 1 in Figure 2-4), program the business logic and communications between
these components, and be done with it. This would produce a monolithic application
with tightly coupled components that know about each other and where removal of
one component would lead to multiple code changes in the application. Talk about
strings attached!

The better approach is to create loosely coupled custom components that are self-
contained, do not know about one another’s existence, and can communicate with the
“outside world” by sending and receiving events.

Adobe Flex was designed for creating event-driven applications, and it has a good
component model, allowing you to create custom components if need be. But after
custom components are designed, they need to communicate with each other. This
section covers the use of the mediator design pattern as it applies to UIs created with
Flex.

Think of a single Lego from a Lego toy set. Now, some kid (i.e., the mediator) may
decide to use that Lego piece to build a house. Tomorrow, the mediator may decide to
use that same Lego piece in a boat.

In the diagram from Figure 2-4, containers play the role of the mediators. The top-level
mediator is the container marked as 1, which is responsible for making sure that the

Mediator | 75

components 2, 3, and 6 can communicate if need be. On the other hand, the number
2 is a mediator for 4 and 5. The number 3 is the mediator for 7 and 8.

Being a mediator is a very honorable mission, but it comes with responsibilities. The
mediator must listen for events from one of the Lego parts and possibly fire an event
on the other one(s).

For example, if you are building an online store, the number 6 can be a component
where you select an item to purchase, the number 4 can be the button named Add to
Shopping Cart, and the number 5 can be a shopping cart.

Let’s forget about the number 6 for a moment and examine the content of the mediator,
number 2. It contains the button 4, which has a specific look and feel and can do just
one thing—broadcast a custom event called AddItemClicked. To whom? To whom-
ever’s interested in receiving such an event. So expect to have the line:

dispatchEvent(new Event("AddItemClicked"))

somewhere inside the code of the component 4.

Because mediator number 2 is interested in receiving this event from number 4, it will
define an event listener for such an event, which will receive the event and in turn will
dispatch another event right on the number 5:

addEventListener("AddItemClicked", addItemClickedEventHandler)
...
private function addItemClickedEventHandler ():void{
 Number5.dispatchEvent(new Event("Add2ShoppingCart"));
}

In this pseudocode, the mediator is choreographing the show by defining how its com-
ponents will communicate.

We’d like to stress that in the previous example, the number 4 is like shooting an event
up into the sky—anyone who wants to can listen. On the other hand, the number 5 is
just sitting quietly and listening to the incoming event. From whom? It has no idea.
This is what loose coupling of components means. The number 4 mediator does not
know about the number 5, but they talk anyway through the mediator.

But as a developer of this screen, you have to take care of mediator-to-mediator com-
munications, as well. For instance, if the number 6 is a widget where you can select
your Sony TV, the mediator 1 will be notified about it and need to talk to the mediator
2, which in turn will arrange the flow between 4 and 5.

Let’s build a concrete example showing how to build these components and establish
their communication using the mediator design pattern. This is an oversimplified
trading screen to buy/sell equities at the stock market. This application will have price
and order panels. In the real world, the price panel would get an external feed about
the prices and deals for all securities that are being traded on the market.

The web designer might give you the two screenshots shown in Figures 2-5 and 2-6 (we
hope that your designer has better artistic talent than we do).

76 | Chapter 2: Selected Design Patterns

Figure 2-5. Before the trader clicked on the Price Panel

Figure 2-6. After the trader clicked on the bid number

This is a pretty simple window. You will design it as two components that communicate
with each other without having any knowledge about each other. The Flex application
will play role of the mediator here. When the user sees the right price to buy or sell IBM
shares, she clicks on the bid or ask price; this action will create a custom event with the
current data from the price panel bid and ask prices, the stock symbol, and whether
this is a request to buy or sell.

In brokerage, bid means the highest price that the trader is willing to pay for the stock
or other financial product, and ask is the lowest price the seller is willing to accept.

Mediator | 77

Example 2-8 shows the PricePanel component. It has three public variables—symbol,
bid, and ask. When the trader clicks on one of the numbers in the price panel, the code
creates an instance of the custom event of the type OrderEvent.PREPARE_ORDER_EVENT,
and all public variables and the name of the requested operation are nicely packaged
inside of this event. Then the PricePanel component dispatches this event. To whom?
It has no idea.

Example 2-8. PricePanel.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml" width="230" height="100"
backgroundColor="#D4E5D9">
 <mx:TextInput x="0" y="-1" width="228" backgroundColor="#0DF113"
 text="{symbol}" fontWeight="bold" fontSize="19" textAlign="center"/>
 <mx:Label x="39" y="31" text="Bid" fontWeight="bold" fontSize="14"/>
 <mx:TextArea x="1" y="49" width="109" height="47" backgroundColor="#EBF4A2"
 text="{bid}" fontSize="22" fontStyle="normal" fontWeight="bold"
 click="placeOrder(true)" editable="false" />

<mx:Label x="154" y="31" text="Ask" fontWeight="bold" fontSize="14"/>
 <mx:TextArea x="118" y="49" width="109" height="47"
 backgroundColor="#A2BFF4" text="{ask}" fontSize="22" fontStyle="normal"
fontWeight="bold" click="placeOrder(false)" editable="false"/>
<mx:Script>
 <![CDATA[
 import com.farata.events.OrderEvent;

 public var symbol:String;
 [Bindable]
 public var bid:String;
 [Bindable]
 public var ask:String;

 // Dispatch the OrderEvent to be picked by a Mediator
 private function placeOrder(buy:Boolean):void {
 dispatchEvent(new
 OrderEvent(OrderEvent.PREPARE_ORDER_EVENT,symbol,bid,ask,buy));
 }
]]>
</mx:Script>

</mx:Canvas>

And this is the definition of the custom OrderEvent. In this version, it declares several
variables for storing the order data, but the section on data transfer objects simplifies
this event a little bit.

Please note that this event defines two event types. The OrderEvent of the type
PREPARE_ORDER_EVENT on is being sent by the PricePanel; the mediator receives it and
forwards it to the OrderPanel as PLACE_ORDER_EVENT (Example 2-9).

78 | Chapter 2: Selected Design Patterns

Example 2-9. OrderEvent.as

package com.farata.events{

import flash.events.Event;
public class OrderEvent extends Event {

public var symbol:String;
public var bid:String;
public var ask:String;
public var buy:Boolean;
public var eventType:String;

public static const PREPARE_ORDER_EVENT:String ="OrderEvent";
public static const PLACE_ORDER_EVENT:String ="PlaceOrderEvent";

public function OrderEvent(eventType:String, symbol:String, bid:String,
ask:String, buy:Boolean){

 super(eventType,true, true); // let it bubble
 this.symbol=symbol;
 this.bid=bid;
 this.ask=ask;
 this.buy=buy;
 this.eventType=eventType;
 }

override public function clone():Event{
 return new OrderEvent(eventType,symbol, bid, ask,buy);
 }
 }
}

The OrderPanel in Example 2-10 listens to the event of the
OrderEvent.PLACE_ORDER_EVENT type. When this event arrives (this panel has no idea
from whom), the OrderPanel populates the fields with the order data extracted from
the event object.

Example 2-10. OrderPanel.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml" width="230" height="100"
backgroundColor="#4CF3D2" creationComplete=
"this.addEventListener(OrderEvent.PLACE_ORDER_EVENT,orderEventHandler)">
 <mx:Text id="sym" x="0" y="10" width="61" fontWeight="bold" fontSize="19"/>
 <mx:Text id="operation" x="81" y="10" fontSize="19"/>
 <mx:Text id="price" x="48" y="37" width="91" fontWeight="bold" fontSize="16"/>
 <mx:Label x="5" y="65" text="Qty:" fontSize="19" fontWeight="bold"/>
 <mx:TextInput id="qty" x="70" y="69" width="71" text="100"
 fontSize="16" selectionBeginIndex="0" selectionEndIndex="5"/>
 <mx:Button id="go" x="147" y="7" label="GO!" height="60" width="74"
 fontSize="22" click="placeOrder()" enabled="false"/>
 <mx:Button x="148" y="75" label="Cancel" width="72"
 click="cancelOrder()"/>

Mediator | 79

 <mx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import com.farata.events.OrderEvent;

 private function orderEventHandler(evt:OrderEvent){
 go.enabled=true;
 sym.text=evt.symbol;
 operation.text=evt.buy?"Buy":"Sell";
 price.text=operation.text=="Buy"?evt.bid:evt.ask;
 qty.setFocus();
 }

 private function placeOrder():void{

 Alert.show(operation.text + " " + qty.text +
 " shares of " + sym.text +
 " at" + price.text + " per share", "Placing order");

 // call a remote service to place this order
 }

 private function cancelOrder():void{
 sym.text="";
 operation.text="";
 price.text="";
 go.enabled=false;
 }

]]>
 </mx:Script>

</mx:Canvas>

Here comes the mediator (Example 2-11), which includes two components—
PricePanel and OrderPanel. The mediator listens to the event from the PricePanel and
forwards it to the OrderPanel in the function orderEventHandler.

Example 2-11. A test application: Trading1.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
 xmlns:comp="com.farata.components.*" backgroundColor="white"
 applicationComplete=
"this.addEventListener(OrderEvent.PREPARE_ORDER_EVENT,orderEventHandler)">
<mx:Label text="Price Panel" y="4" height="23" x="69" fontSize="16"
fontWeight="bold"/>
<mx:Label text="Order Panel" y="4" height="23" x="290" fontSize="16"
fontWeight="bold"/>
<comp:PricePanel symbol="IBM" bid="117.45" ask="117.48" y="31" x="7"/>
<comp:OrderPanel id="ordPanel" x="245" y="30"/>

<mx:Script>
 <![CDATA[
 import mx.controls.Alert;

80 | Chapter 2: Selected Design Patterns

 import com.farata.events.OrderEvent;

 private function orderEventHandler(evt:OrderEvent):void{
 // The mediator decides what to do with the received event.
 // In your case it forwards the order received
 // from PricePanel to OrderPanel
 var orderEvt: OrderEvent= new
 OrderEvent(OrderEvent.PLACE_ORDER_EVENT,
 evt.symbol, evt.bid, evt.ask, evt.buy);
 ordPanel.dispatchEvent(orderEvt);
 }
]]>
</mx:Script>
</mx:Application>

Once again, components don’t know about one another and can be reused in another
context too.

The mediator is one of the most useful patterns for any programming environment that
includes components communicating with each other—even more so if you program
in an event-driven environment such as Flex. Use this pattern before implementing the
UI design. Identify your mediators and custom reusable components and decide what
events these components will broadcast or listen to.

After you have made all these decisions, select the format of the data that will travel
between the components. This is where the data transfer pattern comes into the picture.

Data Transfer Object
Data transfer objects are also known as value objects (VOs) and are used for data ex-
changes between various application components, which can be either co-located in
the same process or on remote computers. These DTOs can even be written in different
programming languages, for example, Java and ActionScript.

First, modify the application from the previous section and encapsulate the order details
in a simple OrderDTO that will be placed in the event object and will happily travel
between price and order panels. When this is done, you will spend some time with
more advanced DTOs that you may want to use in Flex remoting.

Example 2-12 is a simple OrderDTO.as that will be passed between the price and order
panels.

Example 2-12. OrderDTO.as

package com.farata.dto{
 // [RemoteClass] meta tag goes here if this DTO
 // is used in Flex Remoting
 [Bindable]
 public class OrderDTO{
 public var symbol:String;
 public var bid:String;

Data Transfer Object | 81

 public var ask:String;
 public var buy:Boolean; //a buy/sell flag

 public function OrderDTO(symbol:String, bid:String, ask:String,
 buy:Boolean=false){
 this.symbol=symbol;
 this.bid=bid;
 this.ask=ask;
 this.buy=buy;
 }
 }
}

In Example 2-13’s second version of the price panel, add a function startDataFeed(),
emulating the real data feed that may be bringing the market data to the pricing panel.
Please note that the PricePanel now displays the data from this “external” feed by
binding the UI controls to the properties of the currentData object “received” from a
remote server.

Example 2-13. PricePanel2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml" width="230" height="100"
backgroundColor="#D4E5D9">
 <mx:TextInput x="0" y="-1" width="228" backgroundColor="#0DF113"
 text="{currentData.symbol}" fontWeight="bold" fontSize="19"
textAlign="center"/>
 <mx:Label x="39" y="31" text="Bid" fontWeight="bold" fontSize="14"/>
 <mx:TextArea x="1" y="49" width="109" height="47" backgroundColor="#EBF4A2"
 text="{currentData.bid}" fontSize="22" fontStyle="normal" fontWeight="bold"
 click="placeOrder(true)" editable="false"
 creationComplete="startDataFeed()"/>

<mx:Label x="154" y="31" text="Ask" fontWeight="bold" fontSize="14"/>
 <mx:TextArea x="118" y="49" width="109" height="47"
 backgroundColor="#A2BFF4" text="{currentData.ask}" fontSize="22"
 fontStyle="normal" fontWeight="bold"
 click="placeOrder(false)" editable="false"/>
<mx:Script>
 <![CDATA[
 import com.farata.dto.OrderDTO;
 import com.farata.events.OrderEvent2;

 [Bindable]
 private var currentData:OrderDTO;

 private function startDataFeed():void{
 // the code for getting the real data feed goes here
 currentData = new OrderDTO("ADBE","40.47", "40.51");
 }

 // Create the OrderEvent and place the DTO there
 // Dispatch the event to be picked by a Mediator

82 | Chapter 2: Selected Design Patterns

 private function placeOrder(buy:Boolean):void {
 currentData.buy=buy; // set the flag to buy or sell

 dispatchEvent(new
 OrderEvent2(OrderEvent2.PREPARE_ORDER_EVENT,currentData));
 }
]]>
</mx:Script>

</mx:Canvas>

In Example 2-14, the function placeOrder() dispatches the OrderEvent2 with a packaged
DTO inside. There is no need to declare multiple variables, as this was done in
Example 2-9.

Example 2-14. OrderEvent2.as

package com.farata.events{

import com.farata.dto.OrderDTO;
import flash.events.Event;

public class OrderEvent2 extends Event {

public var orderInfo: OrderDTO;
public var eventType:String;

public static const PREPARE_ORDER_EVENT:String ="OrderEvent";
public static const PLACE_ORDER_EVENT:String ="PlaceOrderEvent";

public function OrderEvent2(eventType:String, order:OrderDTO){
 super(eventType,true, true); // let it bubble
 this.orderInfo=order; // store the orderDTO

 this.eventType=eventType;
 }

override public function clone():Event{
 return new OrderEvent2(eventType,orderInfo);
 }
 }
}

The new version of your driving application, Trading2.mxml (Example 2-15), does not
assign the symbol, bid, and ask values to the price panel, as this was done for simplicity
in Example 2-11. Now the PricePanel is being populated by its own data feed.

Example 2-15. The driving application, Trading2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
 xmlns:comp="com.farata.components.*" backgroundColor="white"
 applicationComplete="this.addEventListener(
OrderEvent2.PREPARE_ORDER_EVENT,orderEventHandler)" >

Data Transfer Object | 83

<mx:Label text="Price Panel" y="4" height="23" x="69" fontSize="16"
fontWeight="bold"/>
<mx:Label text="Order Panel" y="4" height="23" x="290" fontSize="16"
fontWeight="bold"/>
<comp:PricePanel2 y="31" x="7"/>
<comp:OrderPanel2 id="ordPanel" x="245" y="30"/>
<mx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import com.farata.events.OrderEvent2;

 private function orderEventHandler(evt:OrderEvent2):void{
 // The mediator decides what to do with the received event
 // In your case it forwards the order received
 // from PricePanel to OrderPanel

 var orderEvt: OrderEvent2= new
 OrderEvent2(OrderEvent2.PLACE_ORDER_EVENT,evt.orderInfo);
 ordPanel.dispatchEvent(orderEvt);
 }
]]>
</mx:Script>
</mx:Application>

Even though you haven’t yet seen the code of the OrderPanel2, you can still use it, as
long as its API is known—in this case, you know that it listens to the OrderEvent2. As
a matter of fact, in many cases you’ll be using components without having any knowl-
edge about how they operate inside.

But to go easy on you, Example 2-16 shows you the source code of OrderPa-
nel2.mxml, which receives the OrderEvent2, extracts the OrderDTO, and populates its UI
controls.

Example 2-16. OrderPanel2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml" width="230" height="100"
backgroundColor="#4CF3D2"
creationComplete="this.addEventListener(OrderEvent2.PLACE_ORDER_EVENT,orderEventHan
dler)">
 <mx:Text id="sym" x="0" y="10" width="61" fontWeight="bold" fontSize="19"/>
 <mx:Text id="operation" x="81" y="10" fontSize="19"/>
 <mx:Text id="price" x="48" y="37" width="91" fontWeight="bold" fontSize="16"/>
 <mx:Label x="5" y="65" text="Qty:" fontSize="19" fontWeight="bold"/>
 <mx:TextInput id="qty" x="70" y="69" width="71" text="100"
 fontSize="16" selectionBeginIndex="0" selectionEndIndex="5"/>
 <mx:Button id="go" x="147" y="7" label="GO!" height="60" width="74"
 fontSize="22"
 click="placeOrder()" enabled="false"/>
 <mx:Button x="148" y="75" label="Cancel" width="72"
 click="cancelOrder()"/>
 <mx:Script>
 <![CDATA[
 import com.farata.dto.OrderDTO;

84 | Chapter 2: Selected Design Patterns

 import mx.controls.Alert;
 import com.farata.events.OrderEvent2;

 private var orderInfo:OrderDTO; // the order packaged in the DTO

 private function orderEventHandler(evt:OrderEvent2){
 go.enabled=true;

 orderInfo=evt.orderInfo; // extract the DTO from the event object

 sym.text=orderInfo.symbol;
 operation.text=orderInfo.buy?"Buy":"Sell";
 price.text=operation.text=="Buy"?orderInfo.bid:orderInfo.ask;
 qty.setFocus();
 }

 private function placeOrder():void{

 Alert.show(operation.text + " " + qty.text +
 " shares of " + sym.text +
 " at" + price.text + " per share", "Placing order");

 // call a remote service to place this order
 }

 private function cancelOrder():void{
 sym.text="";
 operation.text="";
 price.text="";
 go.enabled=false;
 }

]]>
 </mx:Script>

</mx:Canvas>

Examples 2-12 through 2-16 illustrated an application that used a DTO as a sort of
exchangeable currency in the interaction between co-located Flex components.

But DTOs also play an important role during the exchange of data with the server-side
application using Flex remoting or Data Management Services. In such enterprise ap-
plications, the server-side team provides a DTO coded in one of the programming
languages (this example uses Java), and the Flex team has to provide a similar Action-
Script DTO.

Flex RemoteObject or DataService classes will serialize/deserialize these DTOs into each
other, regardless of which direction they travel.

If you don’t define DTOs on the Flex side, the data will be wrapped into ObjectProxy
instances, which has a negative effect on performance. If you do, annotate Flex DTOs
with the [RemoteClass...] meta tag or via the registerClassAlias() function call.

Data Transfer Object | 85

We highly recommend using strongly typed data transfer objects, as opposed to dy-
namic objects or XML for data exchange between the client and server tiers. If you are
working with a Java Server, make your Java (methods) accept/return custom classes
and not generic Map objects.

The following list gives you some generic recommendations about creating DTOs that
are meant for communication with a remote subsystem, and then offers a solution that
can automate the process of creating ActionScript DTOs from their Java peers.

• Define similar classes in Java and ActionScript languages.

• If you envision dynamic updates to the data on the client (e.g., the data feed of new
stock prices constantly updating the data), declare these classes with the meta tag
[Bindable]. Use collections of these bindable instances as data providers for Flex
List-based controls like DataGrid, and Flex will ensure that all changes to the data
will be reflected by the visual control. Remember, the [Bindable] meta tag results
in autogeneration of the code dispatching events on every property change.

Use an ArrayCollection of such bindable DTOs as a dataProvider in your DataGrid,
List, and similar components.

Imagine a collection of objects with complex structure, with class variables of non-
primitive data types—for example, a collection of Employee objects in which each
object has a variable of type WorkHistory, which is a class with its own properties.
If a variable declared in the WorkHistory class gets modified, the collection of
Employee objects won’t know about this change unless you explicitly dispatch the
propertyChange event.

• Make sure that both server-side and client-side DTOs provide a unique property
uuid. Flex uses this property to uniquely identify the data elements of the List-
based controls. You will find numerous uses for this property, too.

For instance, instead of sorting orders by the DTO’s property symbol, you’d sort
by symbol and uuid. In this case, the autogenerated hash value of each DTO will
be unique for each record, which will result in better performance.

• Don’t try to intercept the changed values on the visual controls (a.k.a. View). This
task belongs to the data layer (a.k.a. Model).

• Consider replacing each public property with the getter and setter. This will allow
you to have more control over the modifications of these properties. You can add
code to these setters/getters that will intercept the action of data modification and
perform additional processing based on what’s being changed. Then, the setter can
dispatch the event PropertyChange as illustrated in this code snippet:

[Bindable(event="propertyChange")]
 public dynamic class OrderDTO extends EventDispatcher{
 private var _bid:Number;
 public function set bid(value : Number):void{
 var oldValue:Object = _bid;
 if (oldValue !== value) {
 lastPrice = value;

86 | Chapter 2: Selected Design Patterns

 dispatchUpdateEvent("bid", oldValue, value);
 }
 }

 public function get bid() : String{
 return _bid;
 }

 private function dispatchUpdateEvent(propertyName:String, oldValue:Object,
 value:Object):void
{
 dispatchEvent(
 PropertyChangeEvent.createUpdateEvent(this, propertyName, oldValue,
 value));
 }

 }

This is yet another technique (remember wrapping up an object in a proxy?) for
customizing the behavior of the objects when the data is being changed. Imagine
that you need to create your own version of a data management service and want
to maintain a collection of changed objects that remember all modifications in a
DataGrid that uses a collection of OrderDTO objects as a data provider. You can
maintain a collection of changed objects that remember all old and new values.

There’s a difference between the meta tags [Binda
ble(event="propertyChange")] and [Bindable]. The former syntax in-
structs the Flex compiler to generate code watching the property
Change events. The latter syntax forces the Flex compiler to generate the
event—it replaces the property with a setter/getter pair in which the
setter’s role is to dispatch the event. But if your code has taken care of
event dispatching already, you may wind up with events being dis-
patched twice!

• Over your project’s life span, you will see many additional uses for DTOs: custom
serialization and custom toString() and toXML() methods, for example.

• Create a basic OrderDTO as in Example 2-12 and subclass it. This way, the superclass
OrderDTO maintains its original structure while its subclass allows you to add some
new functionality like notifying a third party about properties’ changes or adding
new properties like total order amount, which is a result of multiplication of total
shares by price per share:

[Bindable(event="propertyChange"]
public function get totalOrderAmount():Number {
 return price*totalShares;
}

If you are creating DTOs for the data exchange between Java and ActionScript classes
using subclassing, both ActionScript classes will have the meta tags [RemoteClass]

Data Transfer Object | 87

pointing to the same Java DTO. This won’t be an issue; Flex is smart enough to use
the subclass for serialization.

In the real world, an enterprise project’s Flex and Java developers often belong to dif-
ferent teams and if Java folks change the structure of their DTOs, Flex developers need
to ensure that the structure of their classes is updated accordingly. There are different
ways of automating this process, as shown in Example 2-17.

DTO2Fx is a free plug-in that’s available at http://www.myflex.org. It generates Ac-
tionScript DTO classes using the subclassing technique described earlier.

Consider the Java DTO in Example 2-17.

Example 2-17. Annotated OrderDTO2.java

package com.farata.dto;
import com.farata.dto2fx.annotations.FXClass;

@FXClass
publicclass OrderDTO2 {
public String symbol;
public String bid;
public String ask;
public Boolean buy;

public OrderDTO2(String symbol, String bid,String ask, Boolean buy){
 this.symbol=symbol;
 this.bid=bid;
 this.ask=ask;
 this.buy=buy;
 }
}

The DTO2Fx plug-in uses Java annotations in the process of generating ActionScript
classes, and @FXClass is such an annotation. The rest of the process is simple. As soon
as you create or modify this class, it automatically regenerates a couple of ActionScript
classes: _OrderDTO2.as and OrderDTO2.as. You can find more details about this
process in the User Guide of DTO2Fx, but for now just examine the generated code in
Example 2-18.

Example 2-18. Superclass _OrderDTO2.as

package com.farata.dto {

import mx.events.PropertyChangeEvent;

import flash.events.EventDispatcher;
import mx.core.IUID;
import mx.utils.UIDUtil;

/* [ExcludeClass] */
public class _OrderDTO2 extends flash.events.EventDispatcher implements

88 | Chapter 2: Selected Design Patterns

http://www.myflex.org

mx.core.IUID {

/* Constructor */
 public function _OrderDTO2():void {
 super();
 }

// implementors of IUID must have a uid property
 private var _uid:String;

 [Transient]
 [Bindable(event="propertyChange")]
 public function get uid():String {
 // If the uid hasn't been assigned a value, just create a new one.
 if (_uid == null) {
 _uid = mx.utils.UIDUtil.createUID();
 }
 return _uid;
 }

 public function set uid(value:String):void {
 const previous:String = _uid;
 if (previous != value) {
 _uid = value;
 dispatchEvent(
 mx.events.PropertyChangeEvent.createUpdateEvent(
 this, "uid", previous, value
)
);
 }
 }

/* Property "ask" */
 private var _ask:String;

 [Bindable(event="propertyChange")]
 public function get ask():String {
 return _ask;
 }
 public function set ask(value:String):void {
 const previous:String = this._ask;
 if (previous != value) {
 _ask = value;
 const ev:mx.events.PropertyChangeEvent =
 mx.events.PropertyChangeEvent.createUpdateEvent(
 this, "ask", previous, _ask
);
 dispatchEvent(ev);
 }
 }

/* Property "bid" */
 private var _bid:String;

 [Bindable(event="propertyChange")]

Data Transfer Object | 89

 public function get bid():String {
 return _bid;
 }
 public function set bid(value:String):void {
 const previous:String = this._bid;
 if (previous != value) {
 _bid = value;
 const ev:mx.events.PropertyChangeEvent =
 mx.events.PropertyChangeEvent.createUpdateEvent(
 this, "bid", previous, _bid);
 dispatchEvent(ev);
 }
 }

/* Property "buy" */
 private var _buy:Boolean;

 [Bindable(event="propertyChange")]
 public function get buy():Boolean {
 return _buy;
 }

 public function set buy(value:Boolean):void {
 const previous:Boolean = this._buy;
 if (previous != value) {
 _buy = value;
 const ev:mx.events.PropertyChangeEvent =
 mx.events.PropertyChangeEvent.createUpdateEvent(
 this, "buy", previous, _buy);
 dispatchEvent(ev);
 }
 }

/* Property "symbol" */
 private var _symbol:String;

 [Bindable(event="propertyChange")]
 public function get symbol():String {
 return _symbol;
 }

 public function set symbol(value:String):void {
 const previous:String = this._symbol;
 if (previous != value) {
 _symbol = value;
 const ev:mx.events.PropertyChangeEvent =
 mx.events.PropertyChangeEvent.createUpdateEvent(
 this, "symbol", previous, _symbol);
 dispatchEvent(ev);
 }
 }

 }

}

90 | Chapter 2: Selected Design Patterns

Example 2-18 is a superclass that will always be regenerated by DTO2Fx anytime the
Java class changes. This class has a unique object identifier (uid) and includes getters
and setters that will dispatch propertyChange events when the time comes.

The code of the class OrderDTO2 is shown in Example 2-19. This class is generated only
once and is a subclass of _OrderDTO2.as. This is a place for an application developer to
add application-specific customization, such as the addition of new properties and/or
functions. This class will never be overridden by DTO2Fx, regardless of what was
changed in OrderDTO2.java.

Example 2-19. Subclass OrderDTO2.as

package com.farata.dto {

 [RemoteClass(alias="com.farata.dto.OrderDTO2")]

public class OrderDTO2 extends com.farata.dto._OrderDTO2 {

/* Constructor */
 public function OrderDTO2():void {
 super();
 }
 }
}

We hope that our message to you is clear now: the use of DTOs is a preferred way of
designing interobject communications.

Asynchronous Token
Consider an enterprise application in which a user can place purchase orders for some
parts and request price quotes from various suppliers. In this case, the user may click
several buttons, resulting in server-side calls to one or more destinations. On each click
event of the button, a RemoteObject sends a new request to the server.

The user hits this button several times to place several orders, which in turn initiates
the same number of remote calls. The user can also click different buttons, initiating
calls to different destinations. Because of the asynchronous nature of remote calls in
Flex, the results from each call can arrive at random times.

When each result arrives to the client, it triggers a result event, which obediently calls
the result handler function written by an application programmer. So far, so good.
Here’s the million-dollar question: how can the application code map arriving result
objects back to the initial requestors if they can come back to the client in an arbitrary
order? The fact that you place an order to purchase a Sony TV first and a DVD player
10 seconds afterward doesn’t guarantee that results will arrive to your Flex application
in the same order.

Asynchronous Token | 91

The goal of the Asynchronous Token pattern is to properly route the processing on the
client in response to the data arriving asynchronously from the server.

Because AsyncToken is a dynamic class, you can add any properties to this class during
runtime, as is done with orderNumber in Example 2-20. You can also add one or more
responders that will provide the result handling. Adding responders on the token level
simplifies memory management.

Example 2-20. Using the AsyncToken class

<mx:RemoteObject id="ord" destination="Orders" />
 ...
private function sendOrder(/*arguments go here*/):void{
 var token: AsyncToken = ord.placeOrder({item:"Sony TV"});
 token.orderNumber="12345";
 token.responder = new Responder(processOrderPlaced, processOrderFault);
 token.addResponder(new Responder(createShipment,processOrderFault));
}

AsyncToken is a local object. It is identified by a messageId that is passed with the request
to the server. When the server responds, it includes a correlationId property in the
message header, and Flex automatically calls the appropriate AsyncToken responders in
the order they were defined. Example 2-20 calls the function send(), which starts with
creating the AsyncToken instance. Then, you’ll attach as many properties to this instance
as you need. You may get the impression that something is not right—the values are
being assigned to the instance of the token after the request has been sent to the server
for execution. If so, when the result in the form of an AsyncToken comes back, it
shouldn’t contain values such as orderNumber and references to the responders, right?
Wrong.

Flash Player executes your application’s requests in cycles driven by
frame events. First, it performs the requests related to the modifications
of the UI, then it gives a slice of time to process the application’s Ac-
tionScript code, and only after that does it take care of the network
requests, if any. This means that all the code in the previous snippet will
complete before the call ord.placeOrder({item:"Sony TV"}) is made.
Always remember that from the developer’s perspective, Flex applica-
tions are single-threaded and responses are handled within each such
cycle—even if the underlying communications are multithreaded.

In Example 2-20, two responders were added to the placeOrder() request. In the case
of successful order placement, two functions will be called: processOrderPlaced() and
createShipment(). In the case of errors, the function processOrderFault() will be called.

You can add an instance of a Responder object to a token on the fly, as was done in the
earlier code snippet, or your can provide an existing instance of a class that implements
the IResponder interface—that is, that has the functions result() and fault().

92 | Chapter 2: Selected Design Patterns

To see a different way of assigning a responder, please revisit the code
in Example 1-6 that demonstrates how Cairngorm’s Delegate class adds
a Command object as a responder. Sure enough, the Command object imple-
ments result() and fault() methods.

In the more traditional way of programming client/server communications, you define
the handlers for results and faults:

<mx:RemoteObject id="ord" destination="Orders" result="processOrderPlaced(event)"
fault="processOrderFault(event)"/>

But using AsyncToken, you can assign the handlers during runtime as was done in
Example 2-20, which gives your application additional flexibility.

At some point in time, the result will come back to the client and you can retrieve the
token from the property ResultEvent.token and examine its dynamic properties (just
the orderNumber in your case) that were originally added to the token:

private function processOrderPlaced(event:ResultEvent):void {
 myOrderNumber:Object = event.token.orderNumber;
 // if myOrderNumber is 12345, process it accordingly
}

Using the asynchronous token design pattern allows Flex to efficiently map associated
requests and responses without the need to introduce a multithreaded environment
and create some mapping tables to avoid mixing up requests and responses.

Class Factory
Flex offers you various ways to create an instance of a component. For example, in
MXML, you can create an instance of MyObject and initialize its property description
as follows:

<comp:MyObject id="order" description="Sony TV" />

You can achieve the same result (i.e., create an instance of MyObject and initialize the
description) in ActionScript:

var order:MyObject = new MyObject();
order.description="Sony TV";

This code works fine as long as MyObject is the only possible component that can be
placed in this particular screen location. But what if you need more flexibility—for
example, under certain conditions you need to create either MyObject or HisObject at
this location?

Instead of using the new operator, you can introduce a class with a function that will
build different objects for your application based on a specified parameter. In this case,
you need to implement the class factory design pattern—the object that will create and
return either an instance of MyObject or HisObject.

Class Factory | 93

You can easily find code samples of how to create class factories. Some of them are very
basic, so that you just provide the name of the object you need to a factory method that
has a switch statement, and it returns the proper instance of the object based on the
provided name. More advanced factories are programmed to interfaces, which allows
you to add new types of objects to the factory without the need to use and modify the
switch each time a new object type is introduced.

A Class Factory from the Flex Framework
The Flex framework includes an implementation of the class factory pattern in
mx.core.ClassFactory class. Let’s quickly review its code; see Example 2-21 (we’ve
removed some of the comments for brevity).

Example 2-21. mx.core.ClassFactory.as

//
// ADOBE SYSTEMS INCORPORATED //
// Copyright 2005-2006 Adobe Systems Incorporated //
// All Rights Reserved. //
// //
// NOTICE: Adobe permits you to use, modify, and distribute this file //
// in accordance with the terms of the license agreement accompanying it. //
//

package mx.core{

/**
 * A ClassFactory instance is a "factory object" which Flex uses
 * to generate instances of another class, each with identical properties.
 *
 * You specify a generator class when you construct the factory object.
 * Then you set the properties property on the factory object.
 * Flex uses the factory object to generate instances by calling
 * the factory object's newInstance() method.
 *
 * The newInstance() method creates a new instance
 * of the generator class, and sets the properties specified
 * by properties in the new instance.
 * If you need to further customize the generated instances,
 * you can override the newInstance() method.
 *
 * The ClassFactory class implements the IFactory interface.
 * Therefore it lets you create objects that can be assigned to properties
 * of type IFactory, such as the itemRenderer property of a List control
 * or the itemEditor property of a DataGrid control.
 *
 * For example, suppose you write an item renderer class named ProductRenderer
 * containing a showProductImage property which can be true or false.
 * If you want to make a List control use this renderer, and have each renderer
 * instance display a product image, you would write the following code:
 *
 * var productRenderer:ClassFactory = new ClassFactory(ProductRenderer);

94 | Chapter 2: Selected Design Patterns

zaremba
Sticky Note
slash boxes closed in all occurrences; ok?

yfain11
Sticky Note
Yes, it's fine. This code is shown exactly as it's written by Adobe in Flex SDK.

 * productRenderer.properties = { showProductImage: true };
 * myList.itemRenderer = productRenderer;
 *
 * The List control calls the newInstance() method on the
 * itemRenderer to create individual instances of ProductRenderer,
 * each with showProductImage property set to true.
 * If you want a different List control to omit the product images, you use
 * the ProductRenderer class to create another ClassFactory
 * with the properties property set to { showProductImage: false }.
 *
 * Using the properties property to configure the instances
 * can be powerful, since it allows a single generator class to be used
 * in different ways.
 * However, it is very common to create non-configurable generator classes
 * which require no properties to be set.
 * For this reason, MXML lets you use the following syntax:
 *
 * <mx:List id="myList" itemRenderer="ProductRenderer"/>
*/

public class ClassFactory implements IFactory
{

 include "../core/Version.as";

 public function ClassFactory(generator:Class = null){
 super();
 this.generator = generator;
 }

 public var generator:Class;

 /**
 * An Object whose name/value pairs specify the properties to be set
 * on each object generated by the newInstance() method.
 *
 * For example, if you set properties to
 * { text: "Hello", width: 100 }, then every instance
 * of the generator class that is generated by calling
 * newInstance() will have its text set to
 * "Hello" and its width set to 100.
 */
 public var properties:Object = null;

 /**
 * Creates a new instance of the generator class,
 * with the properties specified by properties.
 *
 * This method implements the newInstance() method
 * of the IFactory interface.
 *
 * @return The new instance that was created.
 */
 public function newInstance():* {
 var instance:Object = new generator();

Class Factory | 95

 if (properties != null){
 for (var p:String in properties){
 instance[p] = properties[p];
 }
 }
 return instance;
 }
 }
}

Please read the comments for this class and pay attention to the following section:

var productRenderer:ClassFactory = new ClassFactory(ProductRenderer);
productRenderer.properties = { showProductImage: true };
myList.itemRenderer = productRenderer;

The first line of this code instructs ClassFactory to create an instance of the class
ProductRenderer; it’s stored in the generator property of this class. The second line
initializes the property showProductImage of the newly created ProductRenderer. You
can initialize more than one property of the object that you create by assigning to the
properties variable an object containing several key/value pairs. If you are instantiating
a sealed class, make sure that the properties you are initializing exist in the class being
instantiated. In the case of a dynamic object, you can initialize/create any properties
on the fly.

The function newInstance() copies all properties that need to be initialized from the
properties object to the corresponding properties of the newly created instance. But
the earlier code example doesn’t call newInstance(); is this a mistake?

No, this code is correct, and here’s why. The data type of the variable itemRenderer (as
well as itemEditor) of the Flex List component is IFactory, the interface that declares
just one method: newInstance(). List-based components know how to instantiate ob-
jects that implement the IFactory interface, and the previous ClassFactory does
implement it.

This also means that instead of providing a concrete object as an itemRenderer, you
may specify a subclass of ClassFactory with the overridden method newInstance() that
will be supplying the appropriate object instance.

If you’ll be using this ClassFactory in other situations of the application
code, you may need to call newInstance() explicitly.

Although mx.core.ClassFactory and item renderers are a very powerful combination
when you need to customize the appearance of the data in List-based components, the
ClassFactory shown in Example 2-21 has the following restrictions:

96 | Chapter 2: Selected Design Patterns

• The Flex 3 SDK class mx.core.ClassFactory can create a factory only for a class; it
can’t create a factory for a class name that is being provided as a String. It can’t
build instances of objects based on a return of a function—a class is required.

• Building UI objects on the fly may require applying dynamic data-driven styles.
Styles are not properties, and mx.core.ClassFactory would not know what to do
with them if you used them in the properties variable.

• If you use UI components as renderers or editors, they may need to process events.
It would be nice if event listeners could be attached by a class factory, and the
created object would dispatch events when properties are changing. The class
mx.core.ClassFactory doesn’t know how to do it.

In the Flex 4 SDK, ClassFactory allows you to dynamically assign item
renderers to List-based components based on the name of the class
provided in a string variable:

 <s:List itemRendererFunction="myRendererFunc">
...
private function myRenderedFunc (item:Object): ClassFactory{
 var myRenderer:Class;

 switch (item.membershipType){
 case "Trial": myRenderer=TrialMemberRenderer;
 break;
 case "Basic":
 myRenderer=BasicMemberRenderer;
 break;
 case "Premium":
 myRenderer=TrialMemberRenderer;
 break;
 }
 return new ClassFactory(myRenderer);
}

Creating UIStaticClassFactory
This final section offers you a more advanced implementation of the Class Factory
pattern that is specifically created for the UI components, especially item renderers in
List-based Flex components. Please read the description of this implementation, called
UIStaticClassFactory, in the code comments of Example 2-22.

Example 2-22. UIStaticClassFactory.as

//
// //
// Copyright 2009 Farata Systems LLC //
// All Rights Reserved. //
// //
// NOTICE: Farata Systems permits you to use, modify, and distribute this file //

Class Factory | 97

// in accordance with the terms of the license agreement accompanying it. //
// //
//
package com.farata.core{
/**
 * UIStaticClassFactory is an implementation of the Class Factory design pattern
 * for dynamic creaion of UI components. It allows dynamic passing of the
 * properties, styles and event listeners during the object creation.
 * It's implemented as a wrapper for mx.core.ClassFactory and can
 * be used as a class factory not just for classes, but for functions
 * and even strings.
 *
 * @see mx.core.IFactory
 */
 import flash.utils.describeType;
 import flash.utils.getDefinitionByName;
 import mx.controls.dataGridClasses.DataGridColumn;
 import mx.core.ClassFactory;
 import mx.core.IFactory;
 import mx.events.FlexEvent;
 import mx.styles.StyleProxy;
 import mx.logging.Log;
 import mx.logging.ILogger;
 import mx.logging.LogEventLevel;

 public class UIStaticClassFactory implements IFactory{

 // A class factory object that serves as a wrapper
 // for classes, functions, strings, and even class factories
 private var _wrappedClassFactory : ClassFactory;

 // A reference to a function if the object instances are
 // to be created by a function
 private var factoryFunction : Function = null;

 // Styles for the UI object to be created
 public var styles:Object;

 // Event Listeners for the UI object to be created
 public var eventListeners:Object;

 private static const logger:ILogger =
 Log.getLogger ("com.farata.core.UICassFactory");

 public function set properties(v:Object):void {
 _wrappedClassFactory.properties = v;
 }
 public function get properties():* {
 return _wrappedClassFactory.properties ;
 }

 public function get wrappedClassFactory():ClassFactory {
 return _wrappedClassFactory;

98 | Chapter 2: Selected Design Patterns

 }
 /**
 * Constructor of UIClassFactory takes four arguments
 * cf - The object to build. It can be a class name,
 * a string containing the class name, a function,
 * or another class factory object;
 * props - inital values for some or all properties if the object;
 * styles - styles to be applied to the object being built
 * eventListeners - event listeners to be added to the object being built
 */
 function UIStaticClassFactory(cf: * , props:Object = null,
 styles:Object = null, eventListeners:Object = null) {

 var className:String;// if the class name was passed as a String

 if (cf is UIStaticClassFactory) {
 _wrappedClassFactory =
 UIStaticClassFactory(cf).wrappedClassFactory;
 } if (cf is ClassFactory) {
 _wrappedClassFactory = cf;
 } else if (cf is Class) {
 _wrappedClassFactory = new ClassFactory(Class(cf));
 } else if (cf is String) {
 className = String(cf);
 try {
 var clazz:Class = getDefinitionByName(className) as Class;
 _wrappedClassFactory = new ClassFactory(clazz);
 } catch (e:Error) {
 trace(" Class '"+ className + "' can't be loaded
 dynamically. Ensure it's explicitly referenced in the
 application file or specified via @rsl.");
 }
 } else if (cf is Function) {
 factoryFunction = cf;
 } else {
 className = "null";
 if (cf!=null)
 className = describeType(cf).@name.toString();
 trace("'" + className + "'" +
 " is invalid parameter for UIClassFactory constructor.");
 }

 if (!_wrappedClassFactory) {
 _wrappedClassFactory = new ClassFactory(Object);
 }

 if (props != null) _wrappedClassFactory.properties = props;
 if (styles != null) this.styles = styles;
 if (eventListeners != null) this.eventListeners = eventListeners;
 }

 /**
 * The implementation of newInstance is required by IFactory
 */
 public function newInstance():* {

Class Factory | 99

 var obj:*;
 if (factoryFunction!=null){
 // using a function to create an object
 obj = factoryFunction();
 // Copy the properties to the new object
 if (properties != null) {
 for (var p:String in properties) {
 obj[p] = properties[p];
 }
 }
 } else
 obj = _wrappedClassFactory.newInstance();

 // Set the styles on the new object
 if (styles != null) {
 for (var s:String in styles) {
 obj.setStyle(s, styles[s]);
 }
 }

 //add event listeners, if any
 if (eventListeners != null) {
 for (var e:String in eventListeners) {
 obj.addEventListener(e, eventListeners[e]);
 }
 }
 return obj;
 }
 }
}

Let’s examine the constructor of this class factory. It has four arguments, described in
the comments. In the first argument, the code of this constructor checks the type of the
object to build the factory for. In particular, if it’s a class, it just instantiates
mx.core.ClassFactory.

More interestingly, if it finds that the type of the first argument is a String, it’ll load the
class specified in this String and build a factory for this class too.

One more scenario: if you’d like to specify not a class but just a function for the class
factory, it can accommodate this request, too.

Example 2-23 shows you a test application that uses this class factory to dynamically
build item renderers for a DataGrid not on a per-column basis but on a per-cell basis.

Example 2-23. ClassFactoryDemo.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:fx="http://www.faratasystems.com/2009/components"
 layout="vertical" creationComplete="init()">
 <mx:HDividedBox width="100%" height="100%">
 <fx:DataGrid id="dg" dataProvider="{dp}" editable="true" height="100%"
 showHeaders="false" alternatingItemColors="[#869CA7,#869CA7]"

100 | Chapter 2: Selected Design Patterns

 verticalGridLines="false" variableRowHeight="true"
 preventRendererReuse="columnValue">
 <fx:columns>
 <mx:Array>
 <mx:DataGridColumn width="120" dataField="columnLabel"
 headerText="Field" textAlign="right" editable="false"/>
 <mx:DataGridColumn width="150" textAlign="left"
 dataField="columnValue" headerText="Value"
 wordWrap="true" rendererIsEditor="true"
 itemRenderer="{new UIStaticClassFactory(function():* {
 return switcher(dg.rendererData)})}"/>
 </mx:Array>
 </fx:columns>
 </fx:DataGrid>

 <mx:DataGrid editable="true" dataProvider="{dp}" height="100%" >
 </mx:DataGrid>

 </mx:HDividedBox>
 <mx:Script>
 <![CDATA[
 import mx.controls.Label;
 import mx.collections.ArrayCollection;
 import mx.controls.RadioButtonGroup;
 import mx.controls.TextInput;
 import com.adobe.flex.extras.controls.MaskedTextInput;
 import com.farata.core.UIStaticClassFactory;
 [Bindable]
 private var dp:ArrayCollection;
 private function init() :void {
 dp= new ArrayCollection ([
 new ColumnRecord("First Name: ", "text", "John"),
 new ColumnRecord("Last Name: ", "text", "Smith"),
 new ColumnRecord("SSN#: ", "ssn", "123704523"),
]);
 }
 private function switcher(data:Object = null) :*{
 if (data == null) return new Label();
 switch(data.columnType) {
 case "ssn":
 var mi:MaskedTextInput = new MaskedTextInput();
 mi.inputMask = "###-##-####";
 return mi;
 }
 return new TextInput();
 }
]]>
 </mx:Script>
</mx:Application>

The ColumnRecord in the previous example is just a little DTO (see Example 2-24).

Class Factory | 101

Example 2-24. ColumnRecord.as

package
{
 public class ColumnRecord
 {
 public var columnLabel:String;
 public var columnType:String;
 public var columnValue:*;

 public function ColumnRecord(l:String, t:String, v:*) {
 columnLabel=l;
 columnType=t;
 columnValue=v;
 }
 }
}

The ClassFactoryDemo application generates the view in Figure 2-7, which at first sight
looks like a form and a DataGrid.

Figure 2-7. A DataGrid with dynamic item renderers

But this is a container with two DataGrid objects pointing to the same data provider—
a simple array that contains both the data (columnValue) and the metadata—the label,
and the type of the data.

On the righthand side, it’s a regular <mx:DataGrid> from the Flex framework.

On the left is your 50-line extension of the original data grid, <fx:DataGrid>, which has
a small addition—it cures the limitation of <mx:DataGrid> that reuses the same item
Renderer for the entire column (its source code comes with this book).

102 | Chapter 2: Selected Design Patterns

Our goal was to create a class factory that would supply different item renderers based
on some criteria:

 itemRenderer="{new UIStaticClassFactory(function():*
 return switcher(dg.rendererData)})}"/>

The left data grid gives the closure function to UIStaticClassFactory, which calls an-
other function, switcher(), which analyzes the metadata (the column type). If it’s sim-
ple text, it just renders it as a Label, but if the type of the column is ssn, it renders it as
a MaskedTextInput.

Please note that this class factory does not know in advance what to
build, as you don’t use static linkage here.

This example kills two birds with one stone. First, it shows a more advanced class
factory, and second, it illustrates how you can build dynamic forms having a
DataGrid with dynamic data renderers under the hood.

In general, using components for item renderers and editors may be challenging. When
you use a renderer as an editor, you have at your disposal powerful control with a built-
in mask. In the earlier view, if a user decides to change the value of SSN#, he will be
restricted by the mask MaskedTextInput.

Even though having lots of different item renderers may be a bit expensive from the
performance view, it brings you a lot of flexibility and a nicer-looking UI.

The authors of this book use item renderers as item editors and have a single point of
customization for controls.

Using class factories allows you to make grids that do not look like grids but rather like
dynamic forms. They can support runtime properties, styles, and other types of plug-
ins either via MXML or—even better—via well-structured ActionScript.

Okay, this can’t all be that rosy, and there is a little issue—you can’t declare properties
needed for these custom renderer components on the DataGridColumn tag. When you
write in MXML something like itemRenderer="MyClassFactory", there is no room for
you to specify properties of the renderer component. You have to use the
<mx:Component> tag in order to “embed” them into a class.

Creating UIClassFactory
Using the class UIStaticClassFactory with item renderers is a good idea, but let’s have
a little more fun with factories. This new demo application uses another version of class
factory first. The source code of the more advanced UIClassFactory will follow.

Class Factory | 103

This version of the factory shows you how you can create dynamic styles, properties,
and events in a declarative way. The demo application looks like Example 2-25.

Example 2-25. ClassFactoryDemo2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:fx="http://www.faratasystems.com/2009/components"
 layout="vertical" creationComplete="init()">
 <mx:DataGrid horizontalScrollPolicy="auto" width="100%" id="dg"
 editable="true" height="100%">
 <mx:columns>
 <mx:DataGridColumn dataField="EMP_FNAME" headerText="First Name"/>
 <mx:DataGridColumn dataField="EMP_LNAME" headerText="Last Name"/>
 <mx:DataGridColumn dataField="DEPT_ID" editable="false"
 headerText="Department" />
 <mx:DataGridColumn dataField="PHONE" rendererIsEditor="true"
 headerText="Phone Number" >
 <mx:itemRenderer>
 <fx:UIClassFactory>
 <fx:generator>
 {MaskedTextInput}
 </fx:generator>
 <fx:properties>
 <mx:Object inputMask = "###-###-####" />
 </fx:properties>
 </fx:UIClassFactory>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn dataField="STATUS" headerText="Status"
 rendererIsEditor="true" />
 <mx:DataGridColumn dataField="SS_NUMBER" rendererIsEditor="true"
 headerText="SSN#" >
 <mx:itemRenderer>
 <fx:UIClassFactory>
 <fx:generator>
 {MaskedTextInput}
 </fx:generator>
 <fx:properties>
 <mx:Object inputMask = "###-##-####" />
 </fx:properties>
 </fx:UIClassFactory>
 </mx:itemRenderer>
 </mx:DataGridColumn>

 <mx:DataGridColumn dataField="SALARY" editable="false" headerText="Salary"
 textAlign="right" rendererIsEditor="true">
 <mx:itemRenderer>
 <fx:UIClassFactory>
 <fx:generator>
 {TextInput}
 </fx:generator>
 <fx:runtimeStyles>
 <mx:Object
 fontWeight="{function(d:*):String { return

104 | Chapter 2: Selected Design Patterns

 d.SALARY>50000?'normal':'bold'}}"
 backgroundColor="{function(d:*):String { return
 d.SALARY>30000?'green':'red'}}"/>
 </fx:runtimeStyles>
 </fx:UIClassFactory>
 </mx:itemRenderer>
 </mx:DataGridColumn>

 <mx:DataGridColumn dataField="START_DATE" headerText="Start Date"
 itemRenderer="mx.controls.DateField" editorDataField="selectedDate"
 rendererIsEditor="true" />
 <mx:DataGridColumn dataField="BENE_HEALTH_INS" editable="false"
 headerText="Health" >

 <mx:itemRenderer>
 <fx:UIClassFactory>
 <fx:generator>
 {CheckBox}
 </fx:generator>
 <fx:runtimeProperties>
 <mx:Object
 selected="{function(d:*):Boolean { return
 d.BENE_HEALTH_INS=='Y'}}"/>
 </fx:runtimeProperties>

 <fx:eventListeners>
 <mx:Object
 click="{function (e:MouseEvent): void {
 trace('hello:'+e);
 beneHealthClick(e);
 }
 }"/>
 </fx:eventListeners>
 </fx:UIClassFactory>
 </mx:itemRenderer>
 </mx:DataGridColumn>

 <mx:DataGridColumn dataField="SEX" editable="false" headerText="Sex" />
 </mx:columns>
 </mx:DataGrid>

<mx:Script>
<![CDATA[
 import mx.controls.Label;
 import mx.collections.ArrayCollection;
 import mx.controls.RadioButtonGroup;
 import mx.controls.TextInput;
 import com.farata.core.UIClassFactory;
 import com.adobe.flex.extras.controls.MaskedTextInput;
 import mx.controls.CheckBox;
 private function init() :void {
 var dp:Array = [
 {EMP_ID:1,MANAGER_ID:200,EMP_FNAME:"John",
 EMP_LNAME:"Smith",DEPT_ID:100,STREET:"10 Baker Str",
 CITY:"New York",STATE:"NY",SALARY:25000,

Class Factory | 105

 ZIP_CODE:"10001",PHONE:"2125551111",STATUS:"A",
 SS_NUMBER:"123456789", START_DATE:new Date("10/1/1998"),
 BENE_HEALTH_INS:"Y",SEX:"M"},

 {EMP_ID:2,MANAGER_ID:200,EMP_FNAME:"Jane",
 EMP_LNAME:"Smith",DEPT_ID:100,STREET:"10 Baker Str",
 CITY:"New York",STATE:"NY",SALARY:75000,
 ZIP_CODE:"10001",PHONE:"2121115555",STATUS:"A",
 SS_NUMBER:"987654321",START_DATE:new Date("10/1/1997"),
 BENE_HEALTH_INS:"N",SEX:"F"},

 {EMP_ID:3,MANAGER_ID:200,EMP_FNAME:"Count",
 EMP_LNAME:"Dracula",DEPT_ID:100,STREET:"10 Baker Str",
 CITY:"New York",STATE:"NY",SALARY:175000,
 ZIP_CODE:"10001",PHONE:"2121117777",STATUS:"A",
 SS_NUMBER:"321654321",START_DATE:new Date("10/1/1908"),
 BENE_HEALTH_INS:"Y",SEX:"F"}
];

 dg.dataProvider = dp;
 }
 private function beneHealthClick(e : MouseEvent) : void {
 e.currentTarget.data.BENE_HEALT_INS = e.currentTarget.selected?"Y":"N";
 }
]]>
</mx:Script>
</mx:Application>

If you run this application, you’ll see the window shown in Figure 2-8 with item ren-
derers assigning dynamic properties, styles, and event listeners (as your book is printed
in black, keep in mind that the actual background color of the salary in the first row is
red, and in the other two is green):

Here’s how simple and sweet it is:

<mx:itemRenderer>
 <fx:UIClassFactory>
 <fx:generator>
 {MaskedTextInput}
 </fx:generator>
 <fx:properties>
 <mx:Object inputMask = "###-###-####" />
 </fx:properties>
 </fx:UIClassFactory>
</mx:itemRenderer>

We declare that this item renderer will use the class factory that should build an instance
of MaskedTextInput, and the inputMask property of this class to be generated is “###-
###-####”.

Now you can assign values to the properties of the instances-to-be of a class factory!

The next code snippet shows you how to dynamically change the fontWeight styles and
background column depending on the value of the Salary in each row:

106 | Chapter 2: Selected Design Patterns

 <fx:runtimeStyles>
 <mx:Object
 fontWeight="{function(d:*):String { return
 d.SALARY>50000?'normal':'bold'}}"
 backgroundColor="{function(d:*):String { return
 d.SALARY>30000?'green':'red'}}"/>
</fx:runtimeStyles>

Figure 2-8. Output of ClassFactoryDemo2

The next code fragment renders the health insurance data as CheckBox, sets its
selected property based on the data value (Y or N), and adds an event listener to process
clicked events of this CheckBox.

<mx:itemRenderer>
 <fx:UIClassFactory>
 <fx:generator>
 {CheckBox}
 </fx:generator>
 <fx:runtimeProperties>
 <mx:Object
 selected="{function(d:*):Boolean { return
 d.BENE_HEALTH_INS=='Y'}}"/>
 </fx:runtimeProperties>

 <fx:eventListeners>
 <mx:Object
 click="{function (e:MouseEvent): void {
 trace('hello:'+e);
 beneHealthClick(e);
 }
 }"/>
 </fx:eventListeners>

Class Factory | 107

 </fx:UIClassFactory>
</mx:itemRenderer>

We hope you’ve enjoyed this sample application. To examine the source code of the
all-new UIClassFactory, see Example 2-26.

Example 2-26. UIClassFactory.as

//
// //
// Copyright 2009 Farata Systems LLC //
// All Rights Reserved. //
// //
// NOTICE: Farata Systems permits you to use, modify, and distribute this file //
// in accordance with the terms of the license agreement accompanying it. //
// //
//
package com.farata.core{
/**
 * UIClassFactory is an implementation of the Class Factory design pattern
 * for dynamic creaion of UI components. It allows dynamic passing of the
 * propeties, styles and event listeners during the object creation.
 * It's implemented as a wrapper for mx.core.ClassFactory and can
 * be used as a class factory not just for classes, but for functions
 * and even strings.
 *
 * @see mx.core.IFactory
 */
 import flash.utils.describeType;
 import flash.utils.getDefinitionByName;

 import mx.controls.Label;
 import mx.core.ClassFactory;
 import mx.core.IFactory;
 import mx.events.FlexEvent;
 import mx.logging.ILogger;
 import mx.logging.Log;

 public class UIClassFactory implements IFactory{

 // A class factory object that serves as a wrapper
 // for classes, functions, strings, and even class factories
 private var _wrappedClassFactory : ClassFactory;

 // A reference to a function if the object instances are
 // to be created by a function
 private var factoryFunction : Function = null;

 //Styles for the UI object to be created
 public var styles:Object;

 //Run-time Styles for the UI object to be created
 public var runtimeStyles:Object;

 //Run-time Properties for the UI object to be created

108 | Chapter 2: Selected Design Patterns

 public var runtimeProperties:Object;

 //Event Listeners for the UI object to be created
 public var eventListeners:Object;

 private static const logger:ILogger =
 Log.getLogger ("com.farata.core.UICassFactory");

 public var properties:Object = {};

 public function get wrappedClassFactory():ClassFactory {
 return _wrappedClassFactory;
 }

 public function set generator (cf:Object) : void {
 var className:String;// if the class name was passed as a String
 if (cf == null)
 cf = Label;
 if (cf is UIClassFactory) {
 _wrappedClassFactory = UIClassFactory(cf).wrappedClassFactory;
 } if (cf is ClassFactory) {
 _wrappedClassFactory = cf as ClassFactory;
 } else if (cf is Class) {
 _wrappedClassFactory = new ClassFactory(Class(cf));
 } else if (cf is String) {
 className = String(cf);
 try {
 var clazz:Class = getDefinitionByName(className) as Class;
 _wrappedClassFactory = new ClassFactory(clazz);
 } catch (e:Error) {
 trace(" Class '"+ className + "' can't be loaded
 dynamically. Ensure it's explicitly referenced
 in the application file or specified via @rsl.");
 }
 } else if (cf is Function) {
 factoryFunction = cf as Function;
 } else {
 className = "null";
 if (cf!=null)
 className = describeType(cf).@name.toString();
 trace("'" + className + "'" + " is invalid parameter for
 UIClassFactory constructor.");
 }

 if (!_wrappedClassFactory) {
 _wrappedClassFactory = new ClassFactory(Object);
 }

 }
 /**
 * Constructor of UIClassFactory takes four arguments
 * cf - The object to build. It can be a class name,
 * a string containing the class name, a function,
 * or another class factory object;
 * props - inital values for some or all properties if the object;

Class Factory | 109

 * styles - styles to be applied to the object being built
 * eventListeners - event listeners to be added to the object being built
 */
 public function UIClassFactory(cf: Object = null , props:Object = null,
 styles:Object = null, eventListeners:Object = null) {

 generator = cf;
 if (props != null) this.properties = props;
 if (styles != null) this.styles = styles;
 if (eventListeners != null) this.eventListeners = eventListeners;
 }

 /**
 * The implementation of newInstance is required by IFactory
 */
 public function newInstance():* {
 var obj:*;
 if (factoryFunction!=null){
 // using a function to create an object
 obj = factoryFunction();
 } else
 obj = _wrappedClassFactory.newInstance();

 // Copy(aggregate) the properties to the new object
 if (properties != null) {
 for (var p:String in properties) {
 obj[p] = properties[p];
 }
 }
 // Set the styles on the new object
 if (styles != null) {
 for (var s:String in styles) {
 obj.setStyle(s, styles[s]);
 }
 }

 // add event listeners, if any
 if (eventListeners != null) {
 for (var e:String in eventListeners) {
 obj.addEventListener(e, eventListeners[e]);
 }
 }

 // Watch data modifications
 obj.addEventListener(FlexEvent.DATA_CHANGE, onDataChange);
 return obj;
 }

 /**
 * onDataChange is the handler for the DATA_CHANGE events. It uses
 * runtimeStyles and runtimeProperties, which were added to Clear Toolkit's
 * version of the DataGridColumn to handle styles and properties that were
 * added dynamically.
 *
 * If you'll use this UIClassFactory with regular DataGridColumns that does

110 | Chapter 2: Selected Design Patterns

 * not support dynamic styles, the onDataChange function won't find any
 * runtimeStyles or runtimeProperties and won't do anything.
 */
 private function onDataChange(event:FlexEvent):void{

 // Skip this call if caused by header renderers
 var renderer:Object = event.currentTarget;
 var functionObject:Function;
 var value:*;
 // Act only on 'dynamic style' columns
 for (var style:String in runtimeStyles) {
 functionObject = null;
 value = runtimeStyles[style];

 if (value is Function){
 functionObject = value as Function;
 }

 if (null != functionObject) {
 try {
 value =
 functionObject(renderer.data) ;
 renderer.setStyle(style, value);
 } catch (e:Error) {
 logger.error(e.message);
 }
 } else
 renderer.setStyle(style, value);
 }
 for (var prop:String in runtimeProperties) {
 functionObject = null;
 value = runtimeProperties[prop];

 if (value is Function){
 functionObject = value as Function;
 }

 if (null != functionObject) {
 try {
 value =functionObject(renderer.data) ;
 renderer[prop] = value;
 } catch (e:Error) {
 logger.error(e.message);
 }
 } else
 renderer[prop] = value;
 }
 }
 }
}

If you compare the code of the UIStaticClassFactory with the code of
UIClassFactory, you’ll notice that the latter introduces the property generator—an
object to be created by the factory.

Class Factory | 111

The function onDataChange() is a handler for the DATA_Change events.
However, this function is relevant only if you are going to use
UIClassFactory with the DataGrid from the Clear Toolkit’s component
library.

This concludes a brief overview of selected design patterns and shows how they can
make your Flex programming more efficient. This chapter covered selected design pat-
terns used in Flex applications. In many cases, Flex gives you a hand, allowing you to
use a particular design pattern based on some of the existing elements of the Flex
framework. For example, instead of creating a new singleton class and finding refer-
ences to it with a number of getInstance() function calls, you can reuse the readily
available singleton application, available in the Flex framework. The proxy pattern used
in this chapter is based on ObjectProxy, which is also a part of the Flex SDK.

A creative approach to class factories can make your application a lot more flexible. In
Chapter 4, you’ll see how you can use factories to integrate BlazeDS and the Spring
framework.

Design patterns is a lingua franca, understood by all software developers in general and
Flex developers in particular. By the end of this book, you will be more comfortable
speaking this language, too.

112 | Chapter 2: Selected Design Patterns

CHAPTER 3

Building an Enterprise Framework

Programming today is a race between software engi-
neers striving to build bigger and better idiot-proof pro-

grams, and the Universe trying to produce bigger and
better idiots. So far, the Universe is winning.

—Rich Cook

There is no such thing as perfect design. The Flex framework is evolving, and we are
grateful that software engineers from the Flex team made this framework extendable.
Because this book covers the use of the Flex framework in enterprise software devel-
opment, we will identify and enhance those components that are widely used in
business RIA.

For the majority of the enterprise applications, development comes down to a few major
activities:

• Creating data grids

• Working with forms

• Validating data

• Printing

If you, the architect, can achieve improvements in each of these areas by automating
common tasks, application developers will spend less time writing the same mundane
code over and over again. The key is to encapsulate such code inside reusable Flex
components, to create smarter components that can be collected into libraries.

Chapter 1 reviewed such architectural frameworks as Cairngorm, PureMVC, and Mate,
which mainly helped with separating the code into tiers, but now you’ll learn how to
build another type of framework by enhancing existing Flex components. Specifically,
this chapter demonstrates how to build a framework that radically simplifies creation
of data entry applications by:

• Identifying common reusable components, which in turn reduces the number of
errors inevitably introduced during manual coding

113

• Encapsulating implementation of architectural patterns inside selected
components

• Defining best practices and implementing them in concrete components rather
than just describing them on paper

You’ll learn how to inherit your components from the existing ones, starting with the
basic techniques, while extending a simple CheckBox, then approaching the more com-
plex ComboBox component. The remainder of the chapter is devoted to extending
components that every enterprise application relies on, namely DataGrid, Form, and
Validator.

By providing a framework that integrates the work of programmers, business analysts,
designers, and advanced users, you can drastically simplify the development of enter-
prise applications.

Every web developer is familiar with Cascading Style Sheets (CSS), which let designers
define and change the look and feel of the applications without the need to learn pro-
gramming. As you’ll learn in this chapter, Business Style Sheets (BSS) serve a similar role
for enterprise application developers, enabling software developers to attach a remote
data set to a component with minimum coding. For example, you’ll see how a simple
resource file can instruct a ComboBox (or any other component) on where to get and how
to display the data. Think of it as a data skinning. With BSS, you can develop artifacts
that are highly reusable across enterprise applications.

Along the way, you’ll learn more about BSS and other techniques for enhancing and
automating Flex components. Although you won’t be able to build an entire framework
here (the challenges of printing and reporting are covered in the last chapter), you’ll
get a good start in mastering valuable skills that any Flex architect and component
developer must have.

Upgrading Existing Flex Components
Flex evolved as a Flash framework from the HTML object model, and the base set of
Flex controls capitalized on the simplicity of HTML. The price that Flex developers
have to pay for this is that each control has its own (different) set of properties and
behaviors. This can make building an enterprise framework a challenge. Consider a
CheckBox control as an example. To quickly and easily integrate CheckBox into a variety
of frameworks, developers would prefer the component to have a unified property value
(on or off) that’s easily bindable to application data. Currently, Flex’s CheckBox has a
property called selected and developers need to write code converting Yes/No data into
the true or false that the selected property expects. If you later use another control,
you must then convert these Yes/No values into the form that the new control requires.
Clearly some common ground would reduce the amount of redundant coding.

114 | Chapter 3: Building an Enterprise Framework

The sections that follow will take a closer look at the CheckBox as well as other major
Flex components that every application needs, and identify what they are missing and
how to enhance them.

Introducing Component Library clear.swc
As you may remember from Chapter 1, Clear Toolkit’s component library, clear.swc,
contains a number of enhanced Flex components (Figure 3-1). Specifically, this com-
ponent library consists of three packages:

• com.farata.components

• com.farata.grid

• com.farata.printing

Figure 3-1. The com.farata.components package from clear.swc

Upgrading Existing Flex Components | 115

To demonstrate how you can extend components, in the following sections we’ll ex-
plain how we built some of the components from the package com.farata.compo-
nents. Later you can use these discussions for reference, if you decide to build a similar
(or better) library of components. (Some of the classes from the other two packages
will be discussed in Chapter 11 of this book.)

You can find the source code of all components described in this chapter
in the clear.swc component library. The code of some of the components
explained here was simplified to make explanations of the process of
extending Flex components easier. Neither this chapter nor the book as
a whole is meant to be a manual for the open source clear.swc library.
If you just want to use clear.swc components, refer to https://sourceforge
.net/projects/cleartoolkit/, where the ASDoc-style API and the source
code of each component from clear.swc are available.

You can use clear.swc independently by linking it to your Flex project. To help you
understand how its components can help you, the following sections examine simpli-
fied versions of some of the library’s controls.

Creating a Value-Aware CheckBox
The CheckBox in Example 3-1 has been enhanced with additional value and text prop-
erties. You can specify which value should trigger turning this control into the on/off
position.

Example 3-1. CheckBox with value and text properties

package com.farata.controls {
 import flash.events.Event;
 import flash.events.KeyboardEvent;
 import flash.events.MouseEvent;

 import mx.controls.CheckBox;
 import mx.events.FlexEvent;

 public class CheckBox extends mx.controls.CheckBox {

 public var onValue:Object=true;
 public var offValue:Object=false;
 private var _value:*;

 public function set text(o:Object):void {
 value = o;
 }
 public function get text():Object {
 return value;
 }

 [Bindable("valueCommit")]

116 | Chapter 3: Building an Enterprise Framework

https://sourceforge.net/projects/cleartoolkit/
https://sourceforge.net/projects/cleartoolkit/

 public function set value(val:*) :void {
 _value = val;
 invalidateProperties();
 dispatchEvent(new FlexEvent (FlexEvent.VALUE_COMMIT));
 }

 public function get value():Object {
 return selected?onValue:offValue;
 }

 override protected function commitProperties():void {
 if (_value!==undefined)
 selected = (_value == onValue);
 super.commitProperties();
 }
 }
}

This CheckBox will automatically switch itself into a selected or unselected state: just
add it to your view, set the on and off values, and either assign a string or an Object
value to it. Please note that the value setter calls the function invalid
ateProperties(), which internally schedules the invocation of the function commitPro
perties() on the next UI refresh cycle.

The commitProperties() function enables you to make changes to all the properties of
a component in one shot. That’s why we set the value of the selected property based
on the result of the comparison of _value and onValue in this function.

Example 3-2 is a test application illustrating how to use this CheckBox, with the resulting
interface shown in Figure 3-2. To run a test, click the first Set OnValue= button to teach
the CheckBox to turn itself on when the value Male is assigned, and off when its property
text has the value of Female. Then, click the first or second cbx_test.text button to
assign a value to the newly introduced property text of this CheckBox, and watch how
its state changes.

Example 3-2. Test application for the value-aware CheckBox

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:clear="com.farata.controls.*" layout="vertical">

 <clear:CheckBox id="cbx_test" label="Assign me a value" />

 <mx:Button label="Set OnValue='Male' and offValue='Female'"
 click="cbx_test.onValue='Male';cbx_test.offValue='Female';"/>

 <mx:Button label="cbx_test.text='Male'" click="cbx_test.text='Male'" />
 <mx:Button label="cbx_test.text='Female'" click="cbx_test.text='Female'" />

 <mx:Button label="Set OnValue=Number('1') and offValue=Number('0')"
 click="cbx_test.onValue=Number('1');cbx_test.offValue=Number('0');"/>

 <mx:Button label="cbx_test.value='Number('1')'"

Upgrading Existing Flex Components | 117

 click="cbx_test.value =new Number('1')" />
 <mx:Button label="cbx_test. value='Number('0')"
 click="cbx_test.value =new Number('0')" />

</mx:Application>

Figure 3-2. Testing the value-aware CheckBox

Creating a Centered CheckBox
This example demonstrates how to create a CheckBox that can center itself horizontally
in any container, including a data grid cell.

Although you could introduce an item renderer that uses a CheckBox inside an HBox with
the style horizontalAlign set to center, using a container inside the item rendered neg-
atively affects the data grid control’s performance.

The better approach is to extend the styling of the CheckBox itself. Example 3-3 is a code
extension that “teaches” a standard Flex CheckBox to respond to the textAlign style if
the label property of the CheckBox is not defined:

Example 3-3. Self-centering solution for CheckBox

override protected function updateDisplayList(unscaledWidth:Number,
 unscaledHeight:Number):void {

 super.updateDisplayList(unscaledWidth, unscaledHeight);
 if (currentIcon) {

118 | Chapter 3: Building an Enterprise Framework

 var style:String = getStyle("textAlign");
 if ((!label) && (style=="center")) {
 currentIcon.x = (unscaledWidth - currentIcon.measuredWidth)/2;
 }
 }
 }

In the example code, the x coordinate of the CheckBox icon will always be located in the
center of the enclosing container. Because no additional container is introduced, you
can use this approach in the DataGridColumn item renderer, which is a style selector.
When you use this enhanced CheckBox as a column item renderer, textAlign automat-
ically becomes a style of this style selector, and you can simply set textAlign=center
on DataGridColumn.

While developing enhanced components for the enterprise business
framework, concentrate on identifying reusable functionality that ap-
plication developers often need, program it once, and incorporate it in
the component itself.

Creating a Protected CheckBox
The standard Flex CheckBox has a Boolean property called enabled that is handy when
you want to disable the control. Unfortunately, a disabled CheckBox is rendered as
grayed out. What if you want to use a CheckBox in some noneditable container, say in
a DataGridColumn, and you want it to be nonupdateable but look normal?

The answer is to use a new class called CheckBoxProtected, which includes an additional
property updateable. Its trick is to suppress standard keyboard and mouse click pro-
cessing. Overriding event handlers by adding the following:

if (!updateable) return;

works like a charm! Example 3-4 lists the complete code.

Example 3-4. Class CheckBoxProtected

package com.farata.controls
{
 import flash.events.Event;
 import flash.events.KeyboardEvent;
 import flash.events.MouseEvent;
 import mx.controls.CheckBox;

 public class CheckBoxProtected extends mx.controls.CheckBox {

 public var updateable:Boolean = true;

 public function CheckBoxProtected() {
 super();
 addEventListener(MouseEvent.CLICK, onClick);
 }

Upgrading Existing Flex Components | 119

 private function onClick (event:MouseEvent):void {
 dispatchEvent(new Event(Event.CHANGE));
 }
 override protected function keyDownHandler(event:KeyboardEvent):void {
 if (!updateable) return;
 super.keyDownHandler(event);
 }
 override protected function keyUpHandler(event:KeyboardEvent):void {
 if (!updateable) return;
 super.keyUpHandler(event);
 }
 override protected function mouseDownHandler(event:MouseEvent):void {
 if (!updateable)return;
 super.mouseDownHandler(event);
 }
 override protected function mouseUpHandler(event:MouseEvent):void {
 if (!updateable)return;
 super.mouseUpHandler(event);
 }
 override protected function clickHandler(event:MouseEvent):void {
 if (!updateable)return;
 super.clickHandler(event);
 }
 }
}

To test the protected CheckBox, use Example 3-5.

Example 3-5. Test application for CheckBoxProtected

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:clear="com.farata.controls.*" layout="vertical">

 <clear:CheckBoxProtected updateable="false"
 label="I am protected" fontSize="18"/>
 <mx:CheckBox enabled="false"
 label="I am disabled" fontSize="18"/>

</mx:Application>

Running this application produces the results in Figure 3-3, which shows the difference
between the protected and disabled checkboxes.

Why not use the extensibility of the Flex framework to its fullest? This chapter is about
what you can do with Flex components. Armed with this knowledge, you’ll make your
own decisions about what you want to do with them.

For example, think of a CheckBox with a third state. The underlying data can be Yes,
No, or null. If the value is null (the third state), the CheckBox needs to display a different
image, such as a little question mark inside. In addition to supporting three states
(selected, unselected, and null), this control should allow an easy switch from one state
to another. Such an enhancement includes a skinning task—create a new skin (with a

120 | Chapter 3: Building an Enterprise Framework

question mark) in Photoshop and ensure that the control switches to this state are based
on the underlying data. For a working example, see CheckBox3Stated in the clear.swc
component library.

Upgrading ComboBox
The CheckBox is easiest to enhance, because it’s one of the simplest controls, having
only two states (on or off). You can apply the same principles to a more advanced
ComboBox, however. Identify reusable functionality, program it once, and incorporate it
into the component.

What if, for example, you need to programmatically request a specific value to be
selected in a ComboBox? The traditional approach is to write code that loops through the
list of items in the ComboBox data provider and manually works with the
selectedIndex property. To set Texas as a selected value of a ComboBox that renders states,
you could use:

var val:String; val= 'Texas' ;
for (var i: int = 0; i < cbx.dataProdider.length; i++) {
 if (val == cbx_states.dataProvider[i].[cbx_states.labelField])
 {
 cbx_states.selectedIndex = i;
 break;
 }
}

The downside of this approach is that if your application has 50 ComboBox controls,
several developers will be writing similar loops instead of a single line, such as
cbx_states.value="Texas".

Unfortunately, ComboBox does not provide a specific property that contains the selected
value. It has such properties as labelField, selectedIndex, and selectedItem. Which

Figure 3-3. Running the CheckBoxProtected app

Upgrading Existing Flex Components | 121

one of them is actually a data field? How do you search by value? Do you really care
about the number of the selected row in the ComboBox? Not at all—you need to know
the selected value.

Let’s revisit the earlier code snippet. The labelField of a ComboBox knows the name of
the property from the objects stored in the backing collection. But what about the data
field that corresponds to this label (in the case of Texas, a good candidate to be con-
sidered as the ComboBox data could be TX)? Currently, finding such data is the application
programmer’s responsibility.

Even if you are OK with writing these loops, considering the asynchronous nature of
populating data providers, this code may need to wait until the data arrives from the
server. It would be nice, though, if you could simply assign the value to a ComboBox
without the need to worry about asynchronous flows of events.

Consider a List control, the brother of the ComboBox. Say the user selected five items,
and then decided to filter the backing data collection. The user’s selections will be lost.
The List could benefit from yet another property that would remember selected values
and could be used without worrying about the time of the data arrival.

Example 3-6 offers a solution: the class ComboBoxBase, which extends ComboBox by adding
the value property (don’t confuse it with <mx:ComboBoxBase>). After introducing the
value property, it uses the dataField property to tell the ComboBox the name of the data
field in the object of its underlying data collection that corresponds to this value. The
new dataField property enables you to use any arbitrary object property as ComboBox
data.

You’ll also notice one more public property: keyField, which is technically a synonym
of dataField. You can use keyField to avoid naming conflicts in situations where the
ComboBoxBase or its subclasses are used inside other objects (say, DataGridColumn) that
also have a property called dataField.

Example 3-6. Class com.farata.control.ComboBoxBase

package com.farata.controls {
 import flash.events.Event;

 import mx.collections.CursorBookmark;
 import mx.collections.ICollectionView;
 import mx.collections.IViewCursor;
 import mx.controls.ComboBox;
 import mx.controls.dataGridClasses.DataGridListData;
 import mx.controls.listClasses.ListData;
 import mx.core.mx_internal;
 use namespace mx_internal;

 public class ComboBoxBase extends ComboBox {

 public function ComboBoxBase() {
 super();
 addEventListener("change", onChange);

122 | Chapter 3: Building an Enterprise Framework

 }

 // Allow control to change dataProvider data on change
 private function onChange(event:Event):void {
 if (listData is DataGridListData) {
 data[DataGridListData(listData).dataField] = value;
 }else if (listData is ListData && ListData(listData).labelField in data) {
 data[ListData(listData).labelField] = value;
 }
 }

 protected function applyValue(value:Object):void {
 if ((value != null) && (dataProvider != null)) {
 var cursor:IViewCursor = (dataProvider as ICollectionView).createCursor();
 var i:uint = 0;
 for (cursor.seek(CursorBookmark.FIRST); !cursor.afterLast;
 cursor.moveNext(), i++) {
 var entry:Object = cursor.current;
 if (!entry) continue;
 if ((dataField in entry && value == entry[dataField])) {
 selectedIndex = i;
 return;
 }
 }
 }
 selectedIndex = -1;
 }

 private var _dataField:String = "data";
 private var _dataFieldChanged:Boolean = false;

 [Bindable("dataFieldChanged")]
 [Inspectable(category="Data", defaultValue="data")]

 public function get dataField():String { return _dataField; }
 public function set dataField(value:String):void {
 if (_dataField == value)
 return;

 _dataField = value;
 _dataFieldChanged = true;
 dispatchEvent(new Event("dataFieldChanged"));
 invalidateProperties();
 }

 public function get keyField():String { return _dataField; }

 public function set keyField(value:String):void {
 if (_dataField == value)
 return;
 dataField = value;
 }

 private var _candidateValue:Object = null;
 private var _valueChanged:Boolean = false;

Upgrading Existing Flex Components | 123

 [Bindable("change")]
 [Bindable("valueCommit")]
 [Inspectable(defaultValue="0", category="General", verbose="1")]

 public function set value(value:Object) : void {
 if (value == this.value)
 return;

 _candidateValue = value;
 _valueChanged = true;
 invalidateProperties();
 }

 override public function get value():Object {
 if (editable)
 return text;

 var item:Object = selectedItem;

 if (item == null)
 return null;

 return dataField in item ? item[dataField] : null/*item[labelField]*/;
 }

 override public function set dataProvider(value:Object):void {
 if (!_valueChanged) {
 _candidateValue = this.value;
 _valueChanged = true;
 }
 super.dataProvider = value;
 }

 override public function set data(data:Object):void {
 super.data = data;
 if (listData is DataGridListData) {
 _candidateValue = data[DataGridListData(listData).dataField];
 _valueChanged = true;
 invalidateProperties();
 }else if (listData is ListData && ListData(listData).labelField in data) {
 _candidateValue = data[ListData(listData).labelField];
 _valueChanged = true;
 invalidateProperties();
 }
 }

 override protected function commitProperties():void {
 super.commitProperties();
 if (_dataFieldChanged) {
 if (!_valueChanged && !editable)
 dispatchEvent(new Event(Event.CHANGE));

 _dataFieldChanged = false;
 }

124 | Chapter 3: Building an Enterprise Framework

 if (_valueChanged) {
 applyValue(_candidateValue);
 _candidateValue = null;
 _valueChanged = false;
 }
 }

 public function lookupValue(value:Object, lookupField:String = null):Object {
 var result:Object = null;
 var cursor:IViewCursor = collectionIterator;
 for (cursor.seek(CursorBookmark.FIRST);!cursor.afterLast;cursor.moveNext()) {
 var entry:Object = cursor.current;
 if (value == entry[dataField]) {
 result = !lookupField ? entry[labelField] : entry[lookupField];
 return result;
 }
 }
 return result;
 }
 }
}

The new property value is assigned in the following setter function:

[Bindable("change")]
[Bindable("valueCommit")]
[Inspectable(defaultValue="0", category="General", verbose="1")]
 public function set value(value:Object) : void {
 if (value == this.value)
 return;

 _candidateValue = value;
 _valueChanged = true;
 invalidateProperties();
}

Notice that when the function turns on the flag _valueChanged, invalid
ateProperties() internally schedules a call to the method commitProperties() to ensure
that all changes will be applied in the required sequence. In the example, the code in
the commitProperties() function ensures that the value of the dataField is processed
before explicit changes to the value property, if any.

ComboBox is an asynchronous control that can be populated by making a server-side call.
There is no guarantee that the remote data has arrived by the time that you assign some
data to the value property. The _candidateValue in the value setter is a temporary
variable supporting deferred assignment in the method commitProperties().

The function commitProperties() broadcasts the notification that the value has been
changed (in case if some other application object is bound to this value) and passes the
_candidateValue to the method applyValue().

override protected function commitProperties():void {
 super.commitProperties();

Upgrading Existing Flex Components | 125

 if (_dataFieldChanged) {
 if (!_valueChanged && !editable)
 dispatchEvent(new Event(Event.CHANGE));

 _dataFieldChanged = false;
 }

 if (_valueChanged) {
 applyValue(_candidateValue);
 _candidateValue = null;
 _valueChanged = false;
 }
 }

The method applyValue() loops through the collection in the dataProvider using the
IViewCursor iterator. When this code finds the object in the data collection that has a
property specified in the dataField with the same value as the argument of this function,
it marks this row as selected.

protected function applyValue(value:Object):void {
 if ((value != null) && (dataProvider != null)) {
 var cursor:IViewCursor = (dataProvider as ICollectionView).createCursor();
 var i:uint = 0;
 for (cursor.seek(CursorBookmark.FIRST); !cursor.afterLast;
 cursor.moveNext(), i++) {
 var entry:Object = cursor.current;
 if (!entry) continue;
 if ((dataField in entry && value == entry[dataField])) {
 selectedIndex = i;
 return;
 }
 }
 }
 selectedIndex = -1;
 }

Tags such as:

[Inspectable(defaultValue="0",category="General", verbose="1")]Inspectable tag

ensure that corresponding properties will appear in property sheets of ComboBoxBase in
Flash Builder’s design mode (in this case, under the category General with specified
initial values in defaultValue and verbose).

Metatags such as [Bindable("dataFieldChanged")] ensure that the dataFieldChange
event will be dispatched (to those who care) whenever the value of the dataField
changes.

In Example 3-7, the small application TestComboBoxApp.mxml demonstrates the use
of the ComboBoxBase component.

Example 3-7. Using the ComboBoxBase component

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

126 | Chapter 3: Building an Enterprise Framework

 xmlns:clear="com.farata.controls.*" layout="vertical">
 <mx:ArrayCollection id="cbData">
 <mx:Array>
 <mx:Object label="Adobe" data="ADBE" taxID="1111"/>
 <mx:Object label="Microsoft" data="MSFT" taxID="2222"/>
 <mx:Object label="Farata Systems" data="FS" taxID="3333"/>
 </mx:Array>
 </mx:ArrayCollection>

 <clear:ComboBoxBase dataProvider="{cbData}" value="FS"/>

 <clear:ComboBoxBase dataProvider="{cbData}" dataField="taxID" value="3333"/>

</mx:Application>

Both drop-downs use the same dataProvider. When you run Example 3-7’s application,
you’ll see a window similar to Figure 3-4.

Figure 3-4. Running an application with two ComboBoxBase components

The first ComboBoxBase shows “Farata Systems” because of the assignment value="FS",
which compares it with values in the data field of the objects from cbData collection.

The second drop-down sets dataField="taxID", which instructs the ComboBox to use the
value of the taxID property in the underlying data collection. If the code assigns a new
value to taxID—e.g., an external data feed—the selection in the ComboBox will change
accordingly. This behavior better relates to the real-world situations in which a collec-
tion of DTOs with multiple properties arrives from the server and has to be used with
one or more ComboBox controls that may consider different DTO properties as their data.

Resources as Properties of UI Controls
An even more flexible solution for enhancing components to better support your en-
terprise framework is the use of a programming technique that we call data styling or
Business Style Sheets (BSS), as mentioned earlier. The basic process is to create small
files, called resources, and attach them as a property to a regular UI component as well
as a DataGrid column.

Resources as Properties of UI Controls | 127

Example 3-8 illustrates this BSS technique and contains a small MXML file called
YesNoCheckBoxResource.mxml.

Example 3-8. A CheckBox resource (see YesNoCheckBoxResource.mxml)

<?xml version="1.0" encoding="utf-8"?>
<fx:CheckBoxResource
 xmlns="com.farata.resources" xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:resources="com.theriabook.resources.*"
 offValue = "N"
 onValue = "Y"
 textAlign="center"
 >

</fx:CheckBoxResource>

Doesn’t it look like a style to you? You can easily make it specific to a locale too by, for
example, changing the on/off values of Y/N to Д/Η, which mean Да/Ηет (which you
might be more familiar with as Da/Nyet) in Russian, or Si/No for Spanish. When you
think of such resources as entities that are separate from the application components,
you begin to see the flexibility of the technique. Isn’t such functionality similar to what
CSS is about?

As a matter of fact, it’s more sophisticated than CSS, because this resource is a mix of
styles and properties, as shown in Example 3-9. Called StateCombo-
BoxResource.mxml, this resource demonstrates using properties (e.g., dataProvider) in
a BSS. Such a resource can contain a list of values, such as names and abbreviations of
states.

Example 3-9. StateComboBoxResource with hardcoded states

<?xml version="1.0" encoding="utf-8"?>
<fx:ComboBoxResource
 xmlns="com.farata.resources" xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:resources="com.theriabook.resources.*"
 dropdownWidth="160"
 width="160"
 >
 <fx:dataProvider>
 <mx:Array>
 <mx:Object data="AL" label="Alabama" />
 <mx:Object data="AZ" label="Arizona" />
 <mx:Object data="CA" label="California" />
 <mx:Object data="CO" label="Colorado" />
 <mx:Object data="CT" label="Connecticut" />
 <mx:Object data="DE" label="Delaware" />
 <mx:Object data="FL" label="Florida" />
 <mx:Object data="GA" label="Georgia" />
 <mx:Object data="WY" label="Wyoming" />
 </mx:Array>
 </fx:dataProvider>
</fx:ComboBoxResource>

128 | Chapter 3: Building an Enterprise Framework

Yet another example of a resource, Example 3-10 contains a reference to a remote
destination for automatic retrieval of dynamic data coming from a DBMS.

Example 3-10. Sample DepartmentComboResource configured for a remote destination

<?xml version="1.0" encoding="utf-8"?>
<fx:ComboBoxResource
 xmlns="com.farata.resources" xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:resources="com.theriabook.resources.*"
 width="160"
 dropdownWidth="160"
 destination="Employee"
 keyField="DEPT_ID"
 labelField="DEPT_NAME"
 autoFill="true"
 method="getDepartments"
 >
</fx:ComboBoxResource>

As a matter of fact, you can’t tell from this code whether the data is coming from a
DBMS or from somewhere else. That data is cleanly separated from the instances of
the ComboBox objects associated with this particular resource and can be cached either
globally (if the data needs to be retrieved once) or according to the framework caching
specifications. When developing a business framework, you may allow, for example,
lookup objects to be loaded once per application or once per view. This flexibility
doesn’t exist in singleton-based architectural frameworks. Frameworks built using the
resource technique/BSS, however, do allow the flexibility to look up objects.

Based on this resource file you can say only that the data comes back from a remote
destination called Employee, which is either a name of a class or a class factory. You can
also see that the method getDepartments() will return the data containing DEPT_ID and
DEPT_NAME, which will be used with the enhanced ComboBox described earlier in this
chapter (Example 3-6).

In addition to such resources, however, you need a mechanism of attaching them to
Flex UI components. To teach a ComboBox to work with resources, add a resource prop-
erty to it:

private var _resource:Object;
public function get resource():Object
{
 return _resource;
}

public function set resource(value:Object):void {
 _resource = value;
 var objInst:* = ResourceBase.getResourceInstance(value);
 if(objInst)
 objInst.apply(this);
}

Resources as Properties of UI Controls | 129

The section “The Base Class for Resources” on page 131 will describe in detail the
ResourceBase class. For now, concentrate on the fact that the resource property enables
you to write something like this:

<fx:ComboBox resource="{DepartmentComboResource}"

Each of the enhanced UI components in your framework should include such a prop-
erty. Because interfaces don’t allow default implementation of such a setter and getter
and because ActionScript does not support multiple inheritances, the easiest way to
include this implementation of the resource property to each control is by using the
language compile-time directive #include, which includes the contents of the external
file—say, resource.as—into the code of your components:

#include "resource.as"

Styles Versus Properties
Before going too deep into the BSS and resources approach, you need to understand
some key differences between styles and properties. For instance, although simple dot
notation (myObject.resource=value) is valid Flex syntax for properties, it is not allowed
for styles. Instead, application programmers have to use the function setStyle(). Suf-
fice it to say that the StyleManager handles styles that can be cascading, yet properties
can’t cascade. From the framework developer’s point of view, properties allow defining
classes with getters and setters and take advantage of inheritance. With styles, you can’t
do this. On the other hand, you can’t add properties (i.e., value and destination) to
styles.

The designers of the Flex framework separated styles from properties for easier sepa-
ration of internal processes; if an application code changes the style, the Flex framework
performs some underground work to ensure that cascading style conventions are prop-
erly applied—for example, a global style that dictates that the Verdana font family is
properly overridden by the style applied to a Panel or its child.

From an enterprise framework designer’s perspective, this means that if you create a
base class for the styles, and some time later decide to change it, the change may affect
all derived classes. Suppose that you subclass ComboBox and define some new styles in
the derived MyComboBox and then later change the style of the ComboBox. For the de-
scendant class, this means that now code changes are required to properly (according
to the changed rules) apply the overridden and added styles.

All this explains why every book and product manual keep warning that styles are
expensive and you should limit the use of the setSyle() function during runtime. With
properties, life is a lot easier.

A beneficial framework would allow application programmers to define a small named
set of application-specific styles and properties and the ability to govern the work of
the UI control with selectors.

130 | Chapter 3: Building an Enterprise Framework

To accomplish this, get into the DataGrid state of mind. Have you ever thought of how a
DataGridColumn object sets its own width, height, and other values? The
DataGridColumn class is a descendant of a style selector called CSSStyleSelector, which
means that it can be used to modify styles but not properties.

DataGrid examines every DataGridColumn and asks itself, “Do I have the same as this
column object in my cache?” If it does not, it answers, “Nope, there’s nothing I can
reuse. I need to create a new class factory to supply a new item renderer.” After this is
done, the DataGrid code assigns the supplied DataGridColumn to the item renderer as a
style. (Search for renderer.styleName=c in the code of DataGridBase.as to see for your-
self.) At this point, all the specified column’s styles (height, width, color, and text
alignment) are applied as styles to the item renderer.

Treat DataGridColumn as a CSS style selector that also includes a limited number of
properties (i.e., itemRenderer). DataGrid creates one instance of such a selector object
and then reapplies it to every cell in this column.

Unfortunately, designing a DataGrid this way makes it next to impossible to externalize
this CSS style selector, and you can’t extend the properties of the data grid column to
make them specific to the item renderer. Say you wanted to use a CheckBox with a
property value (on/off) as an item renderer. Tough luck—DataGridColumn is not a dy-
namic object and you can’t just add this as a new property.

Flex is an extendable framework, however, and what you can add is a new resource
class with behaviors more to your liking. In fact, that’s exactly what the ResourceBase
class does, and it’s described next.

The Base Class for Resources
Example 3-11 depicts the class ResourceBase, which serves as a base class for all re-
sources for all components. This class can tell properties from styles. In Chapter 2, you
learned about a class factory that accepts a class or a function name to create instances
of objects. We applied that same technique here: with ResourceBase, a resource instance
can be created from a class factory or a class.

Technically, the ResourceBase class applies specified values as either properties or
resources.

Example 3-11. The ResourceBase class

package com.farata.resources {
 import com.farata.controls.TextInput;

 import flash.system.ApplicationDomain;

 import mx.core.ClassFactory;
 import mx.core.UIComponent;
 import mx.utils.StringUtil;

Resources as Properties of UI Controls | 131

 public dynamic class ResourceBase {
 public var resourceProps:Array = [];
 public var resourceStyles:Array = [];

 public function load(source:Object):void {
 for each(var propName:String in resourceProps) {
 try {
 if(source[propName])
 this[propName]= source[propName] ;
 }
 catch (e:Error) {}
 }
 for each(var styleName:String in resourceStyles){
 try {
 if(source.getStyle(styleName))
 this[styleName] = source.getStyle(styleName);
 }
 catch (e:Error){}
 }
 }

 public function apply(target:Object):void {
 try {
 for each(var propName:String in resourceProps)
 if (this[propName]!=undefined)
 target[propName] = this[propName];
 } catch (e:Error) {
 var error:String = mx.utils.StringUtil.substitute(
 "Incompatible resource class. Can not apply
 property {0} of {1} to {2}",
 [propName,this.toString(), target.toString()]);
 throw new Error(error);
 }
 try {

 for each(var styleName:String in resourceStyles)
 if(this[styleName])
 target.setStyle(styleName, this[styleName]);
 }

 public static function getResourceInstance(value:Object,
 styleOwner:Object=null):* {
 var resClass:Object;
 if(value is Class) {
 resClass = Class(value);
 if (styleOwner) {
 try {
 var result:* = new resClass(styleOwner);
 return result;
 }
 catch (e:Error) {
 return new resClass();
 }
 }
 else

132 | Chapter 3: Building an Enterprise Framework

 return new resClass();
 }
 else if(value is ResourceBase)
 return value;
 else if(value is ClassFactory)
 return ClassFactory(value).newInstance();
 else if (value != null) {
 var v:String = String(value).replace(/{/,"");
 v = v.replace(/}/,"");
 resClass = ApplicationDomain.currentDomain.getDefinition(v);
 if (styleOwner) {
 try {
 var result2:* = new resClass(styleOwner);
 return result2;
 }
 catch (e:Error) {
 return new resClass();
 }
 }
 else
 return new resClass();
 }
 }
 public function get itemEditor() : UIComponent {
 return new TextInput();
 }
}
}

When application programmers design a resource for a particular type of Flex UI con-
trol, they simply extend it from a ResourceBase class (or build an MXML component
based on it) and specify the names of the variables and their default values, if need be.

The ResourceBase class relies on two arrays: resourceProps and resourceStyles. When
application developers create concrete resources, they also must populate these arrays.
Example 3-12 illustrates the implementation of a sample class called Combo
BoxResource. Note how the array resourceProps is populated with the data in the
constructor.

Example 3-12. Sample ComboBoxResource class

package com.farata.resources {
 import mx.core.IFactory;
 import mx.core.UIComponent;
 import mx.styles.CSSStyleDeclaration;
 import mx.styles.StyleManager;
 import com.farata.controls.ComboBox;

 dynamic public class ComboBoxResource extends ResourceBase {
 public var autoFill :Boolean = false;
 public var keyField : String = "data";
 public var destination:String=null;
 public var dropdownWidth : int = 0;
 public var editable:Boolean = false;

Resources as Properties of UI Controls | 133

 public var itemRenderer:IFactory = null;
 public var labelFunction : Function = null;
 public var labelField : String = "label";
 public var dataField : String = "label";
 public var method : String = null;
 public var width:int=-1;
 public var dataProvider : Object;

 public function ComboBoxResource(styleOwner:Object=null) {
 resourceProps.push("autoFill", "keyField", "destination",
 "dropdownWidth", "editable","itemRenderer", "labelField",
 "labelFunction","method", "dataProvider", "width");

 var sd:CSSStyleDeclaration =
 StyleManager.getStyleDeclaration(".comboBoxResource");
 if (!sd) {
 sd = new CSSStyleDeclaration();
 StyleManager.setStyleDeclaration(".comboBoxResource",
 sd, false);
 sd.setStyle("paddingBottom", 0);
 sd.setStyle("paddingTop", 0);
 }
 if (styleOwner!= null)
 load(styleOwner);
 }
 override public function get itemEditor() :UIComponent {
 return new ComboBox();
 }
 }
}

This class has to be written once for your enterprise framework, and after that any
junior programmer can easily create and update resources such as StateComboRe
source or DepartmentComboResource shown earlier in this chapter in Examples 3-9 and
3-10.

Similarly to CSS, resources should be compiled into a separate .swf file. They can be
loaded and reloaded during the runtime. You can find out more about class loaders in
Chapter 7.

DataGrid with Resources
The most interesting part about these resources is that you can attach them not only
to regular controls, but also to such dynamic controls as DataGridColumn. For example,
the following code snippet instructs the DataGridColumn (it was also enhanced and is
available in clear.swc) to turn itself into a ComboBox and populate itself based on the
configured resource DepartmentComboResource shown in Example 3-10.

<fx:DataGridColumn dataField="DEPT_ID" editable="false"
headerText="Department"
resource="{com.farata.resources.DepartmentComboResource}"/>

134 | Chapter 3: Building an Enterprise Framework

A resource attached to a DataGridColumn not only sets a column’s properties but also
identifies the item renderer and editor for this column.

As discussed in Chapter 2, class factories become extremely powerful if you use them
as item renderers for a data grid column. Using this methodology, you can also encap-
sulate a number of properties and styles in the object provided by the factory. For
example, you can enable the support of resources on the enhanced DataGridColumn
object by adding the code fragment in Example 3-13.

Example 3-13. Enabling resources support in DataGridColumn

private var _resource:Object;
public function set resource(value:Object):void{
 _resource = ResourceBase.getResourceInstance(value, this);
 if(labelFunction==null) {
 getLabelFunctionByResource(_resource, this);
 }
}

public function get resource():Object{
 return _resource;
}
public static function getLabelFunctionByResource(resourceRef:Object,
 column:Object):void {
 var resource:ResourceBase = resourceRef as ResourceBase;
 if (resource) {
 if(resource.hasOwnProperty("destination") &&
 resource["destination"])
 CollectionUtils.getCollection(
 function(ev:Event, collection:Object):void {
 collectionLoaded(collection, column);
 },
 resource.destination,
 resource.method
);
 else if (resource.hasOwnProperty("dataProvider") &&
 resource["dataProvider"]) {
 collectionLoaded(
 resource.dataProvider,
 column,
 safeGetProperty(resource, "labelField", "label"),
 safeGetProperty(resource, "keyField", "data")
);
 }
 }
}
private static function collectionLoaded(collection:Object, column:Object,
 labelField:String = null, dataField:String = null):void {
 if (null == collection) return;
 labelField =
 labelField ?
 labelField :
 (column["labelField"] != null ?
 column.labelField :

Resources as Properties of UI Controls | 135

 (column.resource.labelField ?
 column.resource.labelField : "label"));

 if (!dataField)
 dataField = column.resource.keyField ?
 column.resource.keyField : column.dataField;

 collection = CollectionUtils.toCollection(collection);

 const options:Dictionary = new Dictionary();

 // copy only when collection is non empty
 if (collection != null && collection.length > 0) {
 const cursor:IViewCursor = collection.createCursor();
 do {
 options[cursor.current[dataField]] =
 cursor.current[labelField];
 } while(cursor.moveNext())
 }

 column.labelFunction = function(data:Object, col:Object):String {
 var key:* = data is String || data is Number ? data :
 data[col.dataField];
 var res:String = options[key];
 return res != null ? res : '' + key;
 };
}

Suppose that you have a DataGrid and a ComboBox with the values 1, 2, and 3 that should
be displayed as John, Paul, and Mary. These values are asynchronously retrieved from
a remote DBMS. You can’t be sure, however, whether John, Paul, and Mary will arrive
before or after the DataGrid gets populated. The example code extends the DataGrid
Column with the property resource and checks whether the application developer sup-
plied a labelFunction. If not, the code tries to “figure out” the labelFunction from the
resource itself.

If resource has the destination set and the method is defined as the Department
ComboResource as in Example 3-10, the code loads the Collection and after that, creates
the labelFunction (see the collectionLoaded() method) based on the loaded data.

The resource may either come with a populated dataProvider as in Example 3-9, or the
data for the dataProvider may be loaded from the server. When the dataProvider is
populated, the collectionLoaded() method examines the dataProvider’s data and cre-
ates the labelFunction. The following code attaches a labelFunction on the fly as a
dynamic function that gets the data and, by the key, finds the text to display on the grid:

column.labelFunction = function(data:Object, col:Object):String {
 var key:* = data is String || data is Number ? data :
 data[col.dataField];
var res:String = options[key];
 return res != null ? res : '' + key;
 };

136 | Chapter 3: Building an Enterprise Framework

This closure uses the dictionary options defined outside. The code above this closure
traverses the data provider and creates the following entries in the dictionary:

1, John
2, Paul
3, Mary

Hence the value of the res returned by this label function will be John, Paul, or Mary.

These few lines of code provide a generic solution for the real-life situations that benefit
from having asynchronously loaded code tables that can be programmed by junior
developers. This code works the same way as translating the data value into John and
Mary, Alaska and Pennsylvania, or department names.

With resources, the properties and styles of UI controls become avail-
able not only to developers who write these classes but also to outsiders,
in a fashion similar to CSS. The examples of resources from the previous
section clearly show that they are self-contained, easy-to-understand
artifacts that can be used by anyone as BSS.

You can create a resource as a collection of styles, properties, and event listeners that
also allows the provision of a class name to be used with it. You can also create a class
factory that will be producing instances of such resources.

Technically, any resource is an abstract class factory that can play the same role that
XML-based configurable properties play in the Java EE world. But this solution requires
compilation and linkage of all resources, which makes it closer to configuring Java
objects using annotations. Just to remind you, in Flex, CSS also get compiled.

To summarize, resources offer the following advantages:

• They are compiled and work fast.

• Because they are simple to understand, junior programmers can work with them.

• You can inherit one resource from another; Flash Builder will offer you context-
sensitive help, and Flex compiler will help you to identify data type errors.

• You can attach resources to a DataGridColumn and use them as a replacement for
item renderers.

Resources are a good start for automation of programming. In Chapter 6, you’ll get
familiar with yet another useful Flex component: DataCollection, a hybrid of ArrayCol
lection and RemoteObject, which is yet another step toward reducing manual
programming.

Resources as Properties of UI Controls | 137

Data Forms
In this section, you’ll continue adding components to the enterprise framework. It’s
hard to find an enterprise application that does not use forms, which makes the Flex
form component a perfect candidate for possible enhancements. Each form has some
underlying model object, and the form elements are bound to the data fields in the
model. Flex 3 supports only one-way data binding: changes on a form automatically
propagate to the fields in the data model. But if you want to update the form when the
data model changes, you have to manually program it using the curly braces syntax in
one direction and BindingUtils.bindProperty() in another.

Flex 4 introduces a new feature: two-way binding. Add an @ sign to the binding ex-
pression (@{expression}) and notifications about data modifications are sent in both
directions—from the form to the model and back. Although this helps in basic cases
where a text field on the form is bound to a text property in a model object, two-way
binding doesn’t have much use if you’d like to use data types other than String.

For example, two-way binding won’t help that much in forms that use the standard
Flex <mx:CheckBox> component. What are you going to bind here? The server-side ap-
plication has to receive 1 if the CheckBox was selected and 0 if not. You can’t just bind
its property selected to a numeric data property on the underlying object. To really
appreciate two-way binding, you need to use a different set of components, similar to
the ones that you have been building in this chapter.

Binding does not work in cases when the model is a moving target. Consider a typical
master/detail scenario: the user double-clicks on a row in a DataGrid and details about
the selected row are displayed in a form. Back in Chapter 1, you saw an example of
this: double-clicking a grid row in Figure 1-19 opened up a form that displayed the
details for the employee selected in a grid. This magic was done with the enhanced
form component that you are about to review.

The scenario with binding a form to a DataGrid row has to deal with a moving model;
the user selects another row. Now what? The binding source is different now and you
need to think of another way of refreshing the form data.

When you define data binding using an elegant and simple notation with curly braces,
the compiler generates additional code to support it. But in the end, an implementation
of the Observer design pattern is needed, and “someone” has to write the code to dis-
patch events to notify registered dependents when the property in the object changes.
In Java, this someone is a programmer; in Flex it’s the compiler, which also registers
event listeners with the model.

Flex offers the Form class, which an application programmer binds to an object repre-
senting the data model. The user changes the data in the UI form, and the model gets
changed, too. But the original Form implementation does not have a means of tracking
the data changes.

138 | Chapter 3: Building an Enterprise Framework

It would be nice if the Form control (bound to its model of type DataCollection) could
support similar functionality, with automatic tracking of all changes compatible with
the ChangeObject class that is implemented with remote data service. Implementing
such functionality is the first of the enhancements you’ll make.

The second improvement belongs to the domain of data validation. The enhanced data
form should be smart enough to be able to validate not just individual form items, but
the form in its entirety, too. The data form should offer an API for storing and accessing
its validators inside the form rather than in an external global object. This way the form
becomes a self-contained black box that has everything it needs. (For details on what
can be improved in the validation process, see the section “Validation” on page 151.)

During the initial interviewing of business users, software developers should be able to
quickly create layouts to demonstrate and approve the raw functionality without wait-
ing for designers to come up with the proper pixel-perfect controls and layouts. Hence
your third target will be making the prototyping of the views developer-friendly. Besides
needing to have uniform controls, software developers working on prototypes would
appreciate not being required to give definitive answers as to which control to put on
the data form. The first cut of the form may use a TextInput control, but the next version
may use a ComboBox instead. You want to come up with some UI-neutral creature (call
it a data form item) that will allow a lack of specificity, like, “I’m a TextInput”, or “I’m
a ComboBox”. Instead, developers will be able to create prototypes with generic data
items with easily attachable resources.

The DataForm Component
The solution that addresses your three improvements is a new component called
DataForm (Example 3-14). It’s a subclass of a Flex Form, and its code implements two-
way binding and includes a new property, dataProvider. Its function validateAll()
supports data validation, as explained in the next sections. This DataForm component
will properly respond to data changes, propagating them to its data provider.

Example 3-14. Class DataForm

package com.farata.controls{
import com.farata.controls.dataFormClasses.DataFormItem;

import flash.events.Event;

import mx.collections.ArrayCollection;
import mx.collections.ICollectionView;
import mx.collections.XMLListCollection;
import mx.containers.Form;
import mx.core.Container;
import mx.core.mx_internal;
import mx.events.CollectionEvent;
import mx.events.FlexEvent;
import mx.events.ValidationResultEvent;

Data Forms | 139

public dynamic class DataForm extends Form{
 use namespace mx_internal;
 private var _initialized:Boolean = false;
 private var _readOnly:Boolean = false;
 private var _readOnlySet:Boolean = false;

 public function DataForm(){
 super();
 addEventListener(FlexEvent.CREATION_COMPLETE, creationCompleteHandler);
 }

 private var collection:ICollectionView;
 public function get validators() :Array {
 var _validators :Array = [];
 for each(var item:DataFormItem in items)
 for (var i:int=0; i < item.validators.length;i++) {
 _validators.push(item.validators[i]);
 }
 return _validators;
 }
 public function validateAll(suppressEvents:Boolean=false):Array {
 var _validators :Array = validators;
 var data:Object = collection[0];
 var result:Array = [];
 for (var i:int=0; i < _validators.length;i++) {
 if (_validators[i].enabled) {
 var v : * = _validators[i].validate(data, suppressEvents);
 if (v.type != ValidationResultEvent.VALID)
 result.push(v);
 }
 }
 return result;
 }

 [Bindable("collectionChange")]
 [Inspectable(category="Data", defaultValue="undefined")]

 /**
 * The dataProvider property sets of data to be displayed in the form.
 * This property lets you use most types of objects as data providers.
 */
 public function get dataProvider():Object{
 return collection;
 }

 public function set dataProvider(value:Object):void{
 if (collection){
 collection.removeEventListener(CollectionEvent.COLLECTION_CHANGE,
 collectionChangeHandler);
 }

 if (value is Array){
 collection = new ArrayCollection(value as Array);
 }
 else if (value is ICollectionView){

140 | Chapter 3: Building an Enterprise Framework

 collection = ICollectionView(value);
 }
 else if (value is XML){
 var xl:XMLList = new XMLList();
 xl += value;
 collection = new XMLListCollection(xl);
 }
 else{
 // convert it to an array containing this one item
 var tmp:Array = [];
 if (value != null)
 tmp.push(value);
 collection = new ArrayCollection(tmp);
 }

 collection.addEventListener(CollectionEvent.COLLECTION_CHANGE,
 collectionChangeHandler);
 if(initialized)
 distributeData();
 }

 public function set readOnly(f:Boolean):void{
 if(_readOnly==f) return;
 _readOnly = f;
 _readOnlySet = true;
 commitReadOnly();
 }

 public function get readOnly():Boolean{
 return _readOnly;
 }

 /**
 * This function handles CollectionEvents dispatched from the data provider
 * as the data changes.
 * Updates the renderers, selected indices and scrollbars as needed.
 *
 * @param event The CollectionEvent.
 */
 protected function collectionChangeHandler(event:Event):void{
 distributeData();
 }

 private function commitReadOnly():void{
 if(!_readOnlySet) return;
 if(!_initialized) return;
 _readOnlySet = false;
 for each(var item:DataFormItem in items)
 item.readOnly = _readOnly;
 }

 private function distributeData():void {
 if((collection != null) && (collection.length < 0)) {
 for (var i:int=0; i<items.length; i++) {
 DataFormItem(items[i]).data = this.collection[0];

Data Forms | 141

 }
 }
 }

 private var items:Array = new Array();
 private function creationCompleteHandler(evt:Event):void{
 distributeData();
 commitReadOnly();
 }

 override protected function createChildren():void{
 super.createChildren();
 enumerateChildren(this);
 _initialized = true;
 commitReadOnly();
 }
 private function enumerateChildren(parent:Object):void{
 if(parent is DataFormItem){
 items.push(parent);
 }
 if(parent is Container){
 var children:Array = parent.getChildren();
 for(var i:int = 0; i < children.length; i++){
 enumerateChildren(children[i]);
 }
 }
 }
 }
}

Let’s walk through the code of the class DataForm. Examine the setter dataProvider in
the example code. It always wraps up the provided data into a collection. This is needed
to ensure that the DataForm supports working with remote data services the same way
that DataGrid does. It checks the data type of the value. It wraps an Array into an
ArrayCollection, and XML turns into XMLListCollection. If you need to change the
backing collection that stores the data of a form, just point the collection variable at
the new data.

If a single object is given as a dataProvider, turn it into a one-element array and then
into a collection object. A good example of such case is an instance of a Model, which
is an ObjectProxy (see Chapter 2) that knows how to dispatch events about changes of
its properties.

Once in a while, application developers need to render noneditable forms; hence, the
DataForm class defines the readOnly property.

The changes of the underlying data are propagated to the form in the method
collectionChangeHandler(). The data can be modified either in the dataProvider or
from the UI, and the DataForm ensures that each visible DataFormItem object
(items[i]) knows about it. This is done in the function distributeData():

private function distributeData():void {
 if((collection != null) && (collection.length < 0)) {

142 | Chapter 3: Building an Enterprise Framework

 for (var i:int=0; i<items.length; i++) {
 DataFormItem(items[i]).data = this.collection[0];
 }
 }
}

This code always works with the element 0 of the collection, because the form always
has one object with data that is bound to the form. Such a design resembles the func-
tionality of the data variable of the Flex DataGrid, which for each column provides a
reference to the object that represents the entire row.

Again, we need the data to be wrapped into a collection to support DataCollection or
DataService from LCDS.

Technically, a DataForm class is a VBox that lays out its children vertically in two columns
and automatically aligns the labels of the form items. This DataForm needs to allow
nesting—containing items that are also instances of the DataForm object. A recursive
function, enumerateChildren(), loops through the children of the form, and if it finds
a DataFormItem, it just adds it to the array items. But if the child is a container, the
function loops through its children and adds them to the same items array. In the end,
the property items contains all DataFormItems that have to be populated.

Notice that the function validateAll() is encapsulated inside the DataForm; in the Flex
framework, it is located in the class Validator. There, the validation functionality was
external to Form elements and you’d need to give an array of validators that were tightly
coupled with specific form fields.

Our DataForm component is self-sufficient; its validators are embedded inside, and re-
using the same form in different views or applications is easier compared to the original
Flex Form object, which relies on external validators.

The DataFormItem Component
The DataFormItem, an extension of the Flex FormItem, is the next component of the
framework. This component should be a bit more humble than its ancestor, though.
The DataFormItem should not know too much about its representation and should be
able to render any UI component. The design of new Flex 4 components has also been
shifted toward separation between their UI and functionality.

At least half of the controls on a typical form are text fields. Some of them use masks
to enter formatted values, like phone numbers. The rest of the form items most likely
are nothing but checkboxes and radio buttons. For these controls (and whatever else
you may need), just use resources. Forms also use combo boxes. The earlier section
“DataGrid with Resources” on page 134 showed you how class factory–based resources
can be used to place combo boxes and other components inside the DataGrid. Now
you’ll see how to enable forms to have flexible form items using the same technique.

Data Forms | 143

The DataFormItem is a binding object that is created for each control placed inside the
DataForm. It has functionality somewhat similar to that of BindingUtils to support two-
way binding and resolve circular references. The DataFormItem has two major
functions:

• Attach an individual control internally to the instance of DataFormItemEditor to
listen to the changes in the underlying control

• Create a UI control (either a default one, or according to the requested masked
input or resource)

The first function requires the DataFormItem control to support the syntax of encapsu-
lating other controls, as it’s implemented in FormItem, for example:

<lib:DataFormItem dataField="EMP_ID" label="Emp Id:">
 <mx:TextInput/>
</lib:DataFormItem>

In this case, the DataFormItem performs binding functions; in the Flex framework,
<mx:FormItem> would set or get the value in the encapsulated UI component, but now
the DataFormItem will perform the binding duties. Assignment of any object to the
dataField property item of the DataFormItem will automatically pass this value to the
enclosed components. If an application developer decides to use a chart as a form item,
for example, the data assigned to the DataFormItem will be given for processing to the
chart object. The point is that application developers would use this control in a uni-
form way regardless of what object is encapsulated in the DataFormItem.

The second function, creating a UI control, is implemented with the help of resources,
which not only allow specifying the styling of the component, but also can define what
component to use. If you go back to the code of the class ResourceBase, you’ll find a
better itemEditor that can be used for the creation of controls. Actually, this gives you
two flexible ways of creating controls for the form: either specify a resource name, or
specify a component as itemEditor=myCustomComponent. If neither of these ways is en-
gaged, a default TextInput control will be created.

The previous code looks somewhat similar to the original FormItem, but it adds new
powerful properties to the component that represents the form item. The data of the
form item is stored in the EMP_ID property of the data collection specified in the
dataProvider of the DataForm. The label property plays the same role as in FormItem.

The source code of the DataFormItem component is shown in Example 3-15. It starts
with defining properties, as in DataGrid: dataField, valueName, and itemEditor. The
DataGridItem can create an itemEditor from a String, an Object, or a class factory. It
also defines an array validator, which will be described later in this chapter.

Example 3-15. Class DataFormItem

package com.farata.controls.dataFormClasses {
 import com.farata.controls.DataForm;
 import csom.farata.controls.MaskedInput;

144 | Chapter 3: Building an Enterprise Framework

 import com.farata.core.UIClassFactory;
 import com.farata.resources.ResourceBase;
 import com.farata.validators.ValidationRule;

 import flash.display.DisplayObject;
 import flash.events.Event;
 import flash.events.IEventDispatcher;
 import flash.utils.getDefinitionByName;

 import mx.containers.FormItem;
 import mx.events.FlexEvent;
 import mx.validators.Validator;

 dynamic public class DataFormItem extends FormItem {
 public function DataFormItem() {
 super();
 }

 private var _itemEditor:IEventDispatcher; //DataFormItemEditor;

 [Bindable("itemEditorChanged")]
 [Inspectable(category="Other")]
 mx_internal var owner:DataForm;

 private var _dataField:String;
 private var _dataFieldAssigned:Boolean = false;
 private var _labelAssigned:Boolean = false;
 private var _valueName:String = null;
 private var _readOnly:Boolean = false;
 private var _readOnlySet:Boolean = false;

 public function set readOnly(f:Boolean):void{
 if(_readOnly==f) return;
 _readOnly = f;
 _readOnlySet = true;
 commitReadOnly();
 }

 public function get readOnly():Boolean {
 return _readOnly;
 }

 public function set dataField(value:String):void {
 _dataField = value;
 _dataFieldAssigned = true;
 }

 public function get dataField():String{
 return _dataField;
 }

 override public function set label(value:String):void {
 super.label = value;
 _labelAssigned = true;
 }

Data Forms | 145

 public function set valueName(value:String):void {
 _valueName = value;
 }

 public function get valueName():String {
 return _valueName;
 }

 override public function set data(value:Object):void {
 super.data = value;
 if(_itemEditor)
 if (_itemEditor["data"] != value[_dataField])
 _itemEditor["data"] = value[_dataField];

 for (var i : int = 0; i < validators.length; i++) {
 if (validators[i] is ValidationRule && data)
 validators[i]["data"]= data;
 validators[i].validate();
 }
 }

 override protected function createChildren():void{
 super.createChildren();
 if(this.getChildren().length > 0) {
 _itemEditor = new DataFormItemEditor(this.getChildAt(0), this);
 _itemEditor.addEventListener(Event.CHANGE, dataChangeHandler);
 _itemEditor.addEventListener(FlexEvent.VALUE_COMMIT,
 dataChangeHandler);
 }
 }

 public function get itemEditor():Object {
 return _itemEditor;
 }

 private var _validators :Array = [];

 public function get validators() :Array {
 return _validators;
 }
 public function set validators(val :Array): void {
 _validators = val;
 }

 public var _dirtyItemEditor:Object;

 public function set itemEditor(value:Object):void{
 _dirtyItemEditor = null;
 if(value is String){
 var clazz:Class = Class(getDefinitionByName(value as String));
 _dirtyItemEditor = new clazz();
 }
 if(value is Class)
 _dirtyItemEditor = new value();

146 | Chapter 3: Building an Enterprise Framework

 if(value is UIClassFactory)
 _dirtyItemEditor = value.newInstance();
 if(value is DisplayObject)
 _dirtyItemEditor = value;
 }

 private function dataChangeHandler(evt:Event):void{
 if (evt.target["data"]!==undefined) {
 if (data != null) {
 data[_dataField] = evt.target["data"];
 }
 }
 }

 private var _resource:Object;
 public function set resource(value:Object):void {
 _resource = ResourceBase.getResourceInstance(value);
 invalidateProperties();
 }

 public function get resource():Object{
 return _resource;
 }

 private function commitReadOnly():void{
 if(_itemEditor==null) return;
 if(!_readOnlySet) return;
 if(Object(_itemEditor).hasOwnProperty("readOnly"))
 {
 Object(_itemEditor).readOnly = _readOnly;
 _readOnlySet = false;
 }
 }

 override protected function commitProperties():void{
 super.commitProperties();
 if(itemEditor == null) //no child controls and no editor from resource
 {
 var control:Object = _dirtyItemEditor;
 if(!control && getChildren().length > 0)
 control = getChildAt(0); //user placed control inside
 if(!control)
 control = itemEditorFactory(resource as ResourceBase);

 if(resource)
 resource.apply(control);
 if((control is MaskedInput) && hasOwnProperty("formatString"))
 control.inputMask = this["formatString"];

 addChild(DisplayObject(control));
 //Binding wrapper to move data back and force
 _itemEditor = new
 DataFormItemEditor(DisplayObject(control),this);
 _itemEditor.addEventListener(Event.CHANGE, dataChangeHandler);
 _itemEditor.addEventListener(FlexEvent.VALUE_COMMIT,

Data Forms | 147

 dataChangeHandler);
 } else
 control = itemEditor.dataSourceObject;

 commitReadOnly();

 for (var i : int = 0; i < validators.length; i++) {
 var validator : Validator = validators[i] as Validator;
 validator.property = (_itemEditor as DataFormItemEditor).valueName;
 validator.source = control;
 if (validator is ValidationRule && data)
 validator["data"]= data;
 validator.validate();
 }
 }
 protected function itemEditorFactory(resource : ResourceBase =
 null):Object{
 var result:Object = null;
 if (resource && ! type)
 result = resource.itemEditor;
 else {
 switch(type) {
 case "checkbox":
 result = new CheckBox();
 if (!resource) {
 resource = new CheckBoxResource(this);
 resource.apply(result);
 }
 break;
 case "radiobutton":
 result = new RadioButtonGroupBox();
 if (!resource) {
 resource = new RadioButtonGroupBoxResource(this);
 resource.apply(result);
 }
 break;
 case "combobox":
 result = new ComboBox();
 if (!resource) {
 resource = new ComboBoxResource(this);
 resource.apply(result);
 }
 break;
 case "date":
 result = new DateField();
 if (formatString) (result as DateField).formatString =
 formatString;
 break;
 case "datetime":
 result = new DateTimeField();
 if (formatString) (result as DateTimeField).formatString =
 formatString;
 break;
 case "mask":
 result = new MaskedInput();

148 | Chapter 3: Building an Enterprise Framework

 break;
 }
 }
 if(result == null && formatString)
 result = guessControlFromFormat(formatString);
 if(result == null)
 result = new TextInput();
 return result;
 }

 protected function guessControlFromFormat(format:String):Object{
 var result:Object = null;
 if(format.toLowerCase().indexOf("currency") != -1)
 result = new NumericInput();
 else if(format.toLowerCase().indexOf("date") != -1){
 result = new DateField();
 (result as DateField).formatString = format;
 }
 else{
 result = new MaskedInput();
 (result as MaskedInput).inputMask = format;
 }
 return result;
 }
 }
}

You’ll see in the example code that you can use an instance of a String, an Object, a
class factory, or a UI control as an itemEditor property of the DataFormItem. The func-
tion createChildren() adds event listeners for CHANGE and VALUE_COMMIT events, and
when any of these events is dispatched, the dataChangeHandler() pushes the provided
value from the data attribute of the UI control used in the form item into the data.data
Field property of the object in the underlying collection.

The resource setter allows application developers to use resources the same way as was
done with a DataGrid earlier in this chapter.

The function commitReadonly() ensures that the readOnly property on the form item
can be set only after the item is created.

The function itemEditorFactory() supports creation of the form item components from
a resource based on the value of the variable type. The guessControlFromFormat() is a
function that can be extended based on the application needs, but in the previous code,
it just uses a NumericInput component if the currency format was requested and Date
Field if the date format has been specified. If an unknown format was specified, this
code assumes that the application developer needs a mask; hence the MaskedInput will
be created.

Remember that Flex schedules a call to the function commitProperties() to coordinate
modifications to component properties when a component is created. It’s also called
as a result of the application code calling invalidateProperties(). The function
commitProperties() checks whether the itemEditor is defined. If it is not, it’ll be created

Data Forms | 149

and the event listeners will be added. If the itemEditor exists, the code extracts from it
the UI control used with this form item.

Next, the data form item instantiates the validators specified by the application devel-
opers. This code binds all provided validators to the data form item:

for (var i : int = 0; i < validators.length; i++) {
 var validator : Validator = validators[i] as Validator;
 validator.property = (_itemEditor as DataFormItemEditor).valueName;
 validator.source = control;
 if (validator is ValidationRule && data)
 validator["data"]= data;
 validator.validate();
}

The next section discusses the benefits of hiding validators inside the components and
offers a sample application that shows how to use them and the functionality of the
ValidationRule class. Meanwhile, Example 3-16 demonstrates how an application de-
veloper could use the DataForm, the DataFormItem, and resources. Please note that by
default, DataFormItem renders a TextInput component.

Example 3-16. Code fragment that uses DataForm and DataFormItem

<lib:DataForm dataProvider="employeeDAO">
 <mx:HBox>
 <mx:Form>
 <lib:DataFormItem dataField="EMP_ID" label="Emp Id:"/>
 <lib:DataFormItem dataField="EMP_FNAME" label="First Name:"/>
 <lib:DataFormItem dataField="STREET" label="Street:"/>
 <lib:DataFormItem dataField="CITY" label="City:"/>
 <lib:DataFormItem dataField="BIRTH_DATE" label="Birth Date:"
 formatString="shortDate"/>
 <lib:DataFormItem dataField="BENE_HEALTH_INS" label="Health:"
 resource="{com.farata.resources.YesNoCheckBoxResource}"/>
 <lib:DataFormItem dataField="STATUS" label="Status:"
 resource="{com.farata.resources.StatusComboResource}"/>
 </mx:Form>

 <mx:Form>
 <lib:DataFormItem dataField="MANAGER_ID" label="Manager Id:"/>
 <lib:DataFormItem dataField="EMP_LNAME" label="Last Name:"/>
 <lib:DataFormItem dataField="STATE" label="State:"
 resource="com.farata.resources.StateComboResource"/>
 <lib:DataFormItem dataField="SALARY" label="Salary:"
 formatString="currency" textAlign="right"/>
 <lib:DataFormItem dataField="START_DATE" label="Start Date:"
 formatString="shortDate"/>
 <lib:DataFormItem dataField="BENE_LIFE_INS" label="Life:"
 resource="{com.farata.resources.YesNoCheckBoxResource}"/>
 <lib:DataFormItem dataField="SEX" label="Sex:"
 resource="{com.farata.resources.SexComboResource}"/>
 </mx:Form>

 <mx:Form>
 <lib:DataFormItem dataField="DEPT_ID" label="Department:"

150 | Chapter 3: Building an Enterprise Framework

 resource="{com.farata.resources.DepartmentComboResource}"/>
 <lib:DataFormItem dataField="SS_NUMBER" label="Ss Number:"
 itemEditor="{com.theriabook.controls.MaskedInput}" formatString="ssn"/>
 <lib:DataFormItem dataField="ZIP_CODE" label="Zip Code:"
 formatString="zip"/>
 <lib:DataFormItem dataField="PHONE" label="Phone Number:"
 itemEditor="{com.theriabook.controls.MaskedInput}" formatString="phone">

 <lib:validators>
 <mx:Array>
 <mx:PhoneNumberValidator wrongLengthError="keep typing"/>
 </mx:Array>
 </lib:validators>
 </lib:DataFormItem>
 <lib:DataFormItem dataField="TERMINATION_DATE"
 label="Termination Date:" formatString="shortDate"/>
 <lib:DataFormItem dataField="BENE_DAY_CARE" label="Day Care:"
 resource="{com.farata.resources.YesNoCheckBoxResource}"/>
 </mx:Form>
 </mx:HBox>
</lib:DataForm>

This code is an extract from the Café Townsend application (Clear Data Builder’s
version) from Chapter 1. Run the application Employee_getEmployees_GridFormT-
est.mxml, double-click on a grid row, and you’ll see the DataForm in action. In the next
section of this chapter, you’ll see other working examples of DataForm and DataGrid
with validators.

Validation
Like data forms and components in general, the Flex Validator could use some en-
hancement to make it more flexible for your application developers. In Flex, validation
seems to have been designed with an assumption that software developers will mainly
use it with forms and that each validator class will be dependent on and attached to
only one field. Say you have a form with two email fields. The Flex framework forces
you to create two instances of the EmailValidator object, one per field.

In real life, though, you may also need to come up with validating conditions based on
relationships between multiple fields, as well as to highlight invalid values in more than
one field. For example, you might want to set the date validator to a field and check
whether the entered date falls into the time interval specified in the start and end date
fields. If the date is invalid, you may want to highlight all form fields.

In other words, you may need to do more than validate an object property. You may
need the ability to write validation rules in a function that can be associated not only
with the UI control but also with the underlying data, that is, with data displayed in a
row in a DataGrid.

Yet another issue of the Flex Validator is its limitations regarding view states of auto-
matically generated UI controls. Everything would be a lot easier if validators could live

Validation | 151

inside the UI controls, in which case they would be automatically added to view states
along with the hosting controls.

Having a convenient means of validation on the client is an important part of the en-
terprise Flex framework. Consider, for example, an RIA for opening new customer
accounts in a bank or an insurance company. This business process often starts with
filling multiple sections in a mile-long application form. In Flex, such an application
may turn into a ViewStack of custom components with, say, 5 forms totaling 50 fields.
These custom components and validators are physically stored in separate files. Each
section in a paper form can be represented as the content of one section in an
Accordion or other navigator. Say you have total of 50 validators, but realistically, you’d
like to engage only those validators that are relevant to the open section of the
Accordion.

If an application developer decides to move a field from one custom component to
another, she needs to make appropriate changes in the code to synchronize the old
validators with a relocated field.

What are some of the form fields that are used with view states? How would you validate
these moving targets? If you are adding three fields when the currentState="Details",
you’d need to write AddChild statements manually in the state section Details.

Say 40 out of these 50 validators are permanent, and the other 10 are used once in a
while. But you don’t want to use even these 40 simultaneously; hence you need to
create, say, 2 arrays having 20 elements each, and keep adding/removing temporary
validators to these arrays according to view state changes.

Even though it seems that Flex separates validators and field to validate, this is not a
real separation but rather a tight coupling. What’s the solution? For the customer ac-
counts example, you want a ViewStack with 5 custom components, each of which has
1 DataForm whose elements have access to the entire set of 50 fields, but that validates
only its own set of 10. In other words, all 5 forms will have access to the same 50-field
dataProvider. If during account opening the user entered 65 in the field age on the first
form, the fifth form may show fields with options to open a pension plan account,
which won’t be visible for younger customers.

That’s why each form needs to have access to all data, but when you need to validate
only the fields that are visible on the screen at the moment, you should be able to do
this on behalf of this particular DataForm. To accomplish all this, we created a new class
called ValidationRule. Our goal is not to replace existing Flex validation routines, but
rather to offer you an alternative solution that can be used with forms and list-based
controls. The next section demonstrates a sample application that uses the class
ValidationRule. After that, you can take a look at the code under the hood.

152 | Chapter 3: Building an Enterprise Framework

Sample Application: DataFormValidation
The DataFormValidation.mxml application (Figure 3-5) has two DataForm containers
located inside the HBox. Pressing the Save button initiates the validation of both forms
and displays the message regardless of whether the entered data is valid.

Figure 3-5. Running the DataFormValidation application

Example 3-17 shows the code of the DataFormValidation.mxml application that cre-
ated these forms.

Example 3-17. DataFormValidation.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application width="100%" height="100%" layout="vertical"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:fx="http://www.faratasystems.com/2008/components"
 creationComplete="onCreationComplete()"
 >
 <mx:VBox width="100%" height="100%" backgroundColor="white">
 <mx:Label text="Submit Vacation Request"
 fontWeight="bold" fontSize="16" fontStyle="italic"
 paddingTop="10" paddingBottom="5" paddingLeft="10"
 />

 <mx:HBox width="100%" height="100%" >
 <fx:DataForm id="left" width="100%" dataProvider="{vacationRequestDTO}">
 <fx:DataFormItem label="Employee Name: " fontWeight="bold"
 dataField="EMPLOYEE_NAME" required="true"
 validators="{[nameValidator, requiredValidator]}">
 <mx:TextInput fontWeight="normal" />

Validation | 153

 </fx:DataFormItem>
 <fx:DataFormItem label="Employee Email: " fontWeight="bold"
 dataField="EMPLOYEE_EMAIL" required="true"
 validators="{[emailValidator]}">
 <mx:TextInput fontWeight="normal"/>
 </fx:DataFormItem>
 <fx:DataFormItem label="Employee Email: " fontWeight="bold"
 dataField="MANAGER_EMAIL" required="true"
 validators="{[emailValidator]}">
 <mx:TextInput fontWeight="normal"/>
 </fx:DataFormItem>
 <fx:DataFormItem label="Department: " fontWeight="bold"
 dataField="DEPARTMENT" required="true"
 validators="{[requiredValidator]}">
 <fx:TextInput fontWeight="normal"/>
 </fx:DataFormItem>
 <mx:Spacer height="10"/>
 <fx:DataFormItem label="Description: " fontWeight="bold"
 dataField="DESCRIPTION">
 <mx:TextArea width="200" height="80" fontWeight="normal" />
 </fx:DataFormItem>
 </fx:DataForm>

 <fx:DataForm id="right" width="100%" dataProvider="{vacationRequestDTO}">
 <fx:DataFormItem label="Start Date: " fontWeight="bold"
 dataField="START_DATE" valueName="selectedDate" required="true">
 <mx:DateField fontWeight="normal"/>
 </fx:DataFormItem>
 <fx:DataFormItem label="End Date: " fontWeight="bold"
 dataField="END_DATE" valueName="selectedDate" required="true">
 <fx:DateField fontWeight="normal"/>
 <fx:validators>
 <mx:Array>
 <fx:ValidationRule
 rule="{afterStartDate}"
 errorMessage="End Date ($[END_DATE]) must be later
 than Start Date $[START_DATE]">
 </fx:ValidationRule>
 <fx:ValidationRule
 rule="{afterToday}"
 errorMessage="End Date ($[END_DATE]) must be later
 than today">
 </fx:ValidationRule>
 </mx:Array>
 </fx:validators>
 </fx:DataFormItem>
 <fx:DataFormItem label="Request Status: " fontWeight="bold"
 dataField="STATUS">
 <mx:Label fontWeight="normal"/>
 </fx:DataFormItem>
 </fx:DataForm>
 </mx:HBox>
 </mx:VBox>
 <mx:Button label="Save" click="onSave()"/>

154 | Chapter 3: Building an Enterprise Framework

 <mx:Script>
 <![CDATA[
 import com.farata.datasource.dto.VacationRequestDTO;
 import mx.utils.UIDUtil;

 [Bindable] private var vacationRequestDTO:VacationRequestDTO ;
 private function afterToday(val: Object) : Boolean {
 var b : Boolean = val.END_DATE > new Date();
 return b;
 }
 private function afterStartDate(val: Object) : Boolean {
 var b : Boolean = val.END_DATE > val.START_DATE;
 return b;
 }

 private function onCreationComplete():void {
 // create a new vacation request
 vacationRequestDTO = new VacationRequestDTO;
 vacationRequestDTO.REQUEST_ID = UIDUtil.createUID();
 vacationRequestDTO.STATUS = "Created";
 vacationRequestDTO.START_DATE =
 new Date(new Date().time + 1000 * 3600 * 24);
 vacationRequestDTO.EMPLOYEE_NAME = "Joe P";
 vacationRequestDTO.EMPLOYEE_EMAIL = "jflexer@faratasystems.com";
 vacationRequestDTO.VACATION_TYPE = "L"; //Unpaid leave - default
 }

 private function onSave():void {
 if (isDataValid()) {
 mx.controls.Alert.show("Validation succeeded");
 } else {
 mx.controls.Alert.show("Validation failed");
 }
 }

 private function isDataValid():Boolean {
 var failedLeft:Array = left.validateAll();
 var failedRight:Array = right.validateAll();
 return ((failedLeft.length == 0)&&(failedRight.length == 0));
 }
]]>
 </mx:Script>

 <mx:StringValidator id="nameValidator" minLength="6"
 requiredFieldError="Provide your name, more than 5 symbols" />
 <mx:EmailValidator id="emailValidator"
 requiredFieldError="Provide correct email" />
 <mx:StringValidator id="requiredValidator"
 requiredFieldError="Provide non-empty value here" />
</mx:Application>

On the creationComplete event, this application creates an instance of the
vacationRequestDTO that is used as a dataProvider for both left and right data forms.

Validation | 155

This code uses a mix of standard Flex validators (StringValidator, EmailValidator) and
subclasses of ValidatorRule. Note that both email fields use the same instance of the
EmailValidator, which is not possible with regular Flex validation routines:

<fx:DataFormItem label="Employee Email: " fontWeight="bold"
 dataField="EMPLOYEE_EMAIL" required="true"
 validators="{[emailValidator]}">
 <mx:TextInput fontWeight="normal"/>
 </fx:DataFormItem>
 <fx:DataFormItem label="Employee Email: " fontWeight="bold"
 dataField="MANAGER_EMAIL" required="true"
 validators="{[emailValidator]}">
 <mx:TextInput fontWeight="normal"/>
 </fx:DataFormItem>

Notice that these validators are encapsulated inside the DataFormItem. If application
programmers decide to add or remove some of the form item when the view state
changes, they don’t need to program anything special to ensure that validators work
properly! The form item end date encapsulates two validation rules that are given as
the closures afterStartDate and afterToday:

<fx:DataFormItem label="End Date: " fontWeight="bold"
 dataField="END_DATE" valueName="selectedDate" required="true">
 <fx:DateField fontWeight="normal"/>
 <fx:validators>
 <mx:Array>
 <fx:ValidationRule
 rule="{afterStartDate}"
 errorMessage="End Date ($[END_DATE]) must be later
 than Start Date $[START_DATE]">
 </fx:ValidationRule>
 <fx:ValidationRule
 rule="{afterToday}"
 errorMessage="End Date ($[END_DATE]) must be later
 than today">
 </fx:ValidationRule>
 </mx:Array>
 </fx:validators>
 </fx:DataFormItem>

...

private function afterToday(val: Object) : Boolean {
 var b : Boolean = val.END_DATE > new Date();
 return b;
}

private function afterStartDate(val: Object) : Boolean {
 var b : Boolean = val.END_DATE > val.START_DATE;
 return b;
}

156 | Chapter 3: Building an Enterprise Framework

The example code does not include standard Flex validators inside <fx:validators>,
but this is supported, too. For example, you can add the following line in the
validators section of a DataFormItem right under the <mx:Array> tag:

<mx:StringValidator id="requiredValidator"
 requiredFieldError="Provide non-empty value here" />

If you do it, you’ll have three validators bound to the same form item, End Date: one
standard Flex validator and two functions with validation rules.

From the application programmer’s perspective, using such validation rules is simple.
It allows reusing validators, which can be nicely encapsulated inside the form items.

For brevity, the function onSave() just displays a message box stating that the validation
failed:

mx.controls.Alert.show("Validation failed");

But if you run this application through a debugger and place a breakpoint inside the
function isDataValid(), you’ll see all validation errors in the failedLeft and
failedRight arrays (Figure 3-6).

The next question is, “How does all this work?”

Figure 3-6. Debugger’s view of validation errors

The ValidationRule Class Explained
Enhancing the original Flex validators, the new ValidationRule extends the Flex
Validator and is known to clear.swc’s UI controls. With it, developers can attach any

Validation | 157

number of validation rules to any field of a form or a list-based component. This means
you can attach validation rules not only on the field level, but also on the parent level,
such as to a specific DataGrid column or to an entire row.

When we designed the class, our approach was to separate (for real) validation rules
from the UI component they validate. We also made them reusable to spare application
developers from copy/pasting the same rule repeatedly. With the ValidationRule class,
you can instantiate each rule once and reuse it across the entire application. Our goal
was to move away from one-to-one relationships between a validator and a single
property of a form field, to many-to-many relationships where each field can request
multiple validators and vice versa.

If you don’t need to perform cross-field validation in the form, you can continue using
the original Flex validator classes. If you need to validate interdependent fields—if, say,
the amount field has a value greater than $10K, and you need to block overnight delivery
of the order field until additional approval is provided—use our more flexible exten-
sion, ValidationRule.

We still want to be able to reuse the validators (EmailValidator, StringValidator, etc.)
that come with Flex, but they should be wrapped in our ValidationRule class. On the
other hand, with the ValidationRule class, the application developers should also be
able to write validation rules as regular functions, which requires less coding.

The source code of the ValidationRule class that supports all this functionality is listed
in Example 3-18.

Example 3-18. The ValidationRule class

package com.farata.validators{
 import mx.controls.Alert;
 import flash.utils.describeType;

 import mx.events.ValidationResultEvent;
 import mx.validators.ValidationResult;
 import mx.validators.Validator;

 public class ValidationRule extends Validator{
 public var args:Array = [];
 public var wrappedRule:Function ;
 public var errorMessage : String = "[TODO] replace me";
 public var data:Object;

 public function ValidationRule() {
 super();
 required = false;
 }
 private function combineArgs(v:Object):Array {
 var _args:Array = [v];
 if(args!=null && args.length>0)
 _args["push"].apply(_args, args);
 return _args;
 }

158 | Chapter 3: Building an Enterprise Framework

 public function set rule(f:Object) : void {
 if (!(f is Function)){
 Alert.show(""+f, "Incorrect Validation Rule");
 return; // You may throw an exception here
 }

 wrappedRule = function(val:Object) :Boolean {
 return f(val);
 }
 }

 private function substitute(...rest):String {
 var len:uint = rest.length;
 var args:Array;
 var str:String = "" + errorMessage;
 if (len == 1 && rest[0] is Array){
 args = rest[0] as Array;
 len = args.length;
 }
 else{
 args = rest;
 }

 for (var i:int = 0; i < len; i++){
 str = str.replace(new RegExp("\\$\\["+i+"\\]", "g"), args[i]);
 }
 if (args.length == 1 && args[0] is Object) {
 var o:Object = args[0];
 for each (var s:* in o){
 str = str.replace(new RegExp("\\$\\["+s+"\\]", "g"), o[s]);
 }

 var classInfo:XML = describeType(o);
 // List the object's variables, their values, and their types.
 for each (var v:XML in classInfo..variable) {
 str = str.replace(new RegExp("\\$\\["+v.@name+"\\]", "g"),
 o[v.@name]);
 }

 // List accessors as properties
 for each (var a:XML in classInfo..accessor) {
 // Do not get the property value if it is write-only
 if (a.@access != 'writeonly') {
 str = str.replace(new RegExp("\\$\\["+a.@name+"\\]",
 "g"), o[a.@name]);
 }
 }
 }
 return str;
 }

 override protected function doValidation(value:Object):Array{
 var results:Array = [];

Validation | 159

 if (!wrappedRule(data))
 results.push(new ValidationResult(true, null, "Error",
 substitute(combineArgs(data))));

 return results;
 }
 override public function validate(value:Object = null,
 suppressEvents:Boolean = false):ValidationResultEvent{
 if (value == null)
 value = getValueFromSource();

 // If the required flag is true and there is no value,
 // we need to generate a required field error
 if (isRealValue(value) || required){
 return super.validate(value, suppressEvents);
 }
 else {
 // Just return the valid value
 return new ValidationResultEvent(ValidationResultEvent.VALID);
 }
 }
 }
}

The superclass Validator has two methods that will be overridden in its descendants:
doValidation(), which initiates and performs the validation routine, and the function
validate(), which watches required arguments and gets the values from the target UI
control.

Notice that this code fragment from the DataFormValidation.mxml application:

<fx:ValidationRule rule="{afterStartDate}"
 errorMessage="End Date ($[END_DATE]) must be later than Start Date $[START_DATE]">
</fx:ValidationRule>

mentions the name of the function afterStartDate that alternatively could have been
declared inline as a closure. The function ensures that the date being validated is older
than the END_DATE:

private function afterToday(val: Object) : Boolean {
 var b : Boolean = val.END_DATE > new Date();
 return b;
}

In this code, val points at the dataProvider of the form, which, in the sample applica-
tion, is an instance of the vacationRequestDTO. An important point is that both the
DataForm and the ValidationRule see the same dataProvider.

The value of the errorMessage attribute includes something that looks like a macro
language: ($[END_DATE]). The function substitute() finds and replaces via regular ex-
pression the specified name (e.g., END_DATE) in all properties in the dataProvider with
their values.

160 | Chapter 3: Building an Enterprise Framework

If dataProvider is a dynamic object, the function ValidationRule.substitute() enu-
merates all its properties via a for each loop. For regular classes, Flex offers a reflection
mechanism using the function describeType(); give it a class name and it’ll return a
definition of this class in a form of XML. Then the function substitute() gets all class
variables and accessors (getters and setters) and applies the regular expression to the
errorMessage text.

For example, if you deal with a dynamic object o that has a property END_DATE, the
following line will replace ($[END_DATE]) in the error text with the value of this property
o[s]:

str = str.replace(new RegExp("\\$\\["+s+"\\]", "g"), o[s]);

The method substitute() is called from doValidate(), and if the user enters invalid
dates (for example, if the start date is 12/10/2008 and the end date 12/06/2008), the
validator will find the properties called END_DATE and START_DATE and turn this error text:

"End Date ($[END_DATE]) must be later than Start Date $[START_DATE]"

into this one:

"End Date (12/06/2008) must be later than Start Date 12/10/2008"

In Chapter 2, you learned how to write class factories that can wrap functions and
return them as objects. This technique is applied in the ValidationRule class, too, which
supports functions as validators. If the application code uses the setter rule, the func-
tion with business-specific validation rules is expected.

The class ValidationRule has this setter:

public function set rule(f:Object) : void {
 if (!(f is Function)){
 Alert.show(""+f, "Incorrect Validation Rule");
 return;
 }

 wrappedRule = function(val:Object) :Boolean {
 return f(val);
 }
}

In the application DataFormValidation.mxml, you can easily find that this setter has
been used (we already discussed the function afterStartDate earlier):

<fx:ValidationRule
 rule="{afterStartDate}"
 errorMessage="End Date ($[END_DATE]) must be later
 than Start Date $[START_DATE]">
</fx:ValidationRule>

We hope you like the simplicity that ValidationRule offers to application developers
who have to validate forms. The next section examines a sample application that dem-
onstrates the use of this class in a DataGrid control.

Validation | 161

Embedding Validation Rules into a DataGrid
As opposed to component libraries, classes in a framework depend on each other. In
this context, this means that the ValidationRule class requires an enhanced DataGrid
component.

Please note that the sample application shown next uses DataGrid and
DataGridItem from a different namespace. These classes are included in
the clear.swc library and come with the source code accompanying the
book, but due to space constraints, we won’t include the source code
of these objects here.

This example is yet another version of the Café Townsend application from Chap-
ter 1. For simplicity, the employee data hardcoded, and to run this application you
don’t need to do any server-side setup.

This application is an example of a master/detail window with validators embedded
inside a data grid. Figure 3-7 shows the phone number having the wrong number of
digits in the first row of our DataGrid component. The embedded validation rule prop-
erly reports an error message that reads, “Wrong length, need 10 digit number.”

Figure 3-7. Validating the phone DataGridColumn

You can also assign validation rules to the form items that show details of the selected
row. In Figure 3-8 you can see a validation error message stating that “Salary (9.95) is
out of reasonable range.” All fields that have invalid values have red borders. While
examining the source code, please note that the drop-down box “Department” was
populated using a resource file.

The version of the Café Townsend application in Example 3-19 uses the custom object
Employee_getEmployees_gridFormTest.

162 | Chapter 3: Building an Enterprise Framework

Example 3-19. Code of Café Townsend with validations

<?xml version="1.0" encoding="UTF-8"?>
<mx:ViewStack height="100%" width="100%" xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:fx="http://www.faratasystems.com/2008/components" creationPolicy="all"
 creationComplete="fill_onClick()">
<fx:DataCollection id="collection" destination="com.farata.datasource.Employee"
 method="getEmployees" collectionChange="trace(event)"
 fault="trace(event)" />
<mx:Canvas height="100%" width="100%">
 <mx:Panel title="Employee List" width="100%" height="100%">
 <fx:DataGrid id="dg"
 itemRenderer="{new
 UIClassFactory(com.farata.controls.dataGridClasses.DataGridItemRenderer)}"
 horizontalScrollPolicy="auto" width="100%" dataProvider="{collection}"
 editable="true" height="100%" rowHeight="25">
 <fx:columns>
 <fx:DataGridColumn dataField="EMP_FNAME" headerText="First Name"/>
 <fx:DataGridColumn dataField="EMP_LNAME" headerText="Last Name"/>
 <fx:DataGridColumn dataField="DEPT_ID" editable="false"
 headerText="Department"
 resource="{com.farata.resources.DepartmentComboResource}"/>
 <fx:DataGridColumn dataField="STREET" headerText="Street"/>
 <fx:DataGridColumn dataField="CITY" headerText="City"/>
 <fx:DataGridColumn dataField="STATE" editable="false"
 headerText="State"
 resource="{com.farata.resources.StateComboResource}"/>
 <fx:DataGridColumn dataField="ZIP_CODE" headerText="Zip Code"
 formatString="zip" >
 <fx:validators>
 <mx:ZipCodeValidator />
 </fx:validators>
 </fx:DataGridColumn>
 <fx:DataGridColumn dataField="PHONE" headerText="Phone Number"
 formatString="phone" >

Figure 3-8. Validating the salary DataGridColumn

Validation | 163

 <fx:validators>
 <mx:Array>
 <mx:PhoneNumberValidator wrongLengthError="Wrong
 length, need 10 digit number"/>
 </mx:Array>
 </fx:validators>
 </fx:DataGridColumn>

 <fx:DataGridColumn dataField="STATUS" headerText="Status"/>

 <fx:DataGridColumn dataField="SS_NUMBER" headerText="Ss Number"
 formatString="ssn" >
 <fx:validators>
 <mx:SocialSecurityValidator/>
 </fx:validators>
 </fx:DataGridColumn>

 <fx:DataGridColumn dataField="SALARY" headerText="Salary"
 formatString="currency(2)">
 <fx:validators>
 <mx:Array>
 <fx:ValidationRule
 rule="{function(data:Object):Boolean
 { return (data &&data.SALARY > 10000
 && data.SALARY < 500000);}}"
 errorMessage="Salary ($[SALARY]) is out of reasonable
 range"/>
 </mx:Array>
 </fx:validators>
 </fx:DataGridColumn>

 <fx:DataGridColumn dataField="START_DATE" headerText="Start Date"
 itemEditor="mx.controls.DateField" editorDataField="selectedDate"
 formatString="shortDate"/>

 <fx:DataGridColumn dataField="TERMINATION_DATE"
 headerText="Termination Date" itemEditor="mx.controls.DateField"
 editorDataField="selectedDate" formatString="shortDate">
 <fx:validators>
 <fx:ValidationRule
 rule="{afterStartDate}"
 errorMessage="End Date ($[TERMINATION_DATE]) must be
 later than Start Date $[START_DATE]">
 </fx:ValidationRule>
 </fx:validators>
 </fx:DataGridColumn>

 <fx:DataGridColumn dataField="BIRTH_DATE" headerText="Birth Date"
 itemEditor="mx.controls.DateField" editorDataField="selectedDate"
 formatString="shortDate"/>

 <fx:DataGridColumn dataField="BENE_HEALTH_INS" headerText="Health"
 resource="{YesNoCheckBoxResource}" rendererIsEditor="true"/>

 <fx:DataGridColumn dataField="BENE_LIFE_INS" headerText="Life"

164 | Chapter 3: Building an Enterprise Framework

 resource="{YesNoCheckBoxResource}" rendererIsEditor="true"/>

 <fx:DataGridColumn dataField="BENE_DAY_CARE" headerText="Day Care"
 resource="com.farata.resources.YesNoCheckBoxResource"
 rendererIsEditor="true"/>

 <fx:DataGridColumn dataField="SEX" headerText="Sex"
 resource="{SexRadioResource}" rendererIsEditor="true"/>
 </fx:columns>
 </fx:DataGrid>

 <fx:DataForm dataProvider="{dg.selectedItem}">
 <mx:HBox>
 <mx:Form>
 <fx:DataFormItem dataField="EMP_ID" label="Emp Id:"/>
 <fx:DataFormItem dataField="EMP_FNAME" label="First Name:"/>
 <fx:DataFormItem dataField="STREET" label="Street:"/>
 <fx:DataFormItem dataField="CITY" label="City:"/>
 <fx:DataFormItem dataField="BIRTH_DATE" label="Birth Date:"
 formatString="shortDate" required="true"/>
 <fx:DataFormItem dataField="BENE_HEALTH_INS" label="Health:"
 resource="{com.farata.resources.YesNoCheckBoxResource}"/>
 <fx:DataFormItem dataField="STATUS" label="Status:"
 resource="{com.farata.resources.StatusComboResource}"
 required="true"/>
 </mx:Form>

 <mx:Form>
 <fx:DataFormItem dataField="MANAGER_ID" label="Manager Id:"/>
 <fx:DataFormItem dataField="EMP_LNAME" label="Last Name:"/>
 <fx:DataFormItem dataField="STATE" label="State:"
 resource="com.farata.resources.StateComboResource"/>
 <fx:DataFormItem dataField="SALARY" label="Salary:"
 formatString="currency" textAlign="right">
 <fx:validators>
 <fx:ValidationRule rule="{function(data:Object):Boolean {
 return (data &&data.SALARY > 10000 &&
 data.SALARY < 500000);}}"
 errorMessage="Salary ($[SALARY]) is out
 of reasonable range"/>
 </fx:validators>
 </fx:DataFormItem>
 <fx:DataFormItem dataField="START_DATE" label="Start Date:"
 formatString="shortDate"/>
 <fx:DataFormItem dataField="BENE_LIFE_INS" label="Life:"
 resource="{YesNoCheckBoxResource}"/>
 <fx:DataFormItem dataField="SEX" label="Sex:"
 resource="{SexRadioResource}"/>
 </mx:Form>
 <mx:Form>
 <fx:DataFormItem dataField="DEPT_ID" label="Department:"
 resource="{DepartmentComboResource}"/>
 <fx:DataFormItem dataField="SS_NUMBER" label="Ss Number:"
 itemEditor="{com.farata.controls.MaskedInput}"
 formatString="ssn">

Validation | 165

 <fx:validators>
 <mx:SocialSecurityValidator/>
 </fx:validators>
 </fx:DataFormItem>
 <fx:DataFormItem dataField="ZIP_CODE" label="Zip Code:"
 formatString="zip">
 <fx:validators>
 <mx:ZipCodeValidator />
 </fx:validators>
 </fx:DataFormItem>
 <fx:DataFormItem dataField="PHONE" label="Phone Number:"
 itemEditor="{com.farata.controls.MaskedInput}"
 formatString="phone">
 <fx:validators>
 <mx:PhoneNumberValidator
 wrongLengthError="keep typing"/>
 </fx:validators>
 </fx:DataFormItem>
 <fx:DataFormItem dataField="TERMINATION_DATE"
 label="Termination Date:" formatString="shortDate">
 <fx:validators>
 <fx:ValidationRule
 rule="{afterStartDate}"
 errorMessage="End Date ($[TERMINATION_DATE]) must be
 later than Start Date $[START_DATE]">
 </fx:ValidationRule>
 </fx:validators>
 </fx:DataFormItem>
 <fx:DataFormItem dataField="BENE_DAY_CARE" label="Day Care:"
 resource="{YesNoCheckBoxResource}"/>
 </mx:Form>
 </mx:HBox>
 </fx:DataForm>
</mx:Panel>

<mx:HBox horizontalScrollPolicy="off" verticalAlign="middle" height="30"
 width="100%">
 <mx:Spacer width="100%"/>
 <mx:VRule strokeWidth="2" height="24"/>
 <mx:Button enabled="{dg.selectedIndex != -1}"
 click="collection.removeItemAt(dg.selectedIndex)" label="Remove"
 icon="@Embed('/assets/delete_16x16.gif')"/>
 <mx:Button click="addItemAt(Math.max(0,dg.selectedIndex+1)) " label="Add"
 icon="@Embed('/assets/add_16x16.gif')" />
 <mx:Label text="Deleted: {collection.deletedCount}"/>
 <mx:Label text="Modified: {collection.modifiedCount}"/>
</mx:HBox>
</mx:Canvas>

<mx:Script> <![CDATA[
 import com.farata.controls.dataGridClasses.DataGridItemRenderer;
 import com.farata.core.UIClassFactory;
 import com.farata.collections.DataCollection;
 import mx.collections.ArrayCollection;
 import mx.controls.dataGridClasses.DataGridColumn;

166 | Chapter 3: Building an Enterprise Framework

 import mx.events.CollectionEvent;
 import com.farata.datasource.dto.EmployeeDTO;
 import com.farata.resources.*;
 import mx.validators.*;

 private var linkage:EmployeeDTO = null;

 private function fill_onClick():void {
 collection.source = Test.data;
 dg.selectedIndex=0;
 }

 private function addItemAt(position:int):void {
 var item:EmployeeDTO = new EmployeeDTO();
 collection.addItemAt(item, position);
 dg.selectedIndex = position;
 }

 import com.farata.resources.*;
 import com.farata.controls.*;
 private function afterStartDate(val: Object) : Boolean {
 return !val.TERMINATION_DATE || val.TERMINATION_DATE > val.START_DATE;
 }
]]>
 </mx:Script>
</mx:ViewStack>

When you review the code in Example 3-19, you’ll find different flavors of validation
rules inside the data grid columns in this implementation of the Café Townsend ap-
plication. For example, the following rule is defined as an anonymous function for the
data grid column SALARY:

 <fx:DataGridColumn dataField="SALARY" headerText="Salary"
 formatString="currency(2)">
 <fx:validators>
 <mx:Array>
 <fx:ValidationRule
 rule="{function(data:Object):Boolean
 { return (data &&data.SALARY > 10000
 && data.SALARY < 500000);}}"
 errorMessage="Salary ($[SALARY]) is out of reasonable
 range"/>
 </mx:Array>
 </fx:validators>
 </fx:DataGridColumn>

If the data grid is populated and the salary in a particular cell does not fall into the range
between 10,000 and 500,000, this function returns false and this data value is con-
sidered invalid. Such cell(s) will immediately get the red border, and the error message
will report the problem in the red error tip right by this cell.

Some of the validation rules were repeated both in the DataGrid and DataForm, but this
doesn’t have to be the case. The same instances of the ValidationRule class can be
reused as in the DataFormValidation application.

Validation | 167

The data for this sample application is hardcoded in Test.as, which starts as follows:

public class Test{

 public function Test(){
 }
 static public function get data() : Array {
 var e : EmployeeDTO = new EmployeeDTO;
 e.EMP_FNAME = "Yakov";
 e.EMP_LNAME = "Fain";
 e.BENE_DAY_CARE = "Y";
 e.BENE_HEALTH_INS = "Y";
 e.BENE_LIFE_INS = "N";
 ...

If you’d like to have a deeper understanding of how <fx:DataGridColumn> works with
embedded validators, please examine the source code of the classes com.far
ata.controls.dataGridClasses.DataGridItem and com.farata.controls.DataGrid that
are included with the source code accompanying this chapter.

We had to jump through a number of hoops to allow Flex validators to communicate
with the DataGrid, as the Validator class expects to work only with subclasses of the
UIComponent that are focusable controls with borders. It’s understandable—who needs
to validate, say, a Label?

But we wanted to be able to display a red border around the cell that has an invalid
value and a standard error tip when the user hovers the mouse pointer over the
DataGrid cell. Hence we had to make appropriate changes and replace the original
DataGrid.itemRenderer with our own, which implements the IValidatorListener in-
terface. An itemRenderer on the DataGrid level affects all its columns:

<fx:DataGrid id="dg"
 itemRenderer="{new UIClassFactory(
com.farata.controls.dataGridClasses.DataGridItemRenderer)}"

We’ve included this replacement of the DataGridItemRenderer in the demo application
just to show that you can substitute the base classes from the Flex framework with your
own. But as a developer of a business framework, you should hide such code in the
base components, which in this case would have been a constructor of your enhanced
DataGrid.

Besides validation rules, it is worth noting how master/detail relationships are imple-
mented with just one line:

<fx:DataForm dataProvider="{dg.selectedItem}">

A selected row in a DataGrid (master) is a dataProvider for a DataForm (detail). With
original Flex DataGrid and Form components, it would take a lot more coding to properly
rebind the object representing a selected row that changes whenever the user selects a
different one.

168 | Chapter 3: Building an Enterprise Framework

Once again, a well-designed framework should allow application developers to write
less code. The code of this version of Café Townsend is an example of what can be
done in only about 160 lines of code. It implements master/detail relationships, per-
forms a lot of custom validations, and uses Business Style Sheets. Adding a couple dozen
lines of code can turn this application into a CRUD built on the powerful
DataCollection class that will be discussed in Chapter 6.

Minimizing the Number of Custom Events
Until now, you’ve concentrated on building rich components for a business framework.
We Flex architects also recommend some coding techniques that serve the same goal
as these components: enabling application developers to write less code. In this section,
you’ll see how to minimize the number of custom event classes in any application.

Flex is all about event-driven development. Create loosely coupled custom components
and let them send events to each other, as in the mediator pattern example from Chap-
ter 2. You can create new events for every occasion. If an event does not need to carry
any additional data, just give it a name, specify its type as flash.events.Event, and
define the metatag to help Flash Builder list this event in its type-ahead prompts and
dispatch it when appropriate. If your new event needs to carry some data, create an
ActionScript class extending flash.events.Event, define a variable in this subclass to
store application data, and override the method clone().

Currently, for a midsize Flex application that includes about 30 views, where each view
has two components that can send/receive just one custom event, for example, you
face the need to write 60 custom event classes that look pretty much the same. We’ll
show you how to get away with just one custom event class for the entire application.

To illustrate the concept, we’ve created a simple application that defines one event class
that can serve multiple purposes. This application consists of two modules
(GreenModule, shown in Figure 3-9, and RedModule) that are loaded in the same area of
the main application upon the click of one of the load buttons. It also has one universal
event class called ExEvent.

Clicking any Send button creates an instance of this event that’s ready to carry an
application-specific payload: a DTO, a couple of String variables, or any other object.

Figure 3-9’s example uses an ActionScript class called GirlfriendDTO. No Cairngorm-
style mapping is required between the event being sent and the modules. For example,
if you send a Green event to the RedModule, nothing happens, as the latter is not listening
to the Green event.

This application and its source code are deployed at http://tinyurl.com/5n5qkg.

Flash Builder’s project has a folder called modules that contains two modules:
RedModule and GreenModule. The red one is listening for the arrival of the girlfriend’s

Minimizing the Number of Custom Events | 169

http://tinyurl.com/5n5qkg
zaremba
Sticky Note
several long URLs were replaced with tinyURLs by the CE. This improves pagebreaks and linebreaks; ok?

first and last name, packaged in our single event class as the two separate strings listed
in Example 3-20.

Example 3-20. RedModule.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Module xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
 width="100%" height="100%" creationComplete="onCreationComplete(event)">
 <mx:TextArea id="display" backgroundColor="#FF4949" width="100%" height="100%"
 fontSize="28"/>
 <mx:Script>
 <![CDATA[
 private function onCreationComplete(evt:Event):void{
 this.addEventListener("RedGirlfriend", onRedGirlfriend);
 }

 private function onRedGirlfriend(evt:ExEvent):void{
 display.text="My girlfriend is "+ evt.fName+ " " + evt.lName ;
 }
]]>
 </mx:Script>
</mx:Module>

The green module (Example 3-21) expects the girlfriend’s name in the form of
GirlfriendDTO (Example 3-22).

Example 3-21. GreenModule.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Module xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
 width="100%" height="100%" creationComplete="onCreationComplete(event)">
 <mx:TextArea id="display" backgroundColor="#9CE29C" width="100%"
 height="100%" color="#070707" fontSize="28"/>
 <mx:Script>
 <![CDATA[
 import dto.GirlfriendDTO;

Figure 3-9. The GreenModule is loaded

170 | Chapter 3: Building an Enterprise Framework

 private function onCreationComplete(evt:Event):void{
 this.addEventListener("GreenGirlfriend", onGreenGirlfriend);
 }

 private function onGreenGirlfriend(evt:ExEvent):void{
 var myGirlfriend:GirlfriendDTO=evt["girlfriend"];

 display.text="My girlfriend is "+ myGirlfriend.fName+ " " +
 myGirlfriend.lName ;
 }
]]>
 </mx:Script>
</mx:Module>

The GirlfriendDTO is pretty straightforward too, as Example 3-22 shows.

Example 3-22. GirlFriendDTO

package dto
/**
 * This is a sample data transfer object (a.k.a. value object)
 */
{
 public class GirlfriendDTO {
 public var fName:String; // First name
 public var lName:String; // Last name
 }
}

The next step is to create a single but universal event class. It will be based on the
DynamicEvent class, which allows you to add any properties to the event object on the
fly. For the example, GirlfriendDTO is the object. Here’s how a dynamic event can carry
the GirlfriendDTO:

var myDTO:GirlfriendDTO=new GirlfriendDTO();
myDTO.fName="Mary";
myDTO.lName="Poppins";

var greenEvent:ExEvent=new ExEvent("GreenGirlfriend");
greenEvent.girlfriend=myDTO;
someObject.dispatchEvent(greenEvent);

Sending any arbitrary variables with this event will be straightforward:

var redEvent:ExEvent=new ExEvent("RedGirlfriend");

redEvent.fName="Mary";
redEvent.lName="Poppins";
someObject.dispatchEvent(redEvent);

The ExEvent is a subclass of DynamicEvent, which has a little enhancement eliminating
manual programming of the property Event.preventDefault:

package{
 import mx.events.DynamicEvent;

Minimizing the Number of Custom Events | 171

 public dynamic class ExEvent extends DynamicEvent{
 private var m_preventDefault:Boolean;

 public function ExEvent(type:String, bubbles:Boolean = false,
 cancelable:Boolean = false) {
 super(type, bubbles, cancelable);
 m_preventDefault = false;
 }

 public override function preventDefault():void {
 super.preventDefault();
 m_preventDefault = true;
 }

 public override function isDefaultPrevented():Boolean {
 return m_preventDefault;
 }
 }
}

The function preventDefault() is overridden, because the class DynamicEvent does not
automatically process preventDefault in cloned events.

The code of the following test application loads modules, and then the user can send
any event to whatever module is loaded at the moment. Of course, if the currently
loaded module does not have a listener for the event you’re sending, tough luck. But
the good news is that it won’t break the application either, as shown in Example 3-23.

Example 3-23. An application that tests the generic event ExEvent

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
viewSourceURL="srcview/index.html">
 <mx:HBox>
 <mx:Button label="Load the Green Module"
 click="loadMyModule('modules/GreenModule.swf')"/>
 <mx:Button label="Load the Red module"
 click="loadMyModule('modules/RedModule.swf')"/>
 <mx:Button label="Send Green Event with Object" click="sendGreen()"/>
 <mx:Button label="Send Red Event Event with two strings" click="sendRed()"/>

 </mx:HBox>

<mx:Panel width="100%" height="100%" title="A module placeholder"
 layout="absolute">
 <mx:ModuleLoader id="theModulePlaceholder" width="100%" height="100%"/>
</mx:Panel>
<mx:Script>
 <![CDATA[
 import dto.GirlfriendDTO;
 //Load the module specified in the moduleURL
 private function loadMyModule(moduleURL:String):void{
 theModulePlaceholder.url=moduleURL;
 theModulePlaceholder.loadModule();
 }

172 | Chapter 3: Building an Enterprise Framework

 // Sending generic ExEvent, adding an object that contains
 // the name of the girlfriend
 private function sendGreen():void{

 // Strongly typed DTO - better performance and readability,
 // but its structure has to be known for both parties -
 // the main application and the module
 var myDTO:GirlfriendDTO=new GirlfriendDTO();
 myDTO.fName="Mary";
 myDTO.lName="Poppins";

 if (theModulePlaceholder.child !=null){
 var greenEvent:ExEvent=new
 ExEvent("GreenGirlfriend");
 greenEvent.girlfriend=myDTO;

 theModulePlaceholder.child.dispatchEvent(greenEvent);
 }
 }

 // Sending a generic ExEvent that holds the name of the girlfriend
 // as two separate variables
 private function sendRed():void{
 var redEvent:ExEvent=new ExEvent("RedGirlfriend");

 redEvent.fName="Angelina";
 redEvent.lName="YouKnowWho";

 if (theModulePlaceholder.child !=null){
 theModulePlaceholder.child.dispatchEvent(redEvent);
 }
 }
]]>
</mx:Script>
</mx:Application>

The function sendGreen() sends an instance of ExEvent carrying the DTO inside the
sendRed() just adds two properties fName and lName to the instance of ExEvent.

Instead of using a DTO, you could’ve used a weakly typed data transfer object:

var myDTO:Object={fname:"Mary",lname:"Poppins"};

But this approach might result in a slightly slower performance and the code would be
less readable. On the plus side, there would be no need to explicitly define and share
the class structure of the DTO between the application (the mediator) and the module.
You can use this technique for creating quick-and-dirty prototypes.

To summarize, using a single dynamic event spares you from the tedious coding of
dozens of similar event classes. On the negative side, because this solution does not use
the metatag Event declaring the names of the events, Flash Builder won’t be able to help
you with the name of the event in its type-ahead help.

Minimizing the Number of Custom Events | 173

zaremba
Comment on Text
were two sentences combined here? please address

Add a period after "inside" and capitalize the "the" after it.

In the vast majority of RIAs, you can afford to lose a couple of milliseconds caused by
using a dynamic event. Using a single dynamic event is one more step toward mini-
mizing the code to be written for your project.

Summary
In this chapter, you learned by example how to start enhancing the Flex framework
with customized components and classes, such as CheckBox, ComboBox, DataGrid,
DataForm, DataFormItem, and ValidationRule. You also saw how to use these compo-
nents in your applications. The source code for this chapter comes as two Flash Builder
projects—the Business Framework, which includes the sample applications discussed
in this chapter, and the Business Framework Library, which includes a number of en-
hanced Flex components (some of them were shown here in simplified form) that can
be used in your projects as well.

The clear.swc component library is offered for free under the MIT license as a part of
the open source framework Clear Toolkit—just keep the comments in the source code
giving credit to Farata Systems as the original creator of this code. You can find the up-
to-date information about all components included in Clear Toolkit by visiting the
popular open source repository SourceForge, or, to be more specific, the following
URL: https://sourceforge.net/projects/cleartoolkit. Make sure that you’ve tested these
components thoroughly before using them in production systems.

In this chapter, we reviewed and explained why and how we extended several Flex
components. We started with simpler CheckBox and ComboBox components, just because
it was easier to illustrate the process of extending components. But then we did some
heavy lifting and extended such important components as Form and Validator. You’ve
seen a working example application that would integrate validators into DataForm and
DataGrid components.

Besides extending components, we’ve shown you some best practices (using resources
and writing applications) that use only one event class and thus greatly minimize the
amount of code that Flex developers have to write.

You’ll see more of extended components in Chapters 6, 9, and 11. Next we’ll discuss
convenient third-party tools that can be handy for any Flex team working on an en-
terprise project.

174 | Chapter 3: Building an Enterprise Framework

https://sourceforge.net/projects/cleartoolkit

CHAPTER 4

Equipping Enterprise Flex Projects

“Excuse me, where can I find For Sale signs?”

“Probably they are in the Hardware section.”

“Why there?”

“If we don’t know where to shelve an item, we put it in
Hardware.”

—A conversation in a home remodeling store

For a successful project, you need the right mix of team members, tools, and techniques.
This chapter covers a variety of topics that are important for development managers
and enterprise and application architects who take care of the ecosystem in which Flex
teams operate. The fact that Flex exists in a variety of platforms and that BlazeDS and
LCDS can be deployed under any Java servlet container sounds great. But when you
take into consideration that today’s enterprise development team often consists of
people located all around the globe, such flexibility can make your project difficult to
manage.

This chapter is not as technical as the others. It’s rather a grab bag of little things that
may seem unrelated, but when combined will make your development process more
smooth and the results of your development cycle more predictable.

Specifically, you’ll learn about:

• Staffing enterprise Flex projects

• Working with the version control repository

• Stress testing

• Creating build and deployment scripts

• Continuous integration

• Logging and tracing

• Open source Flex component libraries

175

• Integration with Spring and Hibernate

The chapter’s goal is to give you a taste of your options and help make your Flex team
more productive. Without further ado, let’s start building a Flex team.

Staffing Considerations
Any project has to be staffed first. Developers of a typical Enterprise RIA project can
be easily separated into two groups: those who work on the client tier and those who
work on the server-side components. You can further divide this latter group into those
who develop the middle tier with business logic and those who take care of the data.
In all cases, however, how does a project manager find the right people?

The number of formally trained Flex programmers is increasing daily, but the pool of
Flex developers is still relatively small compared to the multimillion legions of Java
and .NET professionals.

The main concern of any project manager is whether enough people with Flex skills
can be found to staff, but what does the title of “Flex developer” mean? In some projects,
you need to develop a small number of Flex views, but they have very serious require-
ments for the communication layer. In other projects, you need to develop lots of UI
views (a.k.a. screens) supported by standard LCDS or BlazeDS features. Any of these
projects, however, require the following Flex personnel:

• UI developers

• Component developers

• Architects

For the sake of simplicity, this discussion assumes that the project’s user
interface design is done by a professional user experience designer.

The better you understand these roles, the better you can staff your project.

GUI and Component Developers
GUI developers create the view portion of an RIA. This is the easiest skill to acquire if
you already have some programming language under your belt. The hard work of the
Adobe marketing force and technical evangelists did a good job in creating the impres-
sion that working with Flex is easy: just drag and drop UI components on the
WYSIWYG area in Flash Builder, align them nicely, and write the functions to process
button clicks or row selections in the data grid—sort of a Visual Basic of the Web.

176 | Chapter 4: Equipping Enterprise Flex Projects

The GUI development skill set is low-hanging fruit that many people can master pretty
quickly. Savvy project managers either outsource this job to third-party vendors or send
their own developers to a one-week training class. There is rarely a staffing problem
here.

GUI developers interact with user experience designers who create wireframes of your
application in Photoshop, some third-party tool, or even in Flex itself. But even in the
Flex case, GUI developers should not start implementing screens until approved by a
Flex component developer or an architect.

In addition to having the skills of GUI developers, Flex component developers are well
versed in object-oriented and event-driven programming.

They analyze each view created by a web designer to decide which Flex components
should be developed for this view and how these components will interact with each
other (see Figure 2-4). Most likely they will be applying a mediator pattern (described
in Chapter 2) to the initial wireframe.

Experienced Flex component developers know that even though the syntax of Action-
Script 3 looks very similar to Java, it has provisions for dynamic programming and often
they can use this to avoid creating well defined JavaBean-ish objects.

Flex Architects
Flex architects know everything the GUI and component designers know, plus they can
see the big picture. Flex architects perform the following duties:

• Decide which frameworks, component libraries, and utilities should be used on
the project

• Decide on communication protocols to be used for communication with the server
tier

• Enhance the application protocols if need be

• Decide how to modularize the application

• Arrange for the unit, functional, and stress tests

• Make decisions on application security issues, such as how to integrate with ex-
ternal authentication/authorization mechanisms available in the organization

• Act as a technical lead on the project, providing technical guidance to GUI and
component developers

• Coordinate interaction between the Flex team and the server-side developers

• Promote the use of coding best practices and perform code reviews

• Conduct technical job interviews and give recommendations on hiring GUI and
component developers

These skills can’t be obtained in a week of training. Flex architects are seasoned pro-
fessionals with years of experience in RIA development. The goal of any project

Staffing Considerations | 177

manager is to find the best Flex architect possible. The success of your project heavily
depends on this person.

Not every Flex developer can be profiled as a member of one of these three groups. In
smaller teams, one person may wear two hats: component developer and architect.

Designopers and Devigners
RIAs require new skills to develope what was previously known as boring-looking en-
terprise applications. In the past, development of the user interface was done by soft-
ware developers to the best of their design abilities. A couple of buttons here, a grid
there, a gray background—done. The users were happy, because they did not see any-
thing better. The application delivered the data. What else was there to wish for? En-
terprise business users are not spoiled and will work with whatever is available; they
need to take care of their business. It is what it is.

Is it really? Not anymore. We’ve seen excellent (from the UI perspective) functional
specs for financial applications made by professional designers. Business users are
slowly but surely become first-class citizens!

The trend is clear: developer art does not cut it anymore. You need to hire a professional
user experience designer for your next-generation web application.

The vendors of the tools for RIA development recognize this trend and are trying to
bring designers and developers closer to each other. But the main RIA tool vendors,
Adobe and Microsoft, face different issues.

Adobe is a well-known name among creative people (Photoshop, Illustrator, Flash);
during the last two years, it has managed to convince enterprise developers that it has
something for them too (Flex, AIR). Adobe is trying to win developers’ hearts, but does
not want to scare designers, either. In addition to various designer-only tools, Adobe’s
Flash Catalyst tool allows designers create the Flex UI of an application without know-
ing how to program.

Today, a designer creates artwork in Illustrator or Photoshop, and then developers have
to somehow mimic all the images, color gradients, fonts, and styles in Flash Builder.
But this process will become a lot more transparent.

A web designer will import his Illustrator/Photoshop creations into Flash Catalyst, then
select areas to be turned into Flex components and save the artwork as a new project:
a file with extension .fxp. Adobe did a good job maintaining menus and property panes
in Flash Catalyst, similar to what designers are accustomed to in Illustrator and Pho-
toshop. The learning curve for designers is not steep at all.

Designers will definitely appreciate the ability to work with Flex view states without
the need to write even a line of code. Creating two views for master/detail scenarios
becomes a trivial operation.

178 | Chapter 4: Equipping Enterprise Flex Projects

Flash Catalyst is a handy tool not only for people trained in creating artwork but also
if you need to create wireframe mockups of your application using built-in controls
including some dummy data.

Working with Flash Catalyst requires UI designers to use Flash Creative Studio version
4 or later for creation of original artworks. This is needed, because Flash Catalyst in-
ternally uses the new .fxg format for storing just the graphic part of the Flex controls.

Flash Catalyst will become a valuable addition to the toolbox of a web designer working
in the Flex RIA space.

Microsoft comes quite from the opposite side: it has legions of faithful .NET developers,
and released Silverlight, which includes great tools for designers creating UI for RIA.
Microsoft Expression Design and Expression Blend IDEs take the artwork and auto-
matically generate code for .NET developers and help animate the UI to make it more
rich and engaging.

Adobe invests heavily in making the designer/developer workflow as easy and smooth
as possible. Adobe’s Catalyst generates Flex code based on the artwork created with
tools from Creative Studio 4 and later. Most of the work on the application design is
done using Adobe Photoshop, Illustrator, or Fireworks, and application interactions
you can create in Flash Catalyst. During conversion, the selected piece of the artwork
becomes the skin of a Flex component. Figure 4-1 shows how you can convert an area
in the artwork into a Flex TextInput component.

Figure 4-1. Converting artwork into Flex components

Flash Catalyst allows you to create animated transitions between states and, using the
timeline, adjust the length and timing of the effects. It allows developers and designers
to work on the same project. Designers create the interface of the RIA, and developers
add business logic and program communication with the server.

Staffing Considerations | 179

In an effort to foster understanding between the developers and designers, Adobe con-
sults with professors from different colleges and universities on their Visual Design and
Software Engineering disciplines. The intent is to help designers understand program-
ming better and help software developers get better at designing a user experience. It’s
a complex and not easily achievable goal, breeding these new creatures called “design-
opers” and “devigners.”

If you are staffing a RIA project and need to make a decision about the position of web
designer, you’re better off hiring two different talents: a creative person and a web
developer. Make sure that each party is aware of decisions made by the other. Invite
designers to decision-making meetings. If the project budget is tight, however, you have
no choice but to bring on board either a designoper or devigner.

With the right staff on board, you’re ready to dig into your project. Even though Flex
SDK includes a command-line compiler and a debugger and you can write code in any
plain-text editor of your choice, this is not the most productive approach. You need an
IDE—an integrated development environment, and in the next section, you’ll get fa-
miliar with IDE choices.

Flex Developer’s Workstation
While configuring developers’ workstations, ensure that each of them has at least 2 GB
of RAM; otherwise, compilation by your IDE may take a large portion of your working
day. As to what that IDE is, the choice is yours.

IDE Choices
At the time of this writing, enterprise Flex developers can work with one of the following
IDEs:

• Flash Builder 3 or 4 Beta (Adobe, http://www.adobe.com/products/flex/)

• RAD 7.5 (IBM, http://www.ibm.com/developerworks/downloads/r/rad/)

• IntelliJ IDEA 9 (JetBrains, http://www.jetbrains.com/idea/download/)

• Tofino 2 (Ensemble, http://www.ensemble.com/products/tofino.shtml)

You can install Flash Builder either as a standalone IDE or as an Eclipse plug-in. The
latter is the preferred choice for those projects that use Java as a server-side platform.
Savvy Java developers install Eclipse JEE version or MyEclipse from Genuitec; both
come with useful plug-ins that simplify development of the Java-based web
applications.

Today, Flash Builder is the most popular IDE among Flex enterprise developers. It
comes in two versions: Standard and Professional. The latter includes the data visual-
ization package (charting support, AdvancedDataGrid, and OLAP [Online Analytical

180 | Chapter 4: Equipping Enterprise Flex Projects

http://www.adobe.com/products/flex/
http://www.ibm.com/developerworks/downloads/r/rad/
http://www.jetbrains.com/idea/download/
http://www.ensemble.com/products/tofino.shtml

Processing] components). Besides offering a convenient environment for developers,
Flash Builder has room for improvement in compilation speed and refactoring.

IBM’s RAD 7.5 is a commercial IDE built on the Eclipse platform. RAD feels heavier
when compared to Flash Builder. It can substantially slow down your developers if they
have desktops with less than 2 GB of RAM.

For many years IntelliJ IDEA was one of the best Java IDEs. IntelliJ IDEA supports Flex
development and is more responsive and convenient for Flex/Java developers than
Flash Builder. The current version of IDEA, however, does not allow the creation of
Flex views in design mode, which is clearly a drawback. It does not include the Flex
profiler, which is an important tool for performance tuning of your applications. On
the other hand, if you prefer Maven for building projects, you will appreciate the fact
that IDEA includes a Maven module.

Tofino is a free plug-in for Microsoft Visual Studio that allows development of a Flex
frontend for .NET applications.

At the time of this writing, Flash Builder is the richest IDE available for Flex developers.
Flash Builder 4 is going to be released in early 2010. Besides multiple changes in the
code of the Flex SDK, it’ll have a number of improvements in the tooling department:
for example, a wizard for generation of the Flex code for remote data services, project
templates, autogeneration of event handlers, integration with Flash Catalyst, a FlexUnit
code generator, a Network Monitoring view, better refactoring support, and more.

Preparing for Teamwork
In some enterprises, developers are forced to use specific IDE and application servers
for Flex development, such as RAD and WebSphere from IBM. We believe that devel-
opers should be able to select the tools that they are comfortable with. Some are more
productive with the Flash Builder/Tomcat duo; others prefer RAD/Resin. During de-
velopment, no such combinations should be prohibited, even if the production server
for your application is Weblogic.

Likewise, members of a Flex application group may be physically located in different
parts of the world. Third-party consultants may be working in different operational
environments, too. They may even install the Flex framework on different disk drives
(C:, D:, etc.).

All this freedom can lead to issues in using version control repositories, because Flash
Builder stores the names of physical drives and directories in the property files of the
Flash Builder project. Say Developer A has the Flex framework installed in a particular
directory on disk drive D:. He creates a project pointing at Tomcat and checks it into
a source code repository. Developer B checks out the latest changes from the repository
and runs into issues, because either her Flex framework was installed on the disk drive
C: or her project was configured to use WebSphere. In addition to this issue, developers

Flex Developer’s Workstation | 181

will be reusing specific shared libraries, and each of the Flex modules may depend on
other shared libraries as well as the server-side BlazeDS or LCDS components.

To simplify the process of configuring the build path and compile options of the Flex
projects (developers may have different deployment directories), use soft links rather
than hardcoded names of the drives and directories (this is the equivalent of what’s
known as symbolic links in the Unix/Linux OS).

For implementing soft links in the Windows environment, use the junction utility,
which is available for download at http://www.microsoft.com/technet/sysinternals/Fil
eAndDisk/Junction.mspx. This utility is a small executable file that allows the mapping
of a soft link (a nickname) to an actual directory on disk.

For example, run the following in the command window:

junction c:\serverroot "c:\ Tomcat 6.0\webapps\myflex"

It’ll create a soft link C:\serverroot that can be treated as a directory on your filesystem.
In the example, c:\serverroot points at the application deployment directory under
the Apache Tomcat servlet container. Similarly, another member of your team can map
C:\serverroot to the deployment directory of WebSphere or any other JEE server.

From now on, all references in the build path and compiler options will start with C:
\serverroot\ regardless of what physical server, disk drive, and directory are being used.
By following these conventions, all Flash Builder projects will be stored in the source
control repositories with the same reference to C:\serverroot.

Using soft links simplifies the development of the Ant build scripts, too.

We recommend at least two soft links: C:\serverroot and C:\flexsdk, where the former
is mapped to a document root of the servlet container and the latter is mapped to the
installation directory of Flex SDK. An example of creating a soft link C:\flexsdk is shown
here:

C:\>junction C:\flexsdk "C:\Program Files\Adobe\Flash Builder 3 Plug-in\sdks\3.0.0"

When Flex SDK 4.1 or even 5.0 becomes available, this should have minimal effect on
your build scripts and Flash Builder projects: just rerun the junction utility to point C:
\flexsdk to the newly installed Flex framework.

By now, your team has selected the IDE, come to an agreement on the use of soft links,
and considered various recommendations regarding Flex code, such as embedding into
HTML, testing, build automation, and logging.

Embedding .swf Files into HTML Pages
Flash Builder automatically creates HTML wrappers for embedding Flash Player’s
content. When you create a new project, it contains a directory called html-template
that has an HTML wrapper index.template.html that Flash Builder uses as a container

182 | Chapter 4: Equipping Enterprise Flex Projects

http://www.microsoft.com/technet/sysinternals/FileAndDisk/Junction.mspx
http://www.microsoft.com/technet/sysinternals/FileAndDisk/Junction.mspx

for your .swf and copies into the bin-debug (or bin-release) folder each time your Flex
application is rebuilt.

If you’d like to embed your .swf into an HTML page that includes some content specific
to one of your existing HTML pages, you’d need to merge your HTML page with the
file index.template.html and keep it in the html-template folder.

If you need to embed this HTML code into another Flex application, you can create an
iFrame, copy this generated HMTL, specify coordinates and size of this iFrame, and
your .swf is displayed next to other HTML content that was created in your organization
using legacy QEB techniques. Just remember that you are now dealing with two web
pages in one, which technically turns it into a portal. The issues of the mixed HTML/
Flex portals are described in Chapter 10.

Adding a .swf to HTML with SWFObject
You can also embed a .swf using SWFObject, an open source utility (just one small
JavaScript file) that offers a simpler way to include .swf files into an HTML page. Using
Adobe Express Install, SWFObject detects the version of Flash Player installed on the
client’s machine. SWFObject can work in static HTML using the <object> element. It
also supports dynamic publishing with JavaScript, which allows passing parameters to
a .swf file as key/value pairs. Finally, it opens up opportunities for alternative content
for the users who have web browsers without Flash Player plug-ins, as well as for added
text to be picked up by the search engines.

A simple example contrasts the standard Flash Builder approach and SWFObject. Say
you have this application called HelloSWFObject.mxml:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute">
 <mx:Text x="24" y="28" text="Hello" fontSize="20"/>
</mx:Application>

Flash Builder generates HelloSWFObject.swf and automatically embeds it into
HelloSWFObject.html. Opening HelloSWFObject.html reveals more than 50 lines of
code that take care of embedding the .swf.

Now try the solution offered by SWFObject. First, download and unzip into some
folder the file swfobject_2_2.zip from http://code.google.com/p/swfobject/. Copy
HelloSWFObject.swf there, too.

To generate an HTML wrapper, download swfobject_generator_1_2_air.zip, a handy
AIR utility from SWFObject’s site. After unzipping, run the application swfobject_gen-
erator (Figure 4-2).

Select the “Dynamic publishing” method, enter HelloSWFObject.swf in the Flash
(.swf) field, and the name of the HTML container id that will be used as an ID of the
<div> area where your .swf will reside. In the “Alternative content” section, enter some
keywords that you want to expose to search engines, and click the Generate button.

Embedding .swf Files into HTML Pages | 183

http://code.google.com/p/swfobject/
zaremba
Comment on Text
correct xref? chapter 7?

Replace "chapter 10" with "Chapter 7 and 8"

In the lower portion of the window, you’ll find HTML that looks like Example 4-1.

Example 4-1. HTML wrapper generated by SWFObject

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title></title>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
 <script type="text/javascript" src="swfobject.js"></script>
 <script type="text/javascript">
 var flashvars = {};
 var params = {};
 var attributes = {};

Figure 4-2. SWFObject’s HTML generator

184 | Chapter 4: Equipping Enterprise Flex Projects

 swfobject.embedSWF("HelloSWFObject.swf", "myAlternativeContent",
 "200", "300", "9.0.0", false, flashvars, params, attributes);
 </script>
 </head>
 <body>
 <div id="myAlternativeContent">

 <img
src="http://www.adobe.com/images/shared/download_buttons/get_flash_player.gif"
 alt="Get Adobe Flash player" />
 Hello Flex O'Reilly Yakov Anatole Victor and other keywords for search engines

 </div>
 <script type="text/javascript" src="swfobject.js"></script>
 <script type="text/javascript">
 var flashvars = {};
 var params = {};
 var attributes = {};
 swfobject.embedSWF("HelloSWFObject.swf", "myAlternativeContent",
 "200", "300", "9.0.0", false, flashvars, params, attributes);
 </script>
 </body>
</html>

Moving the JavaScript to the bottom of the page results in better performance of the
page. Look for more tips to improve performance of a website at http://developer.yahoo
.com/performance/index.html#rules.

You are ready to run your application. The only issue with this solution is that you’ve
lost the history management that was taken care of by Flash Builder’s HTML wrapper.
SWFObject 2.2, however, offers support for Flex history and deep linking; you can find
an example of this solution published by Oleg Filipchuk at http://olegflex.blogspot.com/
2008/06/swfobject-2-flex-template.html.

Interacting with HTML and JavaScript
In large enterprises, usually you don’t start a new Enterprise Flex project from scratch
without worrying about existing web applications written in JSP, ASP, AJAX, and the
like.

More often, enterprise architects gradually introduce Flex into the existing web fabric
of their organizations. Often, they start with adding a new Flex widget into an existing
web page written in HTML and JavaScript, and they need to establish interaction be-
tween JavaScript and ActionScript code from the SWF widget.

The ExternalInterface Class
Flex can communicate with JavaScript using an ActionScript class called Exter
nalInterface. This class allows you to map ActionScript and JavaScript functions and

Interacting with HTML and JavaScript | 185

http://developer.yahoo.com/performance/index.html#rules
http://developer.yahoo.com/performance/index.html#rules
http://olegflex.blogspot.com/2008/06/swfobject-2-flex-template.html
http://olegflex.blogspot.com/2008/06/swfobject-2-flex-template.html

invoke these functions either from ActionScript or from JavaScript. The use of the class
ExternalInterface requires coding in both languages.

For example, to allow JavaScript’s function jsIsCalling() to invoke a function
asToCall(), you write in ActionScript:

ExternalInterface.addCallback("jsIsCalling", asToCall);

Then, you use the ID of the embedded .swf (e.g., mySwfId set in the HTML object)
followed by a JavaScript call like this:

if(navigator.appName.indexOf("Microsoft") != -1){
 window["mySwfId"].asToCall();
} else {
document.getElementById("mySwfId").asToCall();
}

Flex AJAX Bridge
For the applications that are written by teams of AJAX developers, there is another
option for JavaScript/ActionScript interaction. Flex SDK comes with a small library
called Flex AJAX Bridge (FABridge).

Say you already have an AJAX application, but want to delegate some I/O functionality
to Flex or implement some components for the web page (media players, charts, and
the like) in Flex. FABridge allows your AJAX developers to continue coding in Java-
Script and call the API from within Flex components without the need to learn Flex
programming.

With FABridge, you can register an event listener in JavaScript that will react to the
events that are happening inside the .swf file. For instance, a user clicks the button
inside a Flex portlet or some Flex remote call returns the data. Using FABridge may
simplify getting notifications about such events (and data) from Flex components into
existing AJAX portlets.

You can find a detailed description of how and when to use FABridge versus
ExternalInterface at http://bit.ly/aNPx0o.

The flashVars Variable
A third mechanism of passing data to a .swf from the enclosing HTML page is to use
the flashVars variable.

Consider an assignment: write a Flex application that can run against different servers
—development, user acceptance testing (UAT), and production—without the need to
recompile the .swf file. It does not take a rocket scientist to figure out that the URL of
the server should be passed to the .swf file as a parameter, and you can do this by using
a special variable, flashVars, in an HTML wrapper.

186 | Chapter 4: Equipping Enterprise Flex Projects

http://bit.ly/aNPx0o

While embedding a .swf in HTML, Flash Builder includes flashVars parameters in the
tags Object and Embed. ActionScript code can read them using Application.applica
tion.parameters, as shown in the next example.

The script portion of Example 4-2 gets the values of the parameters serverURL and
port (defined by us) using the Flex Application object. The goal is to add the values of
these parameters to the HTML file via flashVars. In a Flex application, these values are
bound to the Label as a part of the text string.

Example 4-2. Reading flashVars values in Flex

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
 applicationComplete="initApp()">

 <mx:Label text=
"Will run the app deployed at http://{serverURL}:{port}/MyGreatApp.html" />
 <mx:Script>
 <![CDATA[
 [Bindable]
 var serverURL:String;

 [Bindable]
 var port:String;

 function initApp():void{
 serverURL=Application.application.parameters.serverURL;
 port=Application.application.parameters.port
 }
]]>
 </mx:Script>
</mx:Application>

Open the generated HTML file, and you’ll find the JavaScript function
AC_FL_RunContent that includes flashVars parameters in the form of key/value pairs.
For example, in my sample application it looks like this:

"flashvars",'historyUrl=history.htm%3F&lconid=' + lc_id +''

If you used SWFObject to embed SWF, use different syntax of passing
flashVars to SWF as shown in Example 4-2.

Add the parameters serverURL and port to this string to make it look as follows:

"flashvars",'serverURL=MyDevelopmentServer&port=8181&historyUrl=history.htm%3F&lconid
='+ lc_id

Run the application, and it’ll display the URL of the server it connects to, as shown in
Figure 4-3. If you’d like to deploy this application on the UAT server, just change the
values of the flashVars parameters in the HTML file.

Interacting with HTML and JavaScript | 187

There’s one last little wrinkle to iron out: if you manually change the content of the
generated HTML file, the next time you clean the project in Flash Builder, its content
will be overwritten and you’ll lose added flashVars parameters.

There’s a simple solution: instead of adding flashVars parameters to the generated
HTML, add them to the file index.template.html from the html-template directory.

Of course, this little example does not connect to any server, but it shows how to pass
the server URL (or any other value) as a parameter to Flash Player, and how to assemble
the URL from a mix of text and bindings.

Testing Flex RIA
The sooner you start testing your application, the shorter the development cycle will
be. It seems obvious, but many IT teams haven’t adopted agile testing methodologies,
which costs them dearly. ActionScript supports dynamic types, which means that its
compiler won’t be as helpful in identifying errors as it is in Java. To put it simply, Flex
applications have to be tested more thoroughly.

To switch to an agile test-driven development, start with accepting the notion of em-
bedding testing into your development process rather than scheduling testing after the
development cycle is complete. The basic types of testing are:

• Unit

• Integration

• Functional

• Load

The sections that follow examine the differences between these testing strategies, as
well as point out tools that will help you to automate the process.

Figure 4-3. Running the flashVars sample—BindingWithString.mxml

188 | Chapter 4: Equipping Enterprise Flex Projects

Unit and Integration Testing
Unit testing is performed by a developer and is targeted at small pieces of code to ensure,
for example, that if you call a function with particular arguments, it will return the
expected result.

Test-driven development principles suggest that you write test code even before you
write the application code. For example, if you are about to start programming a class
with some business logic, ask yourself, “How can I ensure that this function works
fine?” After you know the answer, write a test ActionScript class that calls this function
to assert that the business logic gives the expected result. Only after the test is written,
start programming the business logic. Say you are in a business of shipping goods.
Create a Shipment class that implements business logic and a ShipmentTest class to test
this logic. You may write a test that will assert that the shipping address is not null if
the order quantity is greater than zero.

In addition to business logic, Flex RIAs should be tested for proper rendering of UI
components, changing view states, dispatching, and handling events. Integration test-
ing is a process in which a developer combines several unit tests to ensure that they
work properly with each other. Both unit and integration tests have to be written by
application developers.

Several tools can help you write unit and integration tests.

FlexUnit4

FlexUnit4 is a unit testing framework for Flex and ActionScript 3.0 applications and
libraries. With FlexUnit4 and Flash Builder, you can generate individual unit tests and
combine them into test suites. Flash Builder 4 allows automatic creation of test cases
(see New → TestCase Class in the menus). Just enter the name of the class to test, and
Flash Builder will generate a test application and a test case class in a separate package.

For each method of your class, say calculateMonthlyPayment(), Flash Builder will gen-
erate a test method, for example testCalculateMonthlyPayment(). You just need to
implement it:

public function testCalculateMonthlyPayment(){
 //A $200K mortgage at 7% for 30 years should have
 // a monthly payment of $1199.10
 Assert.assertEquals(
 MortgageCalculator.calculateMonthlyPayment (200000, 7,30),1199.1);
}

After the test case class is ready, ask Flash Builder to generate the test suite for you (see
New → Test Suite Class). To execute your test suite, right-click on the project in Flash
Builder and select Execute FlexUnit Tests.

Unit testing of visual components is not as straightforward as unit testing of business
logic in ActionScript classes. The Flex framework makes lots of internal function calls

Testing Flex RIA | 189

to properly display your component on the Flash Player’s stage. And if you need to get
a hold of a particular UI component to ensure that it’s properly created, laid out, and
populated, use the Application.application object in your tests.

FlexMonkey

A free tool from Gorilla Logic, FlexMonkey is a unit testing framework for Flex appli-
cations that also automates testing of Flex UI functionality. FlexMonkey can record
and play back UI interactions. For example, Figure 4-4 illustrates the command list
that results from the user entering the name of the manager and selecting a date.

Figure 4-4. Recording command list in FlexMonkey

FlexMonkey not only creates a command list, but also generates ActionScript testing
scripts for FlexUnit (Figure 4-5) that you can easily include within a continuous inte-
gration process.

Technically, if the test scripts generated by FlexMonkey would allow a programming
language simpler than ActionScript, you could consider it both a unit and functional
testing framework. In the small IT shops where developers have to perform all kinds
of testing, you may use FlexMonkey in this double mode. Even in larger organizations
it may be beneficial if a developer runs these prefunctional tests to minimize the number

190 | Chapter 4: Equipping Enterprise Flex Projects

of errors reported by the QA team. For more information on FlexMonkey, see http://
www.gorillalogic.com/flexmonkey.

Visual Flex Unit

An open source framework for testing the visual appearance of components, Visual
Flex Unit also introduces visual assertions, which assert that a component’s appearance
is identical to a stored baseline image file. Developers can instantiate and initialize UI
components, define view states and styles, and test that these components look the
same as presaved images of the same. For output, you’ll get a report on how many
pixels differ. You can run tests in ANT mode and send notifications about the test
results. At the time of this writing, Visual Flex Unit is still in alpha version, but you can
find more information at http://code.google.com/p/visualflexunit/

Functional Testing
Functional testing (a.k.a. black-box, QA, or acceptance testing) is aimed at finding out
whether the application properly implements business logic. For example, if the user
clicks on a row in the customer data grid, the program should display a form view with

Figure 4-5. Test-generated matching command list

Testing Flex RIA | 191

http://www.gorillalogic.com/flexmonkey
http://www.gorillalogic.com/flexmonkey
http://code.google.com/p/visualflexunit/

specific details about the selected customer. In functional testing business users should
define what has to be tested, unlike unit or integration testing where tests are created
by software developers.

Functional tests can be performed manually, in which a real person clicks through each
and every view of the RIA, confirming that it operates properly or reporting discrep-
ancies with the functional specifications. A better approach, however, is to engage
specialized software that allows you to prerecord the sequence of clicks (similar to what
FlexMonkey does) and replay these scripts whenever the application has been modified
to verify that the functionality has not been broken by the last code changes.

Writing scripts for testing may sound like an annoying process, but this up-front in-
vestment can save you a lot of grief and long overtime hours during the project life
cycle. Larger organizations have dedicated Quality Assurance teams who write these
tests. In smaller IT shops, Flex developers write these tests, but this is a less efficient
approach, as developers may not have the correct vision of the entire business workflow
of the application and their tests won’t cover the whole functionality of the system.

Automated test scripts should be integrated with the build process of your application
and run continuously. There are several commercial (and expensive) offerings for au-
tomation of functional testing:

QuickTest Professional (QTP) by HP (formerly Mercury)
During the recording phase, QTP creates a script in the VBScript language in which
each line represents an action of the user. The checkpoints included in the script
are used for comparison of the current value with expected values of the specified
properties of application objects. Flex 3 Professional includes the libraries (.swc)
required for automated testing with QTP, and your Flex application has to be
compiled with these libraries. In addition, the QA testers need to have a commercial
license for the QTP itself. The process of installing QTP for testing Flex applications
is described at http://tinyurl.com/5wyqgb.

Rational Functional Tester by IBM
Rational Functional Tester supports functional and regression testing of Flex ap-
plications. You can see the demo and download a trial version of this product at
http://www-01.ibm.com/software/awdtools/tester/functional/index.html.

Flex Vulnerability Tests
IBM’s Rational AppScan helps test your web application against the threat of SQL
injection attacks and data breaches. Staring from version 7.8, AppScan supports a wide
array of Flash Player–based applications, including Adobe Flex and Adobe AIR. For
more information, visit http://tinyurl.com/5rswk7.

192 | Chapter 4: Equipping Enterprise Flex Projects

http://tinyurl.com/5wyqgb
http://www-01.ibm.com/software/awdtools/tester/functional/index.html
http://tinyurl.com/5rswk7

RIATest by RIATest
RIATest (Figure 4-6) is a commercial testing tool for QA teams working with Flex
applications. It includes Action Recorder (an RIAScript language similar to Ac-
tionScript), a script debugger, and synchronization capabilities.

Because of the event-driven nature of Flex, UI testing tools need to be smart enough
to understand that some events take time to execute and your tests can run only
after a certain period of time. RIATest allows you to not only rely on this tool to
make such synchronization decisions, but also to specify various wait conditions
manually. For example, if a click on the button requires an asynchronous remote
call to populate a data grid, RIATest offers you the script command waitfor, which
won’t perform the data verification until the data grid is populated. The Action
Recorder creates human-readable scripts. To download a demo, go to http://riatest
.com.

Figure 4-6. RIATest: Visual creation of verification code

Testing Flex RIA | 193

http://riatest.com
http://riatest.com

Load Testing
While rearchitecting an old-fashioned HTML-based application with RIA, you should
not forget that besides looking good, the new application should be at least as scalable
as the one you are replacing. Ideally, it should be more scalable than the old one if faster
data communication protocols such as AMF and RTMP are being used. How many
concurrent users can work with your application without bringing your server to its
knees? Even if the server is capable of serving a thousand users, will performance suffer?
If yes, how bad is it going to be?

It all comes down to two factors: availability and response time. These requirements
to your application should be well defined in the service level agreement (SLA), which
should clearly state what’s acceptable from the user’s perspective. For example, the
SLA can include a clause stating that the initial download of your application shouldn’t
take longer than 30 seconds for users with a slow connection (500 kbps). The SLA can
state that the query to display a list of customers shouldn’t run for more than five
seconds, and the application should be 99.9% of the time.

To avoid surprises after going live with your new mission-critical RIA, don’t forget to
include in your project plan a set of heavy stress tests, and do this well in advance before
it goes live. Luckily, you don’t need to hire 1,000 interns to find out whether your
application will meet the SLA requirements. The automated load (a.k.a. stress or per-
formance testing software) allows you to emulate required number of users, set up the
throttling to emulate a slower connection, and configure the ramp-up speed. For ex-
ample, you can simulate a situation where the number of users logged on to your system
grows at the speed of 50 users every 10 seconds. Stress testing software also allows you
to prerecord the action of the business users, and then you can run these scripts emu-
lating a heavy load.

Good stress-testing software allows simulating the load close to the real-world usage
patterns. You should be able to create and run mixed scripts simulating a situation in
which some users are logging on to your application while others are retrieving the data
and performing data modifications. Each of the following tools understands AMF pro-
tocol and can be used for stress testing of Flex applications:

NeoLoad by Neotys
NeoLoad is a commercial stress-testing tool. It offers analysis of web applications
using performance monitors without the need to do manual scripting. You start
with recording and configuring a test scenario, then you run the tests creating
multiple virtual users, and finally, you monitor client operational system load and
web and application server components. As you’ll learn in Chapter 6, we at Farata
Systems have been using a scalable stress-test solution based on BlazeDS installed
under a Jetty server. For more information on NeoLoad, go to http://neotys.com.

WebLOAD 8.3 by RadView Software
A commercial stress-testing software, WebLOAD 8.3 offers similar functionality
to NeoLoad. It includes analysis and reporting, and a workflow wizard that helps

194 | Chapter 4: Equipping Enterprise Flex Projects

http://neotys.com
zaremba
Comment on Text
missing word. the application should be what? 99.9% of the time.

Insert the word operational before 99%.

with building scripts. It also supports AJAX. WebLOAD also allows you to enter
SLA requirements right into the tests. To learn more, visit http://www.radview.com.

SilkPerformer and SilkTest by Borland
The commercial Borland test suite includes Borland SilkPerformer, stress-testing
software for optimizing performance of business applications, and the functional
testing tool Borland SilkTest, among other tools.

SilkPerformer allows you to create thousands of users with its visual scenario mod-
eling tools. It supports Flex clients and the AMF 3 protocol.

SilkTest automates the functional testing process, and supports regression, cross-
platform, and localization testing. For more details, see http://www.borland.com/
us/products/index.html.

Data Services Stress Testing Framework by Adobe (open source)
An open source load-testing tool, Data Services Stress Testing Framework helps
developers with stress testing of LiveCycle Data Services ES. This is a tool for put-
ting load on the server and is not meant for stress testing an individual Flex/LCDS
application running in the Flash Player. This framework is not compatible with
BlazeDS. To download it or learn more, visit http://labs.adobe.com/wiki/index.php/
Flex_Stress_Testing_Framework. For testing BlazeDS, consider using JMeter as
described at the JTeam blog: http://bit.ly/1cjE78.

Code Coverage
Even if you are using testing tools, can you be sure that you have tested each and every
scenario that may arise in your application?

Code coverage describes the degree to which your code has been tested. It’s also known
as white box testing, which is an attempt to analyze the code and test each possible path
your application may go through. In large projects with hundreds of if statements, it’s
often difficult to cover each and every branch of execution, and automated tools will
help you with this.

An open source project, Flexcover is a code coverage tool for Flex and AIR applications.
This project provides code coverage instrumentation, data collection, and reporting
tools. It incorporates a modified version of the AS3 compiler, which inserts extra func-
tion calls in the code within the .swf or .swc output file. At runtime, these function calls
send information on the application’s code coverage to a separate tool. The modified
compiler also emits a separate coverage metadata file that describes all the possible
packages, classes, functions, code blocks, and lines in the code, as well as the names
of the associated source code files. For more information, go to http://code.google.com/
p/flexcover/.

Testing Flex RIA | 195

http://www.radview.com
http://www.borland.com/us/products/index.html
http://www.borland.com/us/products/index.html
http://labs.adobe.com/wiki/index.php/Flex_Stress_Testing_Framework
http://labs.adobe.com/wiki/index.php/Flex_Stress_Testing_Framework
http://bit.ly/1cjE78
http://code.google.com/p/flexcover/
http://code.google.com/p/flexcover/

The document “Flex SDK coding conventions and best practices” lays
out the coding standards for writing open source components in Ac-
tionScript 3, but you can use it as a guideline for writing code in your
business application, too. This document is available at the following
URL: http://tinyurl.com/3xphtd.

FlexPMD (http://opensource.adobe.com/wiki/display/flexpmd/FlexPMD) is a tool that
helps to improve code quality by auditing any AS3/Flex source directories and detecting
common bad practices, such as unused code (functions, variables, constants, etc.),
inefficient code (misuse of dynamic filters, heavy constructors, etc.), overly long code
(classes, methods, etc.), incorrect use of the Flex component life cycle (com
mitProperties, etc.), and more.

The code coverage tools will ensure that you’ve tested all application code, and the
coding conventions document will help you in adhering to commonly accepted prac-
tices, but yet another question to be answered is, “How should you split the code of a
large application into a smaller and more manageable modules?” This becomes the
subject of the brief discussion that comes next.

Application Modularization from 30,000 Feet
Even a relatively small Flex application has to be modularized. More often than not, a
Flex application consists of more than one Flash Builder project. You’ll learn more
about modularization in Chapter 7; for now, a brief overview will expose you to the
main concepts that each Flex developer/architect should keep in mind.

Your main Flash Builder project will be compiled into a main .swf application, and the
size of this .swf should be kept as small as possible. Include only must-have pieces of
the application that have to be delivered to the client’s computer on the initial appli-
cation load. The time of the initial application load is crucial and has to be kept as short
as possible.

Modularization of the Flex application is achieved by splitting up the code into Flex
libraries (.swc files) and Flex modules (.swf files). Initially, the application should load
only the main .swf and a set of shared libraries that contain objects required by other
application modules. Flex modules are .swf files that have <mx:Module> as a root tag.
They can be loaded and unloaded during the runtime using Flex’s ModuleLoader loader.
If the ability to unload the code during the runtime is important to your Flex applica-
tion, use modules. If this feature is not important, use Flex libraries, which are loaded
in the same application domain and allow direct referencing of the loaded objects in
the code with the strong type checking.

Although .swf files are created by the mxmlc compiler, Flex libraries are compiled
into .swc files via the compc compiler. Flex libraries can be linked to an application in
one of three ways:

196 | Chapter 4: Equipping Enterprise Flex Projects

http://tinyurl.com/3xphtd
http://opensource.adobe.com/wiki/display/flexpmd/FlexPMD

• Merged into code

• Externally

• Via Runtime Shared Libraries (RSL)

The linkage type has to be selected based on the needs of the specific application.

Chapter 8 describes pros and cons of each type of linkage, as well as a
technique that allows you to create so-called self-initialized libraries that
can be reused in Flex applications in a loosely coupled fashion.

Application fonts and styles are good candidates for being compiled into a sepa-
rate .swf file that is precompiled and is loaded during the application startup. This will
improve the compilation speed of the Flash Builder’s projects, because compiling fonts
and styles is a lengthy process.

Modularizing of the application also simplifies work separation between Flex devel-
opers as each small team can work on a different module. Flex 3.2 has introduced so-
called subapplications, which are nothing but Flex application .swf files that can be
compiled in different versions of Flex. SWFloader can load this subapplication either in
its own or in a separate security sandbox.

Build Scripts and Continuous Integration
A modularized Flex application consists of several Flash Builder projects. Each of the
individual projects contains the build.xml file that performs the build and deployment
of this project. Additionally, one extra file should be created to run individual project
builds in an appropriate order and to deploy the entire application in some predefined
directory, for example, C:\serverroot as described in the section “Flex Developer’s
Workstation” on page 180.

Such a main build file should account for dependencies that may exist in your project.
For example, the application that produces the main .swf file can depend on some
libraries that are shared by all modules of your application. Hence the main Ant build
file needs to have multiple targets that control the order of individual project builds.

In some cases, for auditing purposes, if a build task depends on other builds—
i.e., .swc libraries—all dependent builds should be rerun even if the compiled version
of .swc already exists.

Automation of Ant Script Creation
Apache Ant is a popular Java-based tool for automating the software build process.
You can run Ant builds of the project either from Flash Builder or from a command
line. To run the build script from Flash Builder, right-click on the name of the build

Build Scripts and Continuous Integration | 197

file, such as build.xml, and choose the Ant Build from the pop-up menu. The build will
start and you’ll see Ant’s output in the Flash Builder console. To build your application
from a command line you can use a standalone Ant utility (http://ant.apache.org/bind
ownload.cgi). To be able to run Ant from any directory, add the bin directory of Ant’s
install to the PATH environment variable on your computer.

Ant uses the tools.jar file that comes with Java SDK. Modify your envi-
ronment variable CLASSPATH to include the location of tools.jar on your
PC. For example, if you did a standard install of Java 6 under MS Win-
dows, add the following to the CLASSPATH variable: C:\Program Files\Java
\jdk1.6.0_02\lib\tools.jar;.

To run the Ant build from a command line, open a command window, change directory
to the project you are planning to build, and enter ant, as in:

C:\myworkspace> cd my.module.met1
C:\myworkspace\my.module.met1> ant

In addition to the developer’s workstation, all build scripts need to be deployed under
a dedicated server, and developers should run test builds first on their local workstation
and then under this server.

Writing Ant build scripts manually is a time-consuming process. To help you, we cre-
ated Fx2Ant (it comes as a part of Clear Toolkit; see http://sourceforge.net/projects/
cleartoolkit/). After installing the Clear Toolkit Eclipse plug-in, just right-click on “Flash
Builder project” and select the menu Generate Build Files, and within a couple of sec-
onds you’ll get an Ant build script that reflects all current settings of your Flash Builder
project.

There is also an open source project called Antennae that provides templates for build-
ing Flex projects with Ant. Antennae can also generate scripts for FlexUnit. It’s available
at http://code.google.com/p/antennae/.

Maven Support
Maven is a more advanced build tool than Ant. Maven supports builds of modules and
creation of applications that use the Flex framework RSL. It works with FlexUnit and
ASDoc. If your organization uses Maven, get flex-mojos at http://flexmojos.sonatype
.org/. This is a collection of Maven plug-ins to allow Maven to build and optimize Flex
and AIR .swf and .swc files.

You can find an example of configuring a Flex/Maven/Hibernate/Spring/BlazeDS
project at http://www.adobe.com/devnet/flex/articles/fullstack_pt1.html.

198 | Chapter 4: Equipping Enterprise Flex Projects

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://sourceforge.net/projects/cleartoolkit/
http://sourceforge.net/projects/cleartoolkit/
http://code.google.com/p/antennae/
http://flexmojos.sonatype.org/
http://flexmojos.sonatype.org/
http://www.adobe.com/devnet/flex/articles/fullstack_pt1.html

If you use the IntelliJ IDEA IDE, you’ll have even more convenient in-
tegration of Flex and Maven projects.

Continuous Integration
Introduced by Martin Fowler and Matthew Foemmel, the theory of continuous inte-
gration recommends creating scripts and running automated builds of your application
at least once a day. This allows you to identify issues in the code a lot sooner.

You can read more about the continuous integration practice at http://
www.martinfowler.com/articles/continuousIntegration.html.

We are successfully using an open source framework called CruiseControl (http://crui
secontrol.sourceforge.net) for establishing a continuous build process. When you use
CruiseControl, you can create scripts run either on a specified time interval or on each
check-in of the new code into the source code repository. You may also force the build
whenever you like.

CruiseControl has a web-based application to monitor or manually start builds (Fig-
ure 4-7). Reports on the results of each build are automatically emailed to the designated
members of the application group. At Farata Systems, we use it to ensure continuous
builds of the internal projects and components for Clear Toolkit.

Figure 4-7. Controlling CruiseControl from the Web

IT shops that have adopted test-driven development can make the build process even
more bulletproof by including test scripts in the continuous integration build process.
If unit, integration, and functional test scripts (which automatically run after each suc-
cessful build process) don’t produce any issues, you can rest assured that the latest code
changes did not break the application logic.

Build Scripts and Continuous Integration | 199

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://cruisecontrol.sourceforge.net
http://cruisecontrol.sourceforge.net

Hudson is yet another popular open source continuous integration server (http://hudson
-ci.org).

Logging with Log4Fx
When you develop distributed applications, you can’t overestimate the importance of
a good logging facility.

Imagine life without one: the user pressed a button and… nothing happened. Do you
know if the client’s request reached the server-side component? If so, what did the
server send back? Add to this the inability to use debuggers while processing GUI events
like focus change, and you may need to spend hours, if not days, trying to spot some
sophisticated errors.

That’s why a reliable logger is a must if you work with an application that is spread
over the network and is written in different languages, such as Adobe Flex and Java.

At Farata Systems, we created a Flash Builder plug-in for Log4Fx, which is available as
a part of the open source project Clear Toolkit. This is an advanced yet simple-to-use
component for Flex applications. You can set up the logging on the client or the server
side (Java), redirect the output of the log messages to local log windows, or make the
log output easily available to the production support teams located remotely.

Think of a production situation where a particular client complains that the application
runs slowly. Log4Fx allows you to turn on the logging just for this client and you can
do it remotely with web browser access to the log output.

Log4Fx comes with several convenient and easy-to-use display panels with log mes-
sages. In addition, it automatically inserts the logging code into your ActionScript
classes with hot keys (Figure 4-8).

Figure 4-8. Log4Fx hot keys to insert log statements into ActionScript

For example, place the cursor in the script section of your application and press Ctrl-
R followed by M to insert the following lines into your program:

import mx.logging.Log;
import mx.logging.ILogger;
private var logger:ILogger = Log.getLogger("MyStockPortfolio");

Say you are considering adding this trace statement into the function getPriceQuetes():

200 | Chapter 4: Equipping Enterprise Flex Projects

http://hudson-ci.org
http://hudson-ci.org

trace("Entered the method getPriceQuotes");

Instead of doing this, you can place the cursor in the function getPriceQuotes() and
press Ctrl-R followed by D. The following line will be added at your cursor location:

if (Log.isDebug()) logger.debug("");

Enter the text Entered the method getPriceQuotes() between the double quotes, and
if you’ve set the level of logging to Debug, this message will be sent to a destination you
specified with the Logging Manager.

If a user calls production support complaining about some unexpected behavior, ask
her to press Ctrl-Shift-Backspace; the Logging Manager will pop up on top of her ap-
plication window (Figure 4-9).

Figure 4-9. A user enables logging

The users select checkboxes to enable the required level of logging, and the stream of
log messages is directed to the selected target. You can change the logging level at any
time while your application is running. This feature is crucial for mission-critical pro-
duction applications where you can’t ask the user to stop the application (e.g., financial
trading systems), but need to obtain the logging information to help the customer on
the live system.

You can select a local or remote target or send the log messages to the Java application
running on the server side, as shown in Figure 4-10.

Remote Logging with Log4Fx
Log4Fx adds a new application, RemoteLogReceiver.mxml, to your Flex project, which
can be used by a remote production support crew if need be.

Logging with Log4Fx | 201

Say the user’s application is deployed at the URL http://230.123.12.10:8080/myappli-
cation.html. By pressing Ctrl-Shift-Backspace, the user opens the Logging Manager and
selects the target Remote Logging (Figure 4-11).

Figure 4-11. Specifying the remote destination for logging

The destination RemoteLogging is selected automatically, and the user needs to input a
password, which the user will share with the production support engineer.

Because RemoteLogReceiver.mxml is an application that sits right next to your main
application in Flash Builder’s project, it gets compiled into a .swf file, the HTML wrap-
per is generated, and it is deployed in the web server along with your main application.
The end users won’t even know that it exists, but a production engineer can enter its
URL (http://230.123.12.10:8080/RemoteLogReceiver.html) in his browser when
needed.

Think of an undercover informant who lives quietly in the neighborhood, but when
engaged, immediately starts sending information out. After entering the password pro-
vided by the user and pressing the Connect button, the production support engineer
will start receiving log messages sent by the user’s application (Figure 4-12).

Log4Fx is available as a part of the open source project Clear Toolkit at https://source
forge.net/projects/cleartoolkit.

Figure 4-10. Logging in the Local panel

202 | Chapter 4: Equipping Enterprise Flex Projects

https://sourceforge.net/projects/cleartoolkit
https://sourceforge.net/projects/cleartoolkit

Troubleshooting with Charles
Although lots of programs allow you to trace HTTP traffic, Flex developers need to be
able to trace not just HTTP requests, but also AMF calls made by Flash Player to the
server. At Farata Systems, we’ve been successfully using a program called Charles,
which is a very handy tool on any Flex project.

Charles is an HTTP proxy and monitor that allows developers to view all of the HTTP
traffic between their web browser and the Internet. This includes requests, responses,
and HTTP headers (which contain cookies and caching information). Charles allows
viewing SSL communication in plain text. Because some users of your application may
work over slow Internet connections, Charles simulates various modem speeds by
throttling your bandwidth and introducing latency—an invaluable feature.

Charles is not a free tool, but it’s very inexpensive. It can be downloaded at http://www
.charlesproxy.com.

A Grab Bag of Component Libraries
Regardless of your decision about using Flex frameworks, you should be aware of a
number open source libraries of components. The Flex community includes passionate
and skillful developers that are willing to enhance and share components that come
with the Flex SDK. For example, you may find an open source implementation of the

Figure 4-12. Monitoring log output from the remote machine

A Grab Bag of Component Libraries | 203

http://www.charlesproxy.com
http://www.charlesproxy.com

horizontal accordion, autocomplete component, tree grid control, JSON serializer, and
much more.

Following you’ll find references to some of the component libraries that in many cases
will spare you from reinventing the wheel during the business application development
cycle:

FlexLib (http://code.google.com/p/flexlib/)
The FlexLib project is a community effort to create open source user interface
components for Adobe Flex 2 and 3. Some of its most useful components are:
AdvancedForm, EnhancedButtonSkin, CanvasButton, ConvertibleTreeList, High-
lighter, IconLoader, ImageMap, PromptingTextInput, Scrollable Menu Controls,
Horizontal Accordion, TreeGrid, Docking ToolBar, and Flex Scheduling
Framework.

as3corelib (http://code.google.com/p/as3corelib/)
as3corelib is an open source library of ActionScript 3 classes and utilities. It in-
cludes image encoders; a JSON library for serialization; general String, Number
and Date APIs; as well as HTTP and XML utilities. Most of the classes don’t even
use the Flex framework. AS3corelib also includes AIR-specific classes.

FlexServerLib (http://code.google.com/p/flexserverlib/)
FlexServerLib includes several useful server-side components: MailAdapter is a
Flex Messaging Adapter for sending email from a Flex/AIR application. Spring-
JmsAdapter is an adapter for sending and receiving of messages through a Spring-
configured JMS destination. EJBAdapter is an adapter allowing the invocation of
EJB methods via remote object calls.

asSQL (http://code.google.com/p/assql/)
asSQL is an ActionScript 3 MySQL driver that allows you to connect to this popular
DBMS directly from AIR applications.

Facebook ActionScript API (http://code.google.com/p/facebook-actionscript-api/)
The Facebook ActionScript API allows you to write Flex applications that com-
municate with Facebook using the REST protocol.

Twitter ActionScript API (http://apiwiki.twitter.com/Libraries#ActionScript/Flash)
These libraries allow you to access the Twitter API from ActionScript.

Astra Web API (http://developer.yahoo.com/flash/astra-webapis/), GoogleMaps API
(http://code.google.com/apis/maps/documentation/flash/), MapQuest Platform (http://
platform.mapquest.com/products-free.html)

Geographical mapping libraries are quite handy if you’d like your RIA to have the
ability to map the location of your business, branches, dealers, and the like. These
libraries may be free for personal use, but may require a commercial license to be
used in enterprise applications. Please consult the product documentation of the
mapping engine of your choice.

ASTRA Web API gives your Flex application access to Yahoo! Maps, Yahoo! An-
swers, Yahoo! Weather, Yahoo! Search, and a social events calendar. Google Maps

204 | Chapter 4: Equipping Enterprise Flex Projects

http://code.google.com/p/flexlib/
http://code.google.com/p/as3corelib/
http://code.google.com/p/flexserverlib/
http://code.google.com/p/assql/
http://code.google.com/p/facebook-actionscript-api/
http://apiwiki.twitter.com/Libraries#ActionScript/Flash
http://developer.yahoo.com/flash/astra-webapis/
http://code.google.com/apis/maps/documentation/flash/
http://platform.mapquest.com/products-free.html
http://platform.mapquest.com/products-free.html

API for Flash lets Flex developers embed Google maps in their application. Map-
Quest Platform has similar functionality.

as3syndicationlib (http://code.google.com/p/as3syndicationlib/)
as3syndicationlib parses the Atom format and all versions of RSS. It hides the dif-
ferences between the formats of the feeds.

Away3D (http://away3d.com)
Away3D is a real-time 3-D engine for Flash.

Papervision3D (http://code.google.com/p/papervision3d/)
Papervision3D is a real-time 3-D engine for Flash.

YouTube API (http://code.google.com/p/as3youtubelib/)
The YouTube API is a library for integrating your application with this popular
video portal.

as3flickrlib (http://code.google.com/p/as3flickrlib/)
as3flickrlib is an ActionScript API for a popular portal for sharing photographs.

Text Layout Framework (http://labs.adobe.com/technologies/textlayout/)
Text Layout Framework is a library that supports advanced typographic and text
layout features. This library is requires Flash Player 10. It’s included in Flex 4, but
can be used with Flex 3.2 as well.

To stay current with internal and third-party Flex components and libraries, download
and install the AIR application called Tour de Flex (http://flex.org/tour). It contains
easy-to-follow code samples on use of various components. It’s also a place where
commercial and noncommercial developers can showcase their work (Figure 4-13).

Although most of the previous components cater to frontend developers, because Flex
RIAs are distributed applications, some of the components and popular frameworks
will live on the server side. The next two sections will give you an overview of how to
introduce such server frameworks as Spring and Hibernate.

Integrating with the Java Spring Framework
The Java Spring framework is a popular server-side container that has its own mecha-
nism of instantiating Java classes—it implements a design pattern called Inversion of
Control. To put it simply, if an object Employee has a property of type Bonus, instead of
explicit creation of the bonus instance in the class employee, the framework would create
this instance and inject it into the variable bonus.

BlazeDS (and LCDS) knows how to instantiate Java classes configured in remoting-
config.xml, but this is not what’s required by the Spring framework.

In the past, a solution based on the class factory design pattern was your only option.
Both BlazeDS and LCDS allow you to specify not the name of the class to create, but
the name of the class factory that will be creating instances of this class. An
implementation of such a solution was available in the Flex-Spring library making

Integrating with the Java Spring Framework | 205

http://code.google.com/p/as3syndicationlib/
http://away3d.com
http://code.google.com/p/papervision3d/
http://code.google.com/p/as3youtubelib/
http://code.google.com/p/as3flickrlib/
http://labs.adobe.com/technologies/textlayout/
http://flex.org/tour

Spring framework responsible for creating instances of such Java classes (a.k.a. Spring
beans).

Today, there is a cleaner solution developed jointly by Adobe and SpringSource. It
allows you to configure Spring beans in XML files, which can be used by the BlazeDS
component on the Java EE server of your choice.

James Ward and Jon Rose have published a reference card with code samples on Flex/
Spring integration at http://tinyurl.com/cj3v7b.

At the time of this writing, the project on integration of BlazeDS and the
Spring framework is a work in progress, and we suggest you to follow
the blog of Adobe’s Christophe Coenraets, who publishes up-to-date
information about this project: http://tinyurl.com/noj3nm.

Integrating with the Hibernate Framework
These days, writing SQL manually is out of style, and lots of software developers prefer
using Object-Relational Mapping (ORM) tools for data persistence. With ORM, an
instance of an object is mapped to a database table. Selecting a row from a database is

Figure 4-13. Component explorer Tour de Flex

206 | Chapter 4: Equipping Enterprise Flex Projects

http://tinyurl.com/cj3v7b
http://tinyurl.com/noj3nm
yfain11
Inserted Text

equivalent to creating an instance of the object in memory. On the same note, deleting
the object instance will cause deletion of the corresponding row in a database table.

In the Java community, Hibernate is the most popular open source ORM tool. Hiber-
nate supports lazy loading, caching, and object versioning. It can either create the entire
database from scratch based on the provided Java objects, or just create Java objects
based on the existing database.

Mapping of Java objects to the database tables and setting their relationships (one-to-
many, one-to-one, many-to-one) can be done either externally in XML configuration
files or by using annotations right inside the Java classes, a.k.a. entity beans. From a
Flex remoting perspective, nothing changes: Flex still sends and receives DTOs from
a destination specified in remoting-config.xml.

After downloading and installing the Hibernate framework under the server with Blaz-
eDS, the integration steps are:

1. Create a server-side entity bean Employee that uses annotations to map appropriate
values to database tables and specify queries:

@Entity
@Table(name = "employees")
@NamedQueries({

@NamedQuery(name = "employeess.findAll", query = "from Employee"),

@NamedQuery(name = "employees.byId", query = "select c from Employee e where
e.employeeId= :employeeId") })
public class Employee {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "employeeId", nullable = false)
 private Long employeeId;

 @Column(name = "firstName", nullable = true, unique = false)
 private String firstName;

2. Create a file called persistence.xml under the META-INF directory of your BlazeDS
project. In this file, define the database location and connectivity credentials.

3. Write a Java class EmployeeService with method getEmployees() that retrieves and
updates the data using Hibernate—for example:

public List<Employee> getEmployees() {

EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory(PERSISTENCE_UNIT);

 EntityManager em = entityManagerFactory.createEntityManager();

 Query findAllQuery = em.createNamedQuery("employees.findAll");

 List<Empoyee> employeess = findAllQuery.getResultList();

Integrating with the Hibernate Framework | 207

 return employees;
}

4. Define a destination in the BlazeDS remoting-config.xml file that points at the class
EmployeeService:

<destination id="myEmployee">
 <properties>
 <source>com.farata.EmployeeService</source>
 </properties>
</destination>

The rest of the process is the same as in any Flex remoting scenario.

The only issue with this approach is that it has problems supporting lazy loading. Blaz-
eDS uses the Java adapter to serialize Java objects, along with all related objects re-
gardless of whether you want them to be lazy-loaded.

The entire process of integration of Flex, BlazeDS, Hibernate, and
MySQL Server is described in detail in an article published at the Adobe
Developer’s Connection website. You can find it at http://www.adobe
.com/devnet/flex/articles/flex_hibernate_print.html.

If your Flex application uses LCDS, this issue is solved by applying special Hibernate
adapter for Data Management Services. Digital Primates’ dpHibernate is a custom Flex
library and a custom BlazeDS Hibernate adapter that work together to give you support
for lazy loading of Hibernate objects from inside your Flex applications. You can get
dpHibernate at http://code.google.com/p/dphibernate/.

There is one more open source product that supports Hibernate. It’s
called Granite Data Services and is an alternative to BlazeDS.

Project Documentation
Programmers don’t like writing comments. They know how their code works. At least
they think they do. Six months down the road, they will be wondering, “Man, did I
actually write this myself? What was I planning to do here?”

Program documentation is as important as the code itself. If you are managing the
project, make sure that you encourage and enforce proper documentation. Some de-
velopers will tell you that their code is self-explanatory. Don’t buy this. Tomorrow,
these developers won’t be around, for whatever reason, and someone else will have to
read their code.

208 | Chapter 4: Equipping Enterprise Flex Projects

http://www.adobe.com/devnet/flex/articles/flex_hibernate_print.html
http://www.adobe.com/devnet/flex/articles/flex_hibernate_print.html
http://code.google.com/p/dphibernate/

Program Documentation with ASDoc
Flex comes with ASDoc, a tool that works similarly to JavaDoc, which is well known
in the Java community. ASDoc reads the comments placed between the symbols /**
and */; reads the names of the classes, interfaces, methods, styles, and properties from
the code; and generates easily viewable help files.

The source code of the Flex framework itself is available too. Just Ctrl-click on any class
name in Flash Builder, and you’ll see the source code of this ActionScript class or
MXML object. Example 4-3 is the beginning of the source code of the Flex Button
component.

Example 4-3. A fragment of the Button source code

package mx.controls
{

import flash.display.DisplayObject;
import flash.events.Event;
...

/**
 * The Button control is a commonly used rectangular button.
 * Button controls look like they can be pressed.
 * They can have a text label, an icon, or both on their face.
 *
 * Buttons typically use event listeners to perform an action
 * when the user selects the control. When a user clicks the mouse
 * on a Button control, and the Button control is enabled,
 * it dispatches a click event and a buttonDown event.
 * A button always dispatches events such as the mouseMove,
 * mouseOver, mouseOut, rollOver,rollOut, mouseDown, and
 * mouseUp events whether enabled or disabled.
 *
 * You can customize the look of a Button control
 * and change its functionality from a push button to a toggle button.
 * You can change the button appearance by using a skin
 * for each of the button's states.
 */
public class Button extends UIComponent
 implements IDataRenderer, IDropInListItemRenderer,
 IFocusManagerComponent, IListItemRenderer,
 IFontContextComponent, IButton
{
 include "../core/Version.as";

 /**
 * @private
 * Placeholder for mixin by ButtonAccImpl.
 */
 mx_internal static var createAccessibilityImplementation:Function;

 /**
 * Constructor.

Project Documentation | 209

 */
 public function Button(){
 super();

 // DisplayObjectContainer properties. Setting mouseChildren
 // to false ensures that mouse events are dispatched from the
 // button itself, not from its skins, icons, or TextField.
 // One reason for doing this is that if you press the mouse button
 // while over the TextField and release the mouse button while over
 // a skin or icon, we want the player to dispatch a "click" event.
 // Another is that if mouseChildren were true and someone uses
 // Sprites rather than Shapes for the skins or icons,
 // then we we wouldn't get a click because the current skin or icon
 // changes between the mouseDown and the mouseUp.
 // (This doesn't happen even when mouseChildren is true if the skins
 // and icons are Shapes, because Shapes never dispatch mouse events;
 // they are dispatched from the Button in this case.)

 mouseChildren = false;

Beside the /** and */ symbols, you have a small number of the markup elements that
ASDoc understands (@see, @param, @example).

The beginning of the Help screen created by the ASDoc utility based on the source code
of the Button class looks like Figure 4-14.

Figure 4-14. A fragment of the Help screen for Button

210 | Chapter 4: Equipping Enterprise Flex Projects

Detailed information on how to use ASDoc is available at http://blogs.adobe.com/flex
doc/2009/01/updated_doc_on_using_the_flex_1.html.

Documenting MXML with ASDoc has not been implemented yet, but is planned to be
released with Flex 4. The functional design specifications of the new ASDoc are already
published at the Adobe open source site http://opensource.adobe.com/wiki/display/
flexsdk/ASDoc+in+MXML.

UML Diagrams
UML diagrams are convenient for representing relationships between the components
of your application. There are a number of tools that turn creation of diagrams into a
simple drag-and-drop process. After creating a class diagram, these tools allow you to
generate code in a number of programming languages.

In a perfect world, any change in the class definition would be done in the UML tool
first, followed by the code generation. Future manual additions to these classes
wouldn’t get overwritten by subsequent code generations if the model changes.

UML tools are also handy in situations where you need to become familiar with poorly
commented code written by someone else. In this case, the process of reverse engi-
neering will allow you to create a UML diagram of all the classes and their relationships
from the existing code.

There are a number of free UML tools that understand ActionScript 3 (UMLet, VAS-
Gen, Cairngen) with limited abilities for code generation.

Commercial tools offer more features and are modestly priced. Figure 4-15 shows a
class diagram created by Enterprise Architect from Sparx Systems (http://www.sparx
systems.com). This diagram was created by autoreverse engineering of the existing Ac-
tionScript classes.

The process is pretty straightforward: create a new project and a new class diagram,
then right-click anywhere on the background, select the menu item “Import from
source files,” and point at the directory where your ActionScript classes are located.
The tool supports ActionScript, Java, C#, C++, PHP, and other languages.

Accessibility of Flex RIA
Some users can’t see, hear, or move, or have difficulties in reading, recognizing colors,
or other disabilities. The World Wide Web Consortium has published a document
called Web Content Accessibility Guidelines 1.0 (http://www.w3.org/TR/WCAG/),
which contains guidelines for making web content available for people with disabilities.

Microsoft Active Accessibility (MSAA) technology and its successor, the UI Automa-
tion (UIA) interface, are also aimed at helping such users. Adobe Flex components were
designed to help developers in creating accessible applications.

Accessibility of Flex RIA | 211

http://blogs.adobe.com/flexdoc/2009/01/updated_doc_on_using_the_flex_1.html
http://blogs.adobe.com/flexdoc/2009/01/updated_doc_on_using_the_flex_1.html
http://opensource.adobe.com/wiki/display/flexsdk/ASDoc+in+MXML
http://opensource.adobe.com/wiki/display/flexsdk/ASDoc+in+MXML
http://www.sparxsystems.com
http://www.sparxsystems.com
http://www.w3.org/TR/WCAG/

Did you know that blind users of your RIA mostly use the keyboard as opposed to the
mouse? They may interact with your application using special screen readers (e.g.,
JAWS from Freedom Scientific) or need to hear special audio signals that help them in
application navigation.

A screen reader is a software application that tries to identify what’s being displayed
on the screen, and then reads it to the user either by text-to-speech converters or via a
Braille output device.

The computer mouse is unpopular not only among blind people, but also among people
with mobility impairments. Are all of the Flex components used in your application
accessible by the keyboard?

If your application includes audio, deaf people won’t be able to hear it—they would
greatly appreciate captions. This does not mean that from now on every user will be
forced to watch captions during audio or hear loud announcements of the components
that are being displayed on the monitor. But you should provide a way to switch your
Flex application into accessibility mode. The Flex compiler offers a special option—
compiler.accessible—to build an accessible .swf.

You can find more materials about Flex accessibility at http://www.adobe.com/accessi
bility/products/flex/.

For testing accessibility of your RIA by visually impaired people, use aDesigner, a dis-
ability simulator from IBM. aDesigner supports Flash content and is available at http:
//www.eclipse.org/actf/downloads/tools/aDesigner/index.php.

Figure 4-15. Enterprise Architect: a UML class diagram

212 | Chapter 4: Equipping Enterprise Flex Projects

http://www.adobe.com/accessibility/products/flex/
http://www.adobe.com/accessibility/products/flex/
http://www.eclipse.org/actf/downloads/tools/aDesigner/index.php
http://www.eclipse.org/actf/downloads/tools/aDesigner/index.php

Summary
This chapter was a grab bag of various recommendations and suggestions that each
Flex development manager or architect may find of use over the course of the project.
We sincerely hope that materials and leads from this chapter will ensure that your next
Flex project is as smooth and productive as possible.

We hope that the variety of commercial and open source tools reviewed in this chapter
represent Adobe Flex as a mature and evolving ecosystem, well suited to your next RIA
project.

This chapter talked about tools that help in building and testing both the client and
server portions of Flex RIA; the next chapter will concentrate on using powerful server-
side technology from Adobe, called LiveCycle Data Services.

Summary | 213

CHAPTER 5

Customizing the Messaging Layer of
LCDS or BlazeDS

There are two ways of constructing a software design:
one way is to make it so simple that there are obviously
no deficiencies, and the other way is to make it so com-
plicated that there are no obvious deficiencies. The first

method is far more difficult.

—Sir Tony Hoare

Flex Messaging Unleashed
People as well as programs receive messages for one of two reasons:

• A message sent to you and your device (e.g., an iPhone or BlackBerry) is configured
to work in so-called push mode: the other party can push messages for you even if
you aren’t necessarily eager to get them immediately after they were sent.

• At any given time you decide to check if there messages for you. You press the
refresh button on your iPhone or your application makes a call from the client to
the server. This mode is called polling.

This chapter starts with a quick example of how to perform the push by making a direct
call to a MessageBroker, which comes with LiveCycle Data Services (LCDS) and
BlazeDS. Next, it discusses the existing world of custom adapters and message chan-
nels. You’ll see how to implement a use case with guaranteed message delivery and take
care of the proper sequencing of messages.

At this writing, the newly released LCDS 3.0 promises support for reliable messaging
to guarantee that no message is lost in case of network failure (check out the
<reliable> tag in the configuration file for Data Management Services). Data-throttling
support will allow you to reduce or increase the amount of data going over the wire

215

based on the speed at which Flash Player processes the data. Adaptive throttling should
allow the LCDS server to make such changes automatically.

It’s too early to assess whether these new features will fit the bill for some of the very
demanding real-time applications. We are pretty confident that Adobe engineers will
do a good job in this area.

Not everyone has a commercial LCDS license, however, and there will always be a
customer who will come up with that special requirement that none of the existing
tools support. Hence, our goal remains the same: to show you how things work under
the hood so you can build the software that fits your needs exactly.

After reading this chapter, you won’t be intimidated if the need arises to enter the
somewhat geeky territory of Flex messaging protocols. You’ll learn how to implement
clients’ heartbeats; create channels and adapters that can acknowledge, receive, and
resend lost messages; and a lot more. The best part is that it’s not rocket science. Trust
us.

Server Messages: Shooting in the Dark
Sending messages from an LCDS or BlazeDS server to a Flex client starts with getting
a reference to the MessageBroker, which is a Java object deployed in the servlet container
where you’ve installed BlazeDS or LCDS. Then, create an instance of the
AsyncMessage object, and send the client ID (specific recipient) and the destination (an
equivalent of a topic in the publish/subscribe messaging terminology). When this is
done, place your business-related object inside (e.g., myOrderInfo) and call the function
routeMessageToService(). This process can go like this:

MessageBroker msgBroker = MessageBroker.getMessageBroker(null);
String clientID = UUIDUtils.createUUID(false);

AsyncMessage msg = new AsyncMessage();
msg.setDestination("myDestination");
msg.setClientId(clientID);
msg.setMessageId(UUIDUtils.createUUID(false));
msg.setTimestamp(System.currentTimeMillis());

myOrderInfo = new OrderInfo();
// Populate myOrderInfo with some data

msg.setBody(myOrderInfo);
msgBroker.routeMessageToService(msg, null);

Here comes the million-dollar question: did the message reach the recipient? Remem-
ber, we are talking about the Java server-side code here, not a conventional use of Flex
Producer/Consumer objects that come with acknowledgment event MessageAckEvent.
This uncertainty explains the need to implement some kind of a client heartbeat. A
connected client sends a small message to the server, say, every 500 milliseconds. These

216 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

yfain11
Cross-Out

yfain11
Replacement Text
set

yfain11
Cross-Out

yfain11
Replacement Text
sender

heartbeats contain delivery confirmations for server messages that successfully arrived
at the client within a specified interval.

We will follow up with the message arrivals a bit later, once we deal with the heartbeat
itself.

Sending the Client’s Heartbeats
To send the client’s heartbeats, you need a class to represent the heartbeat and a pro-
ducer to perform the sending.

The heartbeat message object will leverage available Flex/Java serialization—therefore,
you’ll need to come up with a pair of almost identical classes: one in Java and the other
one in ActionScript. The corresponding classes are presented in Examples 5-1 and
5-2. Notice the array received, which will eventually carry delivery confirmations of
the latest received messages.

Example 5-1. ClientHeartbeatMessage.as

package com.farata.messaging.messages {
import mx.messaging.messages.AbstractMessage;

[RemoteClass(alias="com.farata.messaging.messages.ClientHeartbeatMessage")]
public class ClientHeartbeatMessage
 extends mx.messaging.messages.AbstractMessage {

 public var received:Array; //Messages arrived since last heartbeat

 public function ClientHeartbeatMessage() {
 super();
 //TODO - populate array "received" - later...
 }
 }
}

Example 5-2. ClientHeartbeatMessage.java

package com.farata.messaging.messages;
import flex.messaging.messages.AbstractMessage;

public class ClientHeartbeatMessage extends AbstractMessage {

 public String[] received; // Array of <ClientID>|<MsgNumber> strings
}

To periodically send the heartbeat message (Example 5-1) up to the server you need a
Flex Producer class powered with a Timer. Example 5-3 illustrates the custom
ClientHeartbeatProducer class with the startHeartbeat() and stopHeartbeat() meth-
ods. By default, the heartbeat is sent to the server-side destination ClientHeartbeat
every second.

Sending the Client’s Heartbeats | 217

Example 5-3. ClientHeartbeatProducer

package com.farata.messaging.qos {
 import com.farata.messaging.messages.ClientHeartbeatMessage;
 import flash.utils.clearInterval;
 import flash.utils.setInterval;

 import mx.messaging.Producer;

 public class ClientHeartbeatProducer extends Producer {
 public function ClientHeartbeatProducer() {
 super();
 destination = "clientHeartbeat";
 }
 public function startHeartbeat(destination:String=null,
 interval:int=1000) : void {

 if (connected) this.stopHeartbeat();
 if (destination != null) {
 this.destination = destination;
 }
 connect();
 // The next line can be implemented using Timer class
 processId = setInterval(sendHeartbeat, interval);
 }
 public function stopHeartbeat() : void {
 clearInterval(processId);
 }

 private var processId:int;
 private function sendHeartbeat(): void {
 send(new ClientHeartbeatMessage());
 }
 }
}

Note the property connected defined in the grandparent of Producer (MessageAgent); it
indicates whether this producer is currently connected to its destination. The function
sendHeartbeat() will be called multiple times per a specified interval. In this version,
the instance of the ClientHeartBeatMessage doesn’t carry any meaningful information
about the specific message being acknowledged.

The heartbeat is being sent—time to look at the receiving end: the server-side Java code.

Heartbeat Adapter
The client sends heartbeats; we need to decide where the right place in the Java server
is to intercept these messages. Both the LCDS and BlazeDS architectures provide two
logical points to do it: the adapter and the endpoint. The endpoint is a server-side class
that receives the message (see MessageService in Example 5-4) and then forwards it for
processing to MessageBroker, which in turns forwards it to the adapter. Theoretically,

218 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

if you want to introduce the server-side custom processing into this chain, override
either the endpoint or the adapter class.

In our case, the messages are originated on the server and we found empirically that
the endpoint doesn’t participate in this flow. That’s why we decided to customize the
adapter class. Later in this chapter, while customizing the client side of the messaging,
we’ll show you how to customize the endpoint.

By default, the ActionScriptAdapter is used for messaging. If you are planning to inte-
grate with third-party middleware via the Java Messaging API, use JMSAdapter.

You can read about messaging architecture in the document called the
BlazeDS Developer Guide, which is available at http://livedocs.adobe
.com/blazeds/1/blazeds_devguide/. If you use LCDS, refer to LiveCycle
Data Services ES documentation at http://help.adobe.com/en_US/Live
CycleDataServicesES/3.0/Developing/index.html.

Example 5-4 illustrates that clientHeartbeat, a default heartbeat destination, is config-
ured in messaging-config.xml with the custom adapter—com.farata.messag
ing.adapters.HeartbeatAdapter. We’ll review it next.

Example 5-4. Heartbeat destination with custom heartbeat adapter

<?xml version="1.0" encoding="UTF-8"?>
<service id="message-service"
 class="flex.messaging.services.MessageService">

 <adapters>
 <adapter-definition
 id="actionscript" default="true"
 class="flex.messaging.services.messaging.adapters.
ActionScriptAdapter"/>
 <adapter-definition id="jms"
 class="flex.messaging.services.messaging.adapters.
JMSAdapter"/>

 <adapter-definition
 id="heartbeat"
 class="com.farata.messaging.adapters.HeartbeatAdapter"/>
 </adapters>

 <default-channels>
 <channel ref="my-rtmp" />
 </default-channels>

 <destination id="clientHeartbeat">
 <adapter ref="heartbeat"/>
 <channels>
 <channel ref="my-rtmp" />
 </channels>

Heartbeat Adapter | 219

http://livedocs.adobe.com/blazeds/1/blazeds_devguide/
http://livedocs.adobe.com/blazeds/1/blazeds_devguide/
http://help.adobe.com/en_US/LiveCycleDataServicesES/3.0/Developing/index.html
http://help.adobe.com/en_US/LiveCycleDataServicesES/3.0/Developing/index.html

 </destination>
</service>

Writing custom adapters is not terribly complicated: extend the MessagingAdapter class
and override the method invoke(). Example 5-5 presents our custom
HeartbeatAdapter. The callback invoke() is being called when a client sends a message
to the destination.

As per the BlazeDS Developer Guide, a typical invoke() method looks as follows:

public Object invoke(Message message) {
 MessageService msgService = (MessageService)service;
 msgService.pushMessageToClients(message, true);
 msgService.sendPushMessageFromPeer(message, true);
 return null;
}

For this exercise, we don’t need to push the message to clients or send it to the peer
servers in a cluster. Instead, we merely log the incoming message just to prove that
we’re getting it. A little later we’ll write a more meaningful adapter in which the client’s
heartbeat will learn how to carry some useful payload.

Example 5-5. Separating transfer of byte code from loading into stage

package com.farata.messaging.adapter;

import org.apache.log4j.Logger;

import com.farata.messaging.messages.ClientHeartbeatMessage;
import flex.messaging.messages.Message;
import flex.messaging.services.MessageService;
import flex.messaging.services.messaging.adapters.MessagingAdapter;

public class HeartbeatAdapter extends MessagingAdapter{
 public Object invoke(Message message){

 if (message instanceof ClientHeartbeatMessage) {
 logger.info(message);
 }
 return null;
 }
 static Logger logger;
 static {
 logger = Logger.getLogger(HeartbeatAdapter.class);
 }
}

Testing the Client Heartbeat
The next step is to test a simple case where the client sends a dummy heartbeat to the
server. The ultimate goal is for the client heartbeat to carry the delivery confirmations

220 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

so that the server can resend the undelivered messages until they either get delivered
or time out.

Figure 5-1 highlights all classes involved in sending the client heartbeat. Notice two
projects: com.farata.rtmp.components, the Flex Library project, and
com.farata.rtmp.demo, a combined Eclipse JEE Flex/Java/Dynamic Web project. For
messaging, we are using RTMP messaging via LiveCycle Data Services.

Figure 5-1. Panorama of ClientHeartbeat classes

To test the client heartbeat, run the application TestClientHeartbeat.mxml (Exam-
ple 5-6) and click the Start Client Heartbeat button. Watch how the server log gets
populated with the log records made by the custom HeartbeatAdapter (Figure 5-2).

Example 5-6. TestClientHeartbeat.mxml

<?xml version="1.0" encoding="utf-8"?>
<!--TestClientHeartbeat.mxml -->

Testing the Client Heartbeat | 221

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:fx="http://www.faratasystems.com/2009/components"
 layout="vertical" frameRate="10">

 <fx:ClientHeartbeatProducer id="clientHeartbeat" />

 <mx:Script><![CDATA[
 import com.farata.messaging.messages.ClientHeartbeatMessage;

 //Mention the class to ensure that it's linked into SWF
 ClientHeartbeatMessage;
]]>
 </mx:Script>

 <mx:HBox>
 <mx:Button label="Start Client Heartbeat"
 click="clientHeartbeat.startHeartbeat('clientHeartbeat')"/>
 <mx:Button label="Stop Client Heartbeat"
 click="clientHeartbeat.stopHeartbeat()"/>
 </mx:HBox>
</mx:Application>

Figure 5-2. ClientHeartbeat logged by the custom HeartbeatAdapter

Guaranteed Delivery of Server Messages
A server can send various types of messages. When a client receives them, we want the
client to be able to send back the heartbeat object with delivery confirmations for only
some of them, similar to a special treatment that letters with delivery confirmation get
in the post office.

Our special messages will be represented by the class ReliableServerMessage; only these
types of messages will be acknowledged. Java and ActionScript versions of such a class
are shown in Examples 5-7 and 5-8.

222 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

Example 5-7. ReliableServerMessage.java

package com.farata.messaging.messages;

import flex.messaging.messages.AsyncMessage;
import flex.messaging.util.UUIDUtils;

public class ReliableServerMessage extends AsyncMessage {

 public ReliableServerMessage(Object body) {
 super();
 this.body = body;
 setMessageId(UUIDUtils.createUUID(false));
 timestamp = System.currentTimeMillis();
 }
}

Example 5-8. ReliableServerMessage.as

package com.farata.messaging.messages {
 import mx.messaging.messages.AsyncMessage;

 [RemoteClass(alias="com.farata.messaging.messages.ReliableServerMessage")]
 public class ReliableServerMessage extends AsyncMessage{
 }
}

The easiest way to identify the server-side outgoing message is by assigning some unique
sequence number to its header. Just as a reminder, each AsyncMessage object has a
message body and a message header and you are allowed to attach any key/value pairs
to its header.

message = new ReliableServerMessage("Server message #" + number);
message.setHeader("seqNo", "" + number);

On the client side, we receive each message and store the delivery slip until the next
heartbeat is generated. For example, if client heartbeats are being sent to the server
every 500 milliseconds but the message can arrive at any random time, the delivery slip
will have to wait for the next “shuttle” (a.k.a. heartbeat) to the server.

By this time, you already know that a communication channel is represented by the
endpoint on the server side. The client side of a channel is represented by a channel—
an ActionScript class that implements a selected communication protocol. For exam-
ple, here’s the configuration of our RTMPChannel in services-config.xml in LCDS:

<channel-definition id="my-rtmp"
class="mx.messaging.channels.RTMPChannel">
 <endpoint url="rtmp://localhost:2039"
class="flex.messaging.endpoints.RTMPEndpoint"/>
 <properties>
 <idle-timeout-minutes>30</idle-timeout-minutes>
 </properties>
</channel-definition>

Guaranteed Delivery of Server Messages | 223

zaremba
Comment on Text
is this correct?

Delete "of a channel"

In this example, the ActionScript class RTMPChannel represents the client side of the
RTMP channel. But we’ll write a custom class as a channel with a special treatment of
instances of the ReliableServerMessage type. When creating a custom channel, you
override its method receive(), storing each received message in the received array; on
the next timer event receive() will grab all received but unacknowledged messages,
put them in a heartbeat instance, and send them back to the server. Any other messages
will be just passed through the channel to the client application without acknowledg-
ments. Figure 5-3 presents such a design, in which our custom channel goes by the
working name AcknowledgingChannel.

Regular message

Store clientID | seqNo
in array received

Move content of
received array into

ClientHeartbeat
message

Array
received

AcknowledgingChannel

Client HeartbeatTimer event

To ApplicationRegular message

ReliableServer
message

To server

ReliableServer

Figure 5-3. Client processing with AcknowledgingChannel

You can say that by adding custom behavior on the protocol level we are enriching the
messaging service, or in other words, adding quality of service (QoS) information to
the messages.

Figure 5-4 illustrates the server-side part. Some Java producers generate both regular
and reliable messages that go through a custom QoSAdapter. The regular messages just
go right through to the destination, but the reliable ones are first saved in the Map of
unconfirmed messages and will stay there until the confirmation from the client arrives.

When the server receives the client heartbeat with the batch of delivery confirmations,
the QoSAdapter loops through the unconfirmed Map and removes the messages that were
included in the heartbeat. The messages that haven’t been acknowledged by the client
can be resent, say, in a three-second interval. In some business cases, you might want

224 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

to remove the messages that are sitting unconfirmed for more than 20 seconds or any
other preferred interval.

All ActionScript and Java classes that support this process are highlighted in Figure 5-5.

Building a Custom Acknowledging Channel
In this section, we’ll build a custom acknowledging channel for the RTMP protocol,
even though you can implement a similar class for AMF-based messaging. The princi-
ples of creating custom channels remain the same regardless of the selected protocol.
We’ll discuss the differences of the communication protocols in Chapter 6.

Regular message

Store messages in
unconfirmed map

Removed from
unconfirmed

messages confirms
as per received array

Iterate over unconfirmed map:
• Resend messages sitting in the
 map for over 3 seconds

• Remove messages created 20
 seconds ago

Map
unconfirmed

ClientHeartbeat
message

QoSAdapter

Resender thread

To message
destination

Regular message

ReliableServer
message

ReliableServer

Figure 5-4. Processing acknowledged messages on the server

Building a Custom Acknowledging Channel | 225

yfain11
Highlight
On the Figure 5-4 replace the text
"Removed from
unconfirmed
messages confirms
as per received array"

with
"Remove from unconfirmed map messages listed in the received array"

Figure 5-5. Classes involved in the No Server Message Left Behind solution

As stated earlier, you need to overload the receive() method and, for each incoming
instance of ReliableServerMessage, add the clientId concatenated with the message
sequence number to the array called received:

override public function receive(
 msg:IMessage, ...rest:Array) : void {
 if (msg is ReliableServerMessage) {
 var seqNo : Number = Number(msg.headers["seqNo"]);
 received.push(msg.clientId + "|"+ seqNo);
 }
 super.receive(msg, rest);
}

Every time the new message arrives from the server, the method receive() will be called
and a new reliable message will be added to the array received. As a reminder, adding

226 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

a seqNo in the message header should be done in the Java code that sends the message.
You’ll see the use of the message property clientId a little later, on the server’s
QoSAdapter; it’s used to avoid collision between multiple clients, potentially confirming
the same range of message sequences.

The code of the client’s custom RTMP channel is presented in Example 5-9. Note the
method getConfirmations(), which will be used to move digests of all recently received
but not confirmed messages into yet another property of the ClientHeartbeatMessage;
it’s called received and has the type Array (Example 5-10).

Example 5-9. AcknowledgingChannel.as

package com.farata.messaging.channels {
 import com.farata.messaging.messages.ReliableServerMessage;
 import flash.utils.Dictionary;
 import mx.messaging.channels.RTMPChannel;
 import mx.messaging.messages.IMessage;

 public class AcknowledgingRTMPChannel extends
 mx.messaging.channels.RTMPChannel {

 public function AcknowledgingRTMPChannel(
 id:String=null, uri:String=null) {
 super(id, uri);
 }

 override public function receive(
 msg:IMessage, ...rest:Array) : void {
 if (msg is ReliableServerMessage) {
 var seqNo : Number = Number(msg.headers["seqNo"]);
 received.push(msg.clientId + "|"+ seqNo);
 }
 super.receive(msg, rest);
 }

 public static function getConfirmations(result:Array):Array {
 if (result == null) result = [];
 for (var i:int=0; i < received.length; i++) {
 result.push(received[i]);
 }
 received=[];
 return result;
 }
 private static var received:Array=[];
 }
}

Next come the ActionScript and Java versions of the ClientHeartbeatMessage (Exam-
ple 5-10). The ActionScript class has been upgraded from Example 5-1 to populate the
received array.

Building a Custom Acknowledging Channel | 227

Example 5-10. ClientHeartbeatMessage.as and ClientHeartbeatMessage.java

package com.farata.messaging.messages{
 import com.farata.messaging.channels.AcknowledgingRTMPChannel;
 import mx.messaging.messages.AbstractMessage;

 [RemoteClass(alias="com.farata.messaging.messages.ClientHeartbeatMessage")]
 public class ClientHeartbeatMessage extends
 mx.messaging.messages.AbstractMessage{
 public var received:Array;
 public function ClientHeartbeatMessage() {
 super();
 received = AcknowledgingRTMPChannel.getConfirmations();
 }
 }
}

package com.farata.messaging.messages;
 import flex.messaging.messages.AbstractMessage;

 public class ClientHeartbeatMessage extends AbstractMessage {
 public String[] processed;
 public String[] received;
}

Resending Messages with QoSAdapter
We have completed the first half of the exercise, in which the heartbeats travel with
delivery confirmations via the AcknowledgingRTMPChannel. The other half of the solution
is:

• To accumulate the delivery confirmations coming from the client with each heart-
beat. This will be done in the QoSAdapter.java adapter.

• Upon certain timeout, resend unconfirmed messages to the client. This task
requires an additional Java resender thread, started in QoSAdapter.java.

To figure out on the server which messages were confirmed, we need to keep all un-
confirmed messages in a safe place, the unconfirmedMessageMap in the QoSAdapter:

 static {
 unconfirmedMessageMap =
 new ConcurrentHashMap<String, ReliableServerMessage>();
}

The data type of this Java map is ConcurrentHashMap, which is a HashMap that supports
concurrent data updates; this is essential in situations in which confirmations can arrive
from multiple clients but will all be stored in the same map.

Accordingly, in Example 5-11, the invoke() method puts every Reliable
ServerMessage into the map via a registerForDeliveryConfirmation() call.

228 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

We also want to emulate the loss of messages on the server by marking about 20 percent
(the function Math.random() takes care of it) with the header property tm for “test mode.”

Example 5-11. Method invoke() of QoSAdapter.java

public Object invoke(Message message){
 isDebug = logger.isDebugEnabled();
 if (message instanceof ReliableServerMessage) {
 registerForDeliveryConfirmation((ReliableServerMessage)message);

 double random = Math.random();
 if ((random<0.2) && (String)message.getHeader("tm")!=null) {
 String seqNo = (String)message.getHeader("seqNo");
 if (isDebug) logger.debug(
 "QoS adapter emulating loss of message " + seqNo
);
 } else {
 sendToClient((ReliableServerMessage)message);
 }
 } else if (message instanceof ClientHeartbeatMessage) {
 processDeliveryConfirmations((ClientHeartbeatMessage) message);
 }
 return null;
}

The complete listing of QoSAdapter.java is presented in Example 5-12. The method
registerForDeliveryConfirmation() adds messages to the map using clientId +
"|"+sequenceNumber digest as a key, which matches the format in which
AcknowledgingChannel prepares delivery confirmations. Accordingly, the
processDeliveryConfirmation() call removes the records from the map.

Both methods lock access to the map with the synchronized(unconfirmedMessageMap)
Java keyword, not to race with each other but rather to coordinate concurrent access
between QoSAdapter and the auxiliary Resender thread.

Example 5-12. QoSAdapter.java—a resending adapter

package com.farata.messaging.adapter;

import java.util.HashSet;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;

import org.apache.log4j.Logger;

import com.farata.messaging.messages.ClientHeartbeatMessage;
import com.farata.messaging.messages.ReliableServerMessage;

import flex.messaging.config.ConfigMap;
import flex.messaging.messages.Message;
import flex.messaging.services.MessageService;
import flex.messaging.services.messaging.adapters.MessagingAdapter;

public class QoSAdapter extends MessagingAdapter {

Resending Messages with QoSAdapter | 229

 public void initialize(String id, ConfigMap properties){
 super.initialize(id, properties);

 if(resender == null) {
 resender = new Resender();
 Thread resenderThread = new Thread(resender, "Resender");
 resenderThread.setDaemon(true);
 resenderThread.start();
 }
 }

 public Object invoke(Message message){
 isDebug = logger.isDebugEnabled();
 if (message instanceof ClientHeartbeatMessage) {
 processDeliveryConfirmations((ClientHeartbeatMessage) message);
 } else if (message instanceof ReliableServerMessage) {
 registerForDeliveryConfirmation((ReliableServerMessage)message);

 double random = Math.random();
 if ((random<0.2) && (String)message.getHeader("tm")!=null) {
 String seqNo = (String)message.getHeader("seqNo");
 if (isDebug) logger.debug(
 "QoS adapter emulating loss of message " + seqNo
);
 } else {
 sendToClient((ReliableServerMessage)message);
 }
 }
 return null;
 }

 private void registerForDeliveryConfirmation(ReliableServerMessage message) {
 String clientId = (String)message.getClientId();
 String seqNo = (String)message.getHeader("seqNo");
 synchronized(unconfirmedMessageMap) {
 message.setHeader("registeredTs", System.currentTimeMillis());
 unconfirmedMessageMap.put(clientId + "|" + seqNo, message);
 }
 }

 private void sendToClient(ReliableServerMessage message) {
 String seqNo = (String)message.getHeader("seqNo");
 String clientId = (String)message.getClientId();

 MessageService msgService = (MessageService)getDestination().
 getService();
 if (isDebug) logger.debug(
 "QoS adapter is sending through message " + seqNo
);
 Set<String> subscriberIds = new HashSet<String>();
 subscriberIds.add(clientId);
 msgService.pushMessageToClients(subscriberIds, message, false);
 }

 private void processDeliveryConfirmations(ClientHeartbeatMessage message) {

230 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

 if ((message.received!=null) && (message.received.length>0)) {
 if (isDebug) logger.debug(
 "QoS adapter received delivery confirmations:"
);
 synchronized(unconfirmedMessageMap) {
 for (int i=0; i <message.received.length; i++) {
 if (isDebug) logger.debug(
 "...and removes (CLIENTID|seqNo)" + message.received[i]
);
 unconfirmedMessageMap.remove(message.received[i]);
 }
 }
 }
 }

 private boolean isDebug;
 private Resender resender = null;

 static public ConcurrentHashMap<String, ReliableServerMessage>
unconfirmedMessageMap;
 static Logger logger;
 static {
 unconfirmedMessageMap = new ConcurrentHashMap<String,
 ReliableServerMessage>();
 logger = Logger.getLogger(QoSAdapter.class);
 }
}

The code in Example 5-12 uses the class MessageService, which manages point-to-point
and publish/subscribe messaging. Specifically, QoSAdapter uses it to push messages to
clients.

The Resender thread wakes up every 500 milliseconds and removes all messages that
are 20 seconds old from the “unconfirmed” map. For remaining messages that are
sitting in the map for as long as 3 seconds, Resender sends another copy of these
messages:

MessageBroker mb = MessageBroker.getMessageBroker(null);
mb.routeMessageToService(message, null);

Example 5-13 presents the Resender thread.

Example 5-13. Example of the module

package com.farata.messaging.adapter;

import com.farata.messaging.messages.ReliableServerMessage;
import flex.messaging.MessageBroker;
import java.util.Enumeration;
import java.util.concurrent.ConcurrentHashMap;
import org.apache.log4j.Logger;

public class Resender implements Runnable {
 public static int RESENDER_THREAD_SLEEP = 500;

Resending Messages with QoSAdapter | 231

 public static int RESEND_TIMEOUT = 3000; //Resend after 3 sec
 public static int DEAD_CLIENT_TIMEOUT = 20000; //Remove after 20 sec

 protected static Resender resender = null;
 public void run() {
 ConcurrentHashMap<String, ReliableServerMessage> map =
 QoSAdapter.unconfirmedMessageMap;

 while (true) {
 try {
 Thread.sleep(RESENDER_THREAD_SLEEP);
 synchronized (map) {
 for (Enumeration<String> e = map.keys();e.hasMoreElements();) {

 String key = e.nextElement();
 ReliableServerMessage message = map.get(key);

 String seqNo = (String)message.getHeader("seqNo");
 long nowTs=System.currentTimeMillis();
 long createdTs = message.getTimestamp();
 long registeredTs = (Long)message.getHeader("registeredTs");
 if ((nowTs - createdTs) > DEAD_CLIENT_TIMEOUT) {
 if (logger.isDebugEnabled())logger.debug(
 "Resender thread deletes message " + seqNo
);
 map.remove(key);
 } else if ((nowTs - registeredTs) > RESEND_TIMEOUT) {
 MessageBroker mb = MessageBroker.getMessageBroker(null);
 if (logger.isDebugEnabled())logger.debug(
 "Resender thread resends message " + seqNo
);

 mb.routeMessageToService(message, null);
 }
 } //for
 } //synchronized
 } catch (InterruptedException ex){
 if (logger.isInfoEnabled()) logger.info(
 "..in Resender......Interrupted"
);
 }
 } //while
 }

 static Logger logger;
 static{
 logger = Logger.getLogger(Resender.class);
 }
}

Wondering where the message gets timestamped with the registeredTs header? After
the routeMessageToService(message, null) call, the message will be caught by the
QoSAdapter. There it will replace its old incarnation in the map and then will be sent to
the client only with 80 percent probability (if the tm header is not null).

232 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

yfain11
Cross-Out

yfain11
Replacement Text
Adapter will replace the old incarnation of the message in the map and then send the message

Testing Guaranteed Delivery
All the pieces are ready to guarantee that every ReliableServerMessage will get delivered
to the client. Before testing it, however, specify the acknowledging channel in services-
config.xml with the code in Example 5-14.

Example 5-14. Registering custom AcknowledgingChannel

<channel-definition id="my-acknowledging-client-rtmp"
 class="com.farata.messaging.channels.AcknowledgingRTMPChannel">
 <endpoint uri="rtmp://{server.name}:2040"
 class="flex.messaging.endpoints.RTMPEndpoint"/>
 <properties>
 <idle-timeout-minutes>20</idle-timeout-minutes>
 </properties>
</channel-definition>

In messaging-config.xml, we direct the custom QoSAdapter to intercept messages coming
both to clientHeartbeat and serverDeliveryTest destinations (Example 5-15).

Example 5-15. Configuring destinations for the No Server Message Left Behind test

<?xml version="1.0" encoding="UTF-8"?>
<service id="message-service"
 class="flex.messaging.services.MessageService">

 <adapters>
 <adapter-definition
 id="actionscript" default="true"
 class="flex.messaging.services.messaging.adapters.
ActionScriptAdapter"/>
 <adapter-definition id="jms"
 class="flex.messaging.services.messaging.adapters.
JMSAdapter"/>

 <adapter-definition
 id="qos"
 class="com.farata.messaging.adapter.QoSAdapter"/>
 </adapters>

 <default-channels>
 <channel ref="my-rtmp" />
 </default-channels>

 <destination id="clientHeartbeat">
 <adapter ref="qos"/>
 <channels>
 <channel ref="my-rtmp" />
 </channels>
 </destination>

 <destination id="serverDeliveryTest">
 <adapter ref="qos"/>

Testing Guaranteed Delivery | 233

 <channels>
 <channel ref="my-acknowledging-client-rtmp" />
 </channels>
 </destination>
</service>

Once we are done with the messaging configurations, let’s look at the Java application
class, ServerMessagingTest, that we will remote to in order to run the test interactively
(Example 5-16). The method testDeliveryFailure() sends messageCount number of
messages sequentially enumerated via the seqNo header with start as the offset.

Example 5-16. ServerMessagingTest class

package com.farata.test;
import java.util.ArrayList;
import com.farata.messaging.messages.ReliableServerMessage;
import flex.messaging.MessageBroker;

public class ServerMessagingTest {
 private static MessageBroker mb;

 private void send(ReliableServerMessage message) {
 if (mb == null) {
 mb = MessageBroker.getMessageBroker(null);
 }
 mb.routeMessageToService(message, null);
 }

 public void testDeliveryFailure(String clientId, int start,
 int messageCount) {

 ReliableServerMessage message;
 for (int i= 0; i < messageCount; i++) {
 message = new ReliableServerMessage(
 "Server message #" + (i+start)
);
 message.setHeader("testMode", "true");
 message.setClientId(clientId);
 message.setDestination("serverDeliveryTest");
 message.setHeader("seqNo", "" + (i+start));
 send(message);
 }
 }
 // Other tests
}

To remote to this class, we will register it in the remoting-config.xml file:

<destination id="com.farata.test.ServerMessagingTest">
 <properties>
 <source>com.farata.test.ServerMessagingTest</source>
 </properties>
</destination>

234 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

The Flex application TestServerDelivery will be used as a client portion of the testing
setup. This application, besides having an obligatory ClientHeartbeatProducer, also
has a Consumer that listens to the serverDeliveryTest destination. Once a
ReliableServerMessage arrives, the application displays it in the custom control Messa
geBar, as shown in Figure 5-6. The code of the application is presented in Exam-
ple 5-17; the code of the message we omit for brevity. You can find it in the sample
source code accompanying the book.

Figure 5-6. Running the TestServerDelivery application

Example 5-17. TestServerDelivery Flex application

<?xml version="1.0" encoding="utf-8"?>
<!--TestServerDelivery.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:fs="http://www.faratasystems.com/2009/components"
 xmlns:local=" *"
 layout="vertical" creationComplete="onCreationComplete()">

 <mx:Form>
 <mx:FormItem label="Messages to send:">
 <mx:TextInput text="10" id="msgCount"/>
 <mx:Button label="Run Test" click="runTest()"/>
 </mx:FormItem>
 <mx:FormItem label="Received:">
 <local:MessageBar id="messageBar" />
 </mx:FormItem>
 </mx:Form>

 <mx:Script>
 <![CDATA[
 import com.farata.messaging.qos.ClientHeartbeatProducer;
 import com.farata.messaging.messages.ReliableServerMessage;
 import mx.messaging.events.MessageEvent;
 import mx.messaging.Consumer;
 [Bindable] public var consumer:Consumer;

Testing Guaranteed Delivery | 235

yfain11
Cross-Out

yfain11
Replacement Text
MessageBar

 private var clientHeartbeatProducer:ClientHeartbeatProducer;

 private function onCreationComplete():void {
 clientHeartbeatProducer = new ClientHeartbeatProducer();
 clientHeartbeatProducer.startHeartbeat();

 consumer = new Consumer();
 consumer.destination = "serverDeliveryTest";
 consumer.subscribe();
 consumer.addEventListener(MessageEvent.MESSAGE, onMessage);
 }

 private function onMessage(event:MessageEvent):void {
 var message:ReliableServerMessage = event.message as
 ReliableServerMessage;
 var seqNo:Number = Number(message.headers["seqNo"]);
 messageBar.addMessage(messageBar.maxPosition+1, message.headers["seqNo"]);
 }

 private var start:Number=0;
 private function runTest():void {
 messageBar.clean();
 var count:Number = Number(msgCount.text);
 test.testDeliveryFailure(consumer.clientId, start, count);
 start = start + count;
 }

]]>
 </mx:Script>
 <mx:TraceTarget />
 <mx:RemoteObject id="test" destination="com.farata.test.ServerMessagingTest" />
</mx:Application>

Figure 5-6 illustrates a specific run of the test, where the custom adapter “lost” message
#6, which caused the resender thread to resend it later. The corresponding log of the
Java server classes is shown in Figure 5-7.

When Message Order Matters
Our guaranteed server message delivery is neglecting the order of the messages, which
may be an important factor in some business applications. In wide area networks,
messages can be routed in any random way and arrive in any order.

If the order matters in your application, mark the messages with sequence numbers as
they get sent and hold on to the “premature” ones on the receiving end. This QoS
technique pertains to both server- and client-originated messages. First consider the
messages originated on the server; this workflow is shown in Figure 5-8.

236 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

Regular message
Send out message;

remove from
incoming and

send out adjacent
messages

Move content of
received array into

ClientHeartbeat
message

Array
received Dictionary

incoming

SerializingChannel

Client HeartbeatTimer event

To Application
Regular message

ReliableServer
message

To server

ReliableServer

Next to last
processed for

the client?

Figure 5-8. Guaranteeing the order of the incoming messages

Figure 5-7. Server log of the test illustrated in Figure 5-6

When Message Order Matters | 237

SerializingChannel
The cornerstone of our design is the SerializingChannel application. In addition to the
array of received message digests described earlier, our channel has to maintain the
dictionary of incoming messages for order restoration purposes:

private var incoming:Dictionary ;

Should a message arrive out of order, the receive() method will store it along with the
…rest arguments:

override public function receive(
 msg:IMessage, ...rest:Array
) : void {
 if (msg is ReliableServerMessage) {
 . . .
 // If message is out of order:
 incoming[msg.clientId + '|' + seqNo] = {
 msg:msg, rest:rest
 };
 } else
 super.receive(msg, rest);
}

To figure out whether a message has arrived in order, our channel maintains a
lastServedNumber, which is distinct per each client:

public static var lastServedNumber:Dictionary = new Dictionary();

If the sequence number of the message is one greater than lastServedNumber, it means
that the message has arrived in order and can be sent through with super.receive():

if (seqNo == lastServedNumber[msg.clientId] + 1) {
 super.receive(msg, rest);
 lastServedNumber[msg.clientId]++;
}

You also can use the moment when the message arrives to perform one more task:
identify stalled messages. The method findAdjacentBufferedMessages() in Exam-
ple 5-18 attempts to yank out of the incoming collection all messages delayed by the
channel. Example 5-18 has the complete code of the SerializingRTMPChannel.

Example 5-18. Custom SerializingRTMPChannel streamlines the order of the messages

package com.farata.messaging.channels {
 import com.farata.messaging.messages.ReliableServerMessage;
 import flash.utils.Dictionary;
 import mx.logging.Log;
 import mx.logging.ILogger;
 import mx.messaging.channels.RTMPChannel;
 import mx.messaging.messages.IMessage;

 public class SerializingRTMPChannel extends mx.messaging.channels.RTMPChannel {
 public function SerializingRTMPChannel(
 id:String=null, uri:String=null

238 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

yfain11
Cross-Out

yfain11
Replacement Text
class

yfain11
Comment on Text
Change the font - it's a class, not an application.

yfain11
Cross-Out

yfain11
Replacement Text
the

) {
 super(id, uri);
 incoming = new Dictionary();
 }

 override public function receive(
 msg:IMessage, ...rest:Array
) : void {
 if (msg is ReliableServerMessage) {
 if (Log.isDebug()) logger.debug(msg.body as String);
 var seqNo : Number = Number(msg.headers["seqNo"]);

 received.push(msg.clientId + "|"+ seqNo);

 if (lastServedNumber[msg.clientId]== null) {
 lastServedNumber[msg.clientId]= -1;
 }
 if (seqNo == lastServedNumber[msg.clientId] + 1) {
 if (Log.isDebug()) logger.debug(
 "Letting out incoming message " + seqNo
);
 super.receive(msg, rest);
 lastServedNumber[msg.clientId]++;
 seqNo = findAdjacentBufferedMessages(
 msg.clientId, seqNo
);
 } else if (seqNo > lastServedNumber[msg.clientId]) {
 if (Log.isDebug()) logger.debug(
 "Buffering message " + seqNo + " as out of order"
);
 incoming[msg.clientId + '|' + seqNo] = {
 msg:msg, rest:rest
 };
 }
 } else
 super.receive(msg, rest);
 }

 private function findAdjacentBufferedMessages(
 clientId:String, seqNo:Number): Number {

 var more:Boolean;
 // We just processed, say, the 3rd message. We may have buffered
 // 5,4,6,7. Internal "for" loop will find 4, then external
 // "while" loop will restart the search and pick 5,6,7
 do {
 more = false;
 for each(var envelope:Object in incoming){
 var msg:IMessage = envelope.msg;
 if (msg.clientId != clientId)
 continue;
 if (msg.headers["seqNo"] == seqNo + 1) {
 seqNo++;
 lastServedNumber[clientId]++;
 if (Log.isDebug()) logger.debug(

When Message Order Matters | 239

 "Yanking message " + seqNo + " out of the buffer"
);
 super.receive(msg, envelope.rest);
 delete incoming[seqNo];
 more = true;
 }
 }
 } while (more);
 return seqNo;
 }

 private var logger:ILogger = Log.getLogger("" +
 "com.farata.messaging.channels.SerializingRTMPChannel"
);
 public static var lastServedNumber:Dictionary = new Dictionary();
 public static var received:Array=[];
 private var incoming:Dictionary ;
 }
}

To test the channel, register it in services-config.xml, as in Example 5-19.

Example 5-19. Registering SerializingRTMPChannel for the test

<channel-definition id="my-serializing-client-rtmp"
 class="com.farata.messaging.channels.SerializingRTMPChannel">
 <endpoint uri="rtmp://{server.name}:2041"
 class="flex.messaging.endpoints.RTMPEndpoint"/>
 <properties>
 <idle-timeout-minutes>20</idle-timeout-minutes>
 </properties>
</channel-definition>

Next, add the serverSequenceTest destination (Example 5-20) to messaging-config.xml.

Example 5-20. Configuring serverSequenceTest messaging destination

<destination id="serverSequenceTest">
 <adapter ref="qos"/>
 <channels>
 <channel ref="my-serializing-client-rtmp" />
 </channels>
 </destination>

That concludes the configuration work; time to proceed with the test itself. On the
server side, we’ve added the testSequenceFailure() method to the class
ServerMessagingTest. This method randomizes the order of messages prior to sending
them, as you can see in Example 5-21.

240 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

Example 5-21. Sending test messages in random order

package com.farata.test;
import java.util.ArrayList;

import com.farata.messaging.messages.ReliableServerMessage;
import flex.messaging.MessageBroker;
public class ServerMessagingTest {

 . . .
 public void testSequenceFailure(String clientId, int start, int messageCount) {

 ReliableServerMessage message;
 ArrayList<ReliableServerMessage> messages = new
ArrayList<ReliableServerMessage>();
 for (int i= 0; i < messageCount; i++) {
 message = new ReliableServerMessage("Server message #" + (i+start));
 message.setClientId(clientId);
 message.setDestination("serverSequenceTest");
 message.setHeader("seqNo", "" + (i+start));
 messages.add(message);
 }

 for (long i = 0; i < messageCount; i++) {
 int randomPick = (int)Math.min(
 Math.round(Math.random() * messages.size()),
 messages.size()-1
);
 message = messages.remove(randomPick);
 send(message);
 }
 }
}

When you run the test application TestServerSequence.mxml, it will display the mes-
sages in perfect order, as shown in Figure 5-9. The code of the testing application is
identical to the one presented in Example 5-17 (TestServerDelivery), with the exception
that line 95 is pointing to the different destination:

consumer.destination = "serverSequenceTest";

Example 5-22 presents the client-side log of a particular test run. It starts with the
remote call, with the following 9 messages out of 10 received out of order. At last comes
the message #0; that releases the other nine, and they all get yanked out of the buffer
in the right order.

When Message Order Matters | 241

Figure 5-9. Running the TestServerSequence application

Example 5-22. Client-side log of the particular run of the TestServerSequence application

14:14:22.062 mx.messaging.Channel 'my-amf' channel sending message:
(mx.messaging.messages::RemotingMessage)#0
 destination = "com.farata.test.ServerMessagingTest"
 operation = "testSequenceFailure"
Buffering message 6 as out of order
Buffering message 3 as out of order
Buffering message 7 as out of order
Buffering message 2 as out of order
Buffering message 9 as out of order
Buffering message 4 as out of order
Buffering message 8 as out of order
Buffering message 5 as out of order
Buffering message 1 as out of order
Letting out incoming message 0
14:14:22.093 mx.messaging.Channel 'my-serializing-client-rtmp' channel
got message (com.farata.messaging.messages::ReliableServerMessage)#0
 body = "Server message #0"
 destination = "serverSequenceTest"
 headers = (Object)#1
 seqNo = "0"

Yanking message 1 out of the buffer
14:14:22.093 mx.messaging.Channel 'my-serializing-client-rtmp' channel
got message (com.farata.messaging.messages::ReliableServerMessage)#0
 body = "Server message #1"
 destination = "serverSequenceTest"
 headers = (Object)#1
 seqNo = "1"

.

Yanking message 9 out of the buffer
14:14:22.109 mx.messaging.Channel 'my-serializing-client-rtmp' channel
 got message(com.farata.messaging.messages::ReliableServerMessage)#0

242 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

 body = "Server message #9"
 destination = "serverSequenceTest"
 headers = (Object)#1
 seqNo = "9"

14:14:22.328 mx.messaging.Producer 'ED7A14D3-A86A-1C3D-2698-1379B00373E1'
 producer sending message 'FBDFFF8C-8AFD-370C-4768-1379C17883DF'
14:14:22.328 mx.messaging.Channel 'my-rtmp' channel sending message:
(com.farata.messaging.messages::ClientHeartbeatMessage)#0
 body = (Object)#1
 destination = "clientHeartbeat"
 received = (Array)#4
 [0] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|6"
 [1] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|3"
 [2] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|7"
 [3] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|2"
 [4] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|9"
 [5] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|4"
 [6] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|8"
 [7] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|5"
 [8] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|1"
 [9] "318C1775-C11A-E976-FDCD-BB7EA56DAB84|0"

As you can see, all 10 messages were reported by the client heartbeat on the next tick.
The corresponding server-side log is presented in Example 5-23. Notice that the order
of the messages stored/registered by the QoS adapter is precisely the same as the order
of messages received by our channel.

Example 5-23. Server-side log of this run of TestServerSequence application

[LCDS] Channel endpoint my-amf received request.
[LCDS] Channel endpoint my-amf received request.
[14:14:22,078] QoS adapter is sending through message 6
[14:14:22,093] QoS adapter is sending through message 3
[14:14:22,093] QoS adapter is sending through message 7
[14:14:22,093] QoS adapter is sending through message 2
[14:14:22,093] QoS adapter is sending through message 9
[14:14:22,093] QoS adapter is sending through message 4
[14:14:22,093] QoS adapter is sending through message 8
[14:14:22,093] QoS adapter is sending through message 5
[14:14:22,093] QoS adapter is sending through message 1
[14:14:22,093] QoS adapter is sending through message 0
[14:14:22,328] QoS adapter received delivery confirmations:
[4:14:22,328] ...and removes
 (CLIENTID|seqNo)318C1775-C11A-E976-FDCD-BB7EA56DAB84|6
[14:14:22,328] ...and removes
 (CLIENTID|seqNo)318C1775-C11A-E976-FDCD-BB7EA56DAB84|3
[14:14:22,328] ...and removes
 (CLIENTID|seqNo)318C1775-C11A-E976-FDCD-BB7EA56DAB84|7
[14:14:22,328] ...and removes
 (CLIENTID|seqNo)318C1775-C11A-E976-FDCD-BB7EA56DAB84|2
 [14:14:22,328] ...and removes

(CLIENTID|seqNo)318C1775-C11A-E976-FDCD-BB7EA56DAB84|0

When Message Order Matters | 243

This concludes our implementation of the guaranteed delivery of messages pushed from
the server. What about client messages?

Guaranteed Delivery of Client Messages
Consider the following scenario. A Wall Street trader clicks the Buy button. A Flex
message producer sends a message to the remote server over the Internet. You can’t
afford to lose even one such message, so the rest of this chapter is devoted to imple-
menting guaranteed delivery of messages initiated on the client in the Flash Player.

Because Flex provides an mx.messaging.events.MessageAckEvent for every client mes-
sage, you do not have to worry about acknowledgment. You do still need to take care
of the content of the acknowledgment. As you would expect, we are going to enumerate
the messages with the seqNo header by extending the standard endpoint class to return
this information inside the MessageAckEvent in the form of the lastProcessedNo header.
This will be a responsibility of the custom AcknowledgingEndpoint Java class.

To guarantee message delivery, we will memorize messages as unconfirmed prior to
sending them out. As soon as the server acknowledgment message comes, we will re-
move the message from the unconfirmed pool. In parallel, a timer “thread” will be in
charge of resending unconfirmed messages in configured intervals. These will be the
tasks of the custom ActionScript class ResendingChannel. The corresponding design is
presented in Figure 5-10.

The top portion of Figure 5-10 represents the client side, and the bottom part is about
the server.

The ReliableClientMessage Class
The ActionScript class that knows how to send reliable messages and its Java counter-
part are presented in Examples 5-24 and 5-25. Every outgoing ReliableClientMessage
will have a unique sequential header, seqNo.

Example 5-24. ReliableClientMessage.as

package com.farata.messaging.messages{
 import mx.messaging.messages.AsyncMessage;

 [RemoteClass(alias="com.farata.messaging.messages.ReliableClientMessage")]
 public class ReliableClientMessage extends AsyncMessage {

 static public var sequenceNo : int = 0;

 public function ReliableClientMessage(
 body:Object=null, headers:Object=null
) {
 if (!headers) {
 headers = [];

244 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

yfain11
Comment on Text
the italic font is not needed here

 }
 headers["seqNo"] = sequenceNo++;
 super(body, headers);
 }
 }
}

Example 5-25. ReliableClientMessage.java

package com.farata.messaging.messages;

import flex.messaging.messages.AsyncMessage;

public class ReliableClientMessage extends AsyncMessage {
}

The only reason for creating a subclass of AsyncMessage.java is to have
a way to separate regular AsyncMessage objects that don’t require special
processing from the reliable ones.

Persist messge as
“unconfirmed”
prior to actual
sending: emulate test
(tm=true) loss of 20%
messages: send with
exta “seqNo” header

serviceMessage() method

Resending channel

Produce improved
MessageAck
message with
extra header
“lastProcessedNo”

serviceMessage() Method

Acknowledging endpoint

Monitor
“unconfirmed”
messages and
resend due ones

Time “thread”

Erase messge
record from
“unconfirmed”
ones

Default MessageAck handler

Figure 5-10. Design of the No Client Message Left Behind policy

The ReliableClientMessage Class | 245

yfain11
Cross-Out

yfain11
Replacement Text
message

yfain11
Cross-Out

yfain11
Replacement Text
message

Acknowledging the Endpoint
Now let’s switch to the server side and create a custom endpoint. We need it to beef
up the acknowledgment message sent from the server. When the client gets a message,
it needs to know the seqNo of its last message that was successfully delivered to the
server. For now, it will be used only in the testing application. Later, when the order
of client messages will be guaranteed, we will use it to determine which ones to put
aside and which ones to forward for server processing. As shown in Example 5-26, the
proper overloading of the serviceMessage() method does the job.

Example 5-26. AcknowledgingRTMPEndpoint.java

package com.farata.messaging.endpoints;

import org.apache.log4j.Logger;
import com.farata.messaging.messages.ReliableClientMessage;
import flex.messaging.endpoints.RTMPEndpoint;
import flex.messaging.messages.AcknowledgeMessage;
import flex.messaging.messages.Message;

public class AcknowledgingRTMPEndpoint extends RTMPEndpoint {
 private final String LAST_SERVED_NUMBER="lastServedNumber";
 private final String SEQUENCE_NUMBER="seqNo";

 public Message serviceMessage(Message message) {
 Message m = super.serviceMessage(message);
 if (message instanceof ReliableClientMessage) {
 int sequenceNumber = (Integer)message.getHeader(SEQUENCE_NUMBER) ;
 int lastServedNumber = sequenceNumber;
 String duplicate = (String)message.getHeader("duplicate");
 if (logger.isDebugEnabled()) logger.debug(
 "Received message "+ sequenceNumber +
 ((duplicate!=null)?" (duplicate)":"")
);
 AcknowledgeMessage acknowledgeMessage = new AcknowledgeMessage();
 acknowledgeMessage.setClientId(message.getClientId());
 acknowledgeMessage.setCorrelationId(message.getMessageId());
 acknowledgeMessage.setHeader(
 LAST_SERVED_NUMBER, (Integer)lastServedNumber
);
 m = acknowledgeMessage;
 }
 return m;
 }
 static Logger logger;
 static {
 logger = Logger.getLogger(QoSRTMPEndpoint.class);
 }
}

246 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

This endpoint doesn’t touch any messages that are not of the type ReliableClientMes
sage. Note that some of the client messages arrive purposely marked as duplicates;
these will just be logged.

Resending Channel Guarantees Delivery
The next customization goes to the client’s channel. It has to monitor the server’s ac-
knowledgments for each message, and if they are not received in a timely fashion, it
must resend the messages. Does this idea sound familiar? The naming convention of
the channel also will follow the same pattern as in the server-side adapters and be called
ResendingRTMPChannel.

This custom channel maintains a Dictionary based on the unique messageId of the
unconfirmed message records:

private var unconfirmed:Dictionary ;

Every incoming message stays in this dictionary until acknowledged by the server. If
the duration of the stay is longer than a specified timeout, the channel resends the
message. The process is spiced up by the fact that the channel is shared by all the client’s
producers, and during the resend, we need to know which producer has to resend. That
is why unconfirmed stores the reference to the producer’s base class, MessageAgent, along
with the message itself; the unconfirmed messages that arrived from different clients
will be represented by different instances of MessageAgent:

override public function send(
 agent: MessageAgent, message:IMessage
) : void {

 if (message is ReliableClientMessage) {
 unconfirmed[message.messageId] = {
 message:message,
 registeredTs: new Date().valueOf(),
 agent:agent
 };
 . . .
}

To intercept the server’s acknowledgment in the Flex application, you can listen to
MessageAckEvent.ACKNOWLEDGE. To intercept the acknowledgment even earlier, in the
channel you need to override getDefaultMessageResponder() and also listen to
MessageAckEvent. Then in the body of the event handler, onProducerAcknowledge() re-
moves the corresponding record from the unconfirmed collection (Example 5-27).

Example 5-27. Intercepting server’s acknowledgment inside custom ResendingRTMPChannel

override protected function getDefaultMessageResponder(
 agent:MessageAgent, msg:IMessage
):MessageResponder {

 if (msg is ReliableClientMessage) {

Resending Channel Guarantees Delivery | 247

 if (agent != null && _defaultAgentListener[agent] == null) {
 _defaultAgentListener[agent] = agent;
 agent.addEventListener(
 MessageAckEvent.ACKNOWLEDGE,
 onProducerAcknowledge
);
 }
 }
 return super.getDefaultMessageResponder(agent, msg);
 }

private function onProducerAcknowledge(event:MessageEvent):void{
 var ackEvent:MessageAckEvent = event as MessageAckEvent;
 var message:ReliableClientMessage = unconfirmed[
 ackEvent.correlationId].message;
 if (Log.isDebug()) logger.debug(
 "ResendingChannel confirms message " + message.headers["seqNo"]
);
 delete unconfirmed[ackEvent.correlationId];
 }

Resending of the messages that were not confirmed for three seconds (note
RESEND_TIMEOUT in Example 5-28) is handled by the timer thread that starts in the chan-
nel’s constructor.

Example 5-28. Resending of the unconfirmed messages

public function ResendingRTMPChannel(id:String=null, uri:String=null) {
 super(id, uri);
 setInterval(resend, RESENDER_SLEEP_INTERVAL);
}

public function resend() : void {
 for each (var record:Object in unconfirmed) {
 if (new Date().valueOf()- record.registeredTs > RESEND_TIMEOUT) {
 var message:IMessage = record.message;
 message.headers["duplicate"]="true"; //for tracing only
 send(record.agent, message);
 }
 }
}

The only remaining channel functionality to implement is to deliberately drop about
20 percent of messages (marked with tm in the message header) to emulate network
problems. Example 5-29 presents the complete code of the Resen-
dingRTMPChannel.as file.

Example 5-29. ResendingRTMPChannel.as

package com.farata.messaging.channels {
 import com.farata.messaging.messages.ReliableClientMessage;

 import flash.events.IOErrorEvent;
 import flash.utils.Dictionary;

248 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

 import flash.utils.setInterval;
 import flash.utils.setTimeout;

 import mx.logging.ILogger;
 import mx.logging.Log;
 import mx.messaging.MessageAgent;
 import mx.messaging.MessageResponder;
 import mx.messaging.channels.RTMPChannel;
 import mx.messaging.events.MessageAckEvent;
 import mx.messaging.events.MessageEvent;
 import mx.messaging.messages.IMessage;

 public class ResendingRTMPChannel extends
 mx.messaging.channels.RTMPChannel {

 private var unconfirmed:Dictionary ;

 // Resend unconfirmed message after 3 sec
 public static const RESEND_TIMEOUT:int = 3000;
 public static const RESENDER_SLEEP_INTERVAL:int = 500;

 public function ResendingRTMPChannel(id:String=null, uri:String=null) {
 super(id, uri);
 unconfirmed = new Dictionary();
 setInterval(resendNonDelivered , RESENDER_SLEEP_INTERVAL);
 }

 override protected function ioErrorHandler(event:IOErrorEvent):void{
 super.ioErrorHandler(event);
 setTimeout(resend, 1);
 }

 public function resend() : void {

 for each (var record:Object in unconfirmed) {
 if (new Date().valueOf()- record.registeredTs > RESEND_TIMEOUT) {
 var message:IMessage = record.message;
 message.headers["duplicate"]="true"; //for tracing only
 send(record.agent, message);
 }
 }
 }

 override public function send(
 agent: MessageAgent, message:IMessage
) : void {

 if (message is ReliableClientMessage) {
 unconfirmed[message.messageId] = {
 message:message,
 registeredTs: new Date().valueOf(),
 agent:agent
 };
 // Emulate 20% of "lost" messages
 if ((message.headers["tm"] != null) && (Math.random()<.2)) {

Resending Channel Guarantees Delivery | 249

 if (Log.isDebug()) logger.debug(
 "ResendingChannel emulates loss of message " + message.headers["seqNo"]
);
 return;
 } else {
 if (Log.isDebug()) logger.debug(
 "ResendingChannel sends through message " + message.headers["seqNo"]
);
 super.send(agent, message);
 }
 } else
 super.send(agent, message);
 }

 private var _defaultAgentListener:Dictionary = new Dictionary();

 override protected function getDefaultMessageResponder(
 agent:MessageAgent, msg:IMessage
):MessageResponder {

 if (msg is ReliableClientMessage) {
 if (agent != null && _defaultAgentListener[agent] == null) {
 _defaultAgentListener[agent] = agent;
 agent.addEventListener(
 MessageAckEvent.ACKNOWLEDGE,
 onProducerAcknowledge
);
 }
 }
 return super.getDefaultMessageResponder(agent, msg);
 }

 private function onProducerAcknowledge(event:MessageEvent):void{
 var ackEvent:MessageAckEvent = event as MessageAckEvent;
 var message:ReliableClientMessage = unconfirmed[
 ackEvent.correlationId].message;
 if (Log.isDebug()) logger.debug(
 "ResendingChannel confirms message " + message.headers["seqNo"]
);
 delete unconfirmed[ackEvent.correlationId];
 }

 private var logger:ILogger = Log.getLogger(
 "com.farata.messaging.channels.ResendingRTMPChannel"
);
 }
}

Our custom channel works in a symmetrical way to the server-side custom endpoint.

250 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

Testing Guaranteed Delivery from the Client
To test guaranteed delivery of the messages originated on the client, register
ResendingRTMPChannel with service-config.xml as shown in Example 5-30.

Example 5-30. Endpoint for testing the No Client Message Left Behind solution

<channel-definition id="my-resending-client-rtmp"
 class="com.farata.messaging.channels.ResendingRTMPChannel"
 <endpoint uri="rtmp://{server.name}:2042"
 class="com.farata.messaging.endpoints.AcknowledgingRTMPEndpoint"/>
 <properties>
 <idle-timeout-minutes>20</idle-timeout-minutes>
 </properties>
</channel-definition>

Next, define the destination clientDeliveryTest in messaging-config.xml (Exam-
ple 5-31).

Example 5-31. Messaging destination to test the No Client Message Left Behind solution

<destination id="clientDeliveryTest">
 <adapter ref="actionscript"/>
 <channels>
 <channel ref="my-resending-client-rtmp" />
 </channels>
</destination>

The testing application TestClientDelivery (Example 5-32) displays seqNo from the
headers of the messages sent by the producer and, separately, lastProcessedNo from
the headers of the acknowledgment messages that the server replies with. Figure 5-11
illustrates a particular run of the application when messages 7 and 3 were “swallowed”
by ResendingRTMPChannel, emulating a loss of the messages elsewhere in the network.
As a result, these messages were resent by the channel, albeit a bit later. The corre-
sponding server log is presented in Example 5-33.

Example 5-32 lists the source code of the testing application.

Example 5-32. TestClientDelivery application

<?xml version="1.0" encoding="utf-8"?>
<!--TestClientDelivery.mxml-->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:fs="http://www.faratasystems.com/2009/components"
 layout="vertical" xmlns:local="*">
 <mx:Producer id="producer" acknowledge="onProducerAcknowledge(event)"
 destination="clientDeliveryTest" />
 <mx:Form>
 <mx:FormItem label="Messages to send:">
 <mx:TextInput text="10" id="msgCount"/>
 <mx:Button label="Run Test"
 click="runTest(Number(msgCount.text))"/>
 </mx:FormItem>

Testing Guaranteed Delivery from the Client | 251

 <mx:FormItem label="Sent:">
 <local:MessageBar id="sentBar" />
 </mx:FormItem>
 <mx:FormItem label="Acknowledged:">
 <local:MessageBar id="ackBar" />
 </mx:FormItem>
 </mx:Form>
 <mx:Script>
 <![CDATA[
 import mx.messaging.messages.IMessage;
 import mx.messaging.events.MessageAckEvent;
 import mx.messaging.Producer;
 import com.farata.messaging.messages.ReliableClientMessage;

 private function runTest(messageCount:int):void {
 var message: ReliableClientMessage;
 var messageSequence:Array = [];
 sentBar.clean();
 ackBar.clean();
 for (var i : int = 0; i < messageCount; i++) {
 message = new ReliableClientMessage(
 // Header "tm" marks this message as a
 // candidate to be lost by the channel
 "Client message #" + i, {tm:1}
);
 messageSequence.push(message);
 producer.send(message);
 sentBar.addMessage(i, message.headers["seqNo"]);
 }
 }

 private function onProducerAcknowledge(event:MessageAckEvent):void {

 var message:IMessage = event.acknowledgeMessage as IMessage;
 var servedNumber:Number = message.headers["lastServedNumber"]
 as Number;
 //Assuming messageCount is not changing fast :)
ackBar.appendMessage(servedNumber); }
]]>
 </mx:Script>
 <mx:TraceTarget />
</mx:Application>

This application has three buttons labeled Load Module, Modify Content, and Unload
Module, each associated with a similarly named function. Example 5-33 is the logfile
of a test run.

252 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

Figure 5-11. Running the TestClientDelivery application

Example 5-33. Server log of the running TestClientDelivery application

[2009-06-25 21:16:32,140] Received message 0
[2009-06-25 21:16:32,156] Received message 1
[2009-06-25 21:16:32,156] Received message 2
[2009-06-25 21:16:32,156] Received message 4
[2009-06-25 21:16:32,156] Received message 5
[2009-06-25 21:16:32,171] Received message 6
[2009-06-25 21:16:32,171] Received message 8
[2009-06-25 21:16:32,171] Received message 9
[2009-06-25 21:16:35,234] Received message 7 (duplicate)
[2009-06-25 21:16:38,359] Received message 3 (duplicate)

As you can see, the custom ResendingRTMPChannel delivers 100 percent of sent messages,
although order is not maintained. We will straighten this out in the next section.

Keeping Client Messages in Order
In a WAN environment, neither Flex LCDS nor BlazeDS can guarantee that the mes-
sages you are sending are coming in the same order that they were sent. For gaming or
trading applications, the consequences can be very serious.

What if your Buy and Modify requests come in the wrong order? How would you feel
about placing the straight-up roulette bet at 20, then moving to 21 after the ball stops
on 21? Actually, some sequencing mistakes can be beneficial for the gambler and some
can cause substantial losses of money. But developers of such client/server communi-
cations must remain neutral and ensure that the bets are placed in the right order.
Naturally, these things will not happen on the development LAN, but hey, people want

Keeping Client Messages in Order | 253

to place bets while sitting in a small Internet café in a French village or from their laptop
by the Tiki Bar in Miami Beach.

Maintaining the proper order of the client messages is done the same way it’s done for
server-born messages: quarantine received out-of-order messages and let them out only
when the missing number comes in. The proper place to do this is the server-side cus-
tom endpoint: SerializingRTMPEndpoint (see Example 5-34).

All classes involved in the solution are highlighted in Figure 5-12.

Figure 5-12. Classes involved in guaranteed and orderly delivery of the client-initiated messages

The logic implemented in SerializingRTMPEndpoint is similar to that of SerializingRTMP
Channel. In fact, it’s even simpler, because we can accumulate incoming messages and
lastServedNumber in the FlexSession attributes, isolating the processing for different
clients.

254 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

The FlexSession class is supplied in LCDS and BlazeDS for session
management tasks, and we use it here just for illustration purposes. In
real life, you may be better off with your own custom-messaging-session
mechanism that doesn’t interfere with the HTTP domain.

Everything is done inside the overloaded serviceMessage() method. If the message se-
quence number is one greater than lastServedNumber, we process it straight through by
calling super.serviceMessage(). We do not stop, however, because we might have other
messages locked in the incoming map. Increment lastServedNumber and attempt to find
the adjacent message in the map. If found, send it out with super.serviceMessage()
and keep looping through the incoming map. If the message number is less than
lastServedNumber, put it in the incoming map, but avoid calling
super.serviceMessage(); the message will remain on hold. The complete code of
SerializingRTMPEndpoint is shown in Example 5-34.

Example 5-34. SerializingRTMPEndpoint

public class SerializingRTMPEndpoint extends RTMPEndpoint {
package com.farata.messaging.endpoints;
import java.util.concurrent.ConcurrentHashMap;

import com.farata.messaging.messages.ReliableClientMessage;
import flex.messaging.FlexContext;
import flex.messaging.FlexSession;
import flex.messaging.endpoints.RTMPEndpoint;
import flex.messaging.messages.AcknowledgeMessage;
import flex.messaging.messages.Message;
import org.apache.log4j.Logger;

public class SerializingRTMPEndpoint extends RTMPEndpoint {
 private final String INCOMING="incomingMessages";
 private final String LAST_SERVED_NUMBER="lastServedNumber";
 private final String SEQUENCE_NUMBER="seqNo";

 @SuppressWarnings("unchecked")
 public Message serviceMessage(Message message) {
 logger.info(message);

 if (message instanceof ReliableClientMessage) {
 FlexSession session = FlexContext.getFlexSession();
 AcknowledgeMessage acknowledgeMessage = null;
 acknowledgeMessage = new AcknowledgeMessage();
 acknowledgeMessage.setClientId(message.getClientId());
 acknowledgeMessage.setCorrelationId(message.getMessageId());

 if (session.getAttribute(INCOMING) == null)
 session.setAttribute(
 INCOMING,
 new ConcurrentHashMap<Integer,Message>()
);
 ConcurrentHashMap<Integer,Message> incoming =

Keeping Client Messages in Order | 255

 (ConcurrentHashMap<Integer,Message>) session.getAttribute(
 INCOMING
);
 int lastServedNumber = -1;
 boolean isDebug=true;logger.isDebugEnabled();

 if (session.getAttribute(LAST_SERVED_NUMBER) != null)
 lastServedNumber = (Integer)session.getAttribute(
 LAST_SERVED_NUMBER
);

 int seqNo = (Integer)message.getHeader(SEQUENCE_NUMBER) ;
 String duplicate = (String)message.getHeader("duplicate");
 if ((duplicate!=null) && isDebug)

 if (isDebug) logger.debug(
 "Client sent duplicate to compensate send failure "+ seqNo
);
 if (seqNo <= lastServedNumber) {
 if (isDebug) logger.debug(
 "Ignoring message " + seqNo + " as already processed"
);
 } else if (seqNo == lastServedNumber+1){
 if (isDebug) logger.debug(
 "Letting out incoming message " + seqNo
);
 super.serviceMessage(message);
 lastServedNumber++;

 while
 ((message=(Message)incoming.remove((lastServedNumber+1)))!=null)
 {
 seqNo++;
 if (isDebug) logger.debug(
 "Yanking message " + seqNo + " out of the buffer"
);
 super.serviceMessage(message);
 lastServedNumber++;
 }
 } else {
 if (isDebug) logger.debug(
 "Buffering message " + seqNo + " as out of order"
);
 incoming.put(seqNo, message);
 }

 session.setAttribute(LAST_SERVED_NUMBER,(Integer)lastServedNumber);

 acknowledgeMessage.setHeader(LAST_SERVED_NUMBER,
 (Integer)lastServedNumber);
 return acknowledgeMessage;

 } else
 return super.serviceMessage(message);
 }

256 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

 static Logger logger;
 static {
 logger = Logger.getLogger(QoSRTMPEndpoint.class);
 }
}

We didn’t put in much explanation of this code, as it’s similar to the example of cus-
tomizing the server-side message adapter (see the explanation for Example 5-12).

Testing Ordered Delivery of Client Messages
To test ordered delivery of the client messages, register SerializingRTMPEndpoint with
services-config.xml (Example 5-35).

Example 5-35. Channel definition to test ordered delivery of client messages

<channel-definition id="my-serializing-server-rtmp"
 class="mx.messaging.channels.RTMPChannel">
 <endpoint uri="rtmp://{server.name}:2043"
 class="com.farata.messaging.endpoints.SerializingRTMPEndpoint"
<properties>
 <idle-timeout-minutes>20</idle-timeout-minutes>
 </properties>
</channel-definition>

Then add the destination clientServiceTest to messaging-config.xml (Example 5-36).

Example 5-36. Messaging destination to test ordered delivery of client messages

<destination id="clientSequenceTest">
 <adapter ref="actionscript"/>
 <channels>
 <channel ref="my-serializing-server-rtmp" />
 </channels>
</destination>

The code of the testing application TestClientSequence is presented in Example 5-37.

The test application sends messages in random order, which is reflected in the Sent bar
(Figure 5-13). The application is subscribed to MessageAckEvent and displays arrived
messages in the Acknowledged bar with circles.

Notice that all messages came acknowledged in the right order, thanks to the house-
keeping done by the SerializingEndpoint. In Example 5-37, you can also browse the
server log produced by this custom endpoint during the specific test run.

Testing Ordered Delivery of Client Messages | 257

Figure 5-13. Running the TestClientSequence application

The complete code of the test client application is depicted in Example 5-37.

Example 5-37. TestClientSequence application

<?xml version="1.0" encoding="utf-8"?>
<!-- TestClientSequence.mxml-->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:fs="http://www.faratasystems.com/2009/components"
 layout="vertical" xmlns:local="*">
 <mx:Producer id="producer" acknowledge="onProducerAcknowledge(event)"
 destination="clientSequenceTest" />
 <mx:Form>
 <mx:FormItem label="Messages to send:">
 <mx:TextInput text="10" id="msgCount"/>
 <mx:Button label="Run Test" click="runTest(Number(msgCount.text))"/>
 </mx:FormItem>
 <mx:FormItem label="Sent:">
 <local:MessageBar id="sentBar" />
 </mx:FormItem>
 <mx:FormItem label="Acknowledged:">
 <local:MessageBar id="ackBar" />
 </mx:FormItem>
 </mx:Form>
 <mx:Script>
 <![CDATA[
 import mx.messaging.messages.IMessage;
 import mx.messaging.events.MessageAckEvent;
 import mx.messaging.Producer;
 import com.farata.messaging.messages.ReliableClientMessage;

 private function runTest(messageCount:int):void {
 var message: ReliableClientMessage;

258 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

 var messageSequence:Array = [];
 sentBar.clean();
 ackBar.clean();
 for (var i : int = 0; i < messageCount; i++) {
 messageSequence.push(message);
 }
 for (i = 0; i < messageCount; i++) {
 var randomPick : int = Math.min(Math.round(Math.random() * messageSequence.length),
messageSequence.length - 1);
 message = messageSequence.splice(randomPick, 1)[0];
 producer.send(message);
 sentBar.addMessage(i, message.headers["seqNo"]);
 }
 }

 private function onProducerAcknowledge(event:MessageAckEvent):void {
 var message:IMessage = event.acknowledgeMessage as IMessage;
 var servedNumber:Number = message.headers["lastServedNumber"] as Number;
 if (servedNumber!=-1)
 ackBar.appendMessageBlock(servedNumber);
 }
]]>
 </mx:Script>
</mx:Application>

Example 5-38 is the logfile produced by this application.

Example 5-38. Server log of the custom SerializingRTMPEndpoint during the test run pictured in
Figure 5-13

[2009-06-27 12:54:58,234] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest
 body = Client message #7
 hdr(seqNo) = 7
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,234] Buffering message 7 as out of order
[2009-06-27 12:54:58,250] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest
 body = Client message #9
 hdr(seqNo) = 9
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,250] Buffering message 9 as out of order
[2009-06-27 12:54:58,250] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest
 body = Client message #3
 hdr(seqNo) = 3
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,250] Buffering message 3 as out of order

[2009-06-27 12:54:58,250] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest

Testing Ordered Delivery of Client Messages | 259

 body = Client message #0
 hdr(seqNo) = 0
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,250] Letting out incoming message 0

[2009-06-27 12:54:58,250] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest
 body = Client message #4
 hdr(seqNo) = 4
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,250] Buffering message 4 as out of order
[2009-06-27 12:54:58,250] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest
 body = Client message #2
 hdr(seqNo) = 2
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,250] Buffering message 2 as out of order
[2009-06-27 12:54:58,250] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest
 body = Client message #8
 hdr(seqNo) = 8
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,250] Buffering message 8 as out of order
[2009-06-27 12:54:58,250] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest
 body = Client message #6
 hdr(seqNo) = 6
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,250] Buffering message 6 as out of order
[2009-06-27 12:54:58,250] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest
 body = Client message #5
 hdr(seqNo) = 5
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,250] Buffering message 5 as out of order

[2009-06-27 12:54:58,250] Flex Message
(com.farata.messaging.messages.ReliableClientMessage)
 destination = clientSequenceTest
 body = Client message #1
 hdr(seqNo) = 1
 hdr(DSEndpoint) = my-serializing-server-rtmp
[2009-06-27 12:54:58,250] Letting out incoming message 1

[2009-06-27 12:54:58,250] Yanking message 2 out of the buffer
[2009-06-27 12:54:58,250] Yanking message 3 out of the buffer
[2009-06-27 12:54:58,250] Yanking message 4 out of the buffer
[2009-06-27 12:54:58,250] Yanking message 5 out of the buffer
[2009-06-27 12:54:58,250] Yanking message 6 out of the buffer
[2009-06-27 12:54:58,250] Yanking message 7 out of the buffer

260 | Chapter 5: Customizing the Messaging Layer of LCDS or BlazeDS

[2009-06-27 12:54:58,250] Yanking message 8 out of the buffer
[2009-06-27 12:54:58,250] Yanking message 9 out of the buffer

Summary
After reading this chapter, you should have a pretty good understanding of how the
process of message customization works in the Flex messaging world. Now roll up your
sleeves and see if you can improve the reliability of messages in your application.

Have you noticed that this effort is done in the objects that support the messaging layer,
and your application developers don’t need to worry about message acknowledgment
or out-of-sequence messages in their code? This is the main theme of the entire book:
make application developers write less code. We’ll keep repeating this mantra in every
applicable situation—in the least annoying way possible, of course.

The source code of this chapter comes as two projects:

• A combined Flex/Java project, com.farata.rtmp.components.demo (in real-world
projects, it’s better to separate Java and Flex code into two projects)

• The Flex library project com.farata.rtmp.components

But those projects come with a disclaimer: the code used in this chapter is written for
illustration purposes only. Although it’s conceptually correct, don’t treat it as a pro-
duction-ready solution. We urge you to analyze all specific situations that may arise in
your business application and provide their proper processing in custom channels,
adapters, and endpoints.

Summary | 261

CHAPTER 6

Open Source Networking Solutions

“Ninety-nine percent of the people who reject using the
software until it gets open sourced will never even look

at its source code when it’s done.”

“Most people are not planning to use airbags in cars, but
they want them anyway.”

—A conversation between Yakov and Marat

The selection of a communication protocol can be as crucial for the success of your
RIA as a professionally designed UI. LiveCycle Data Services (LCDS) is an excellent
solution for building enterprise-grade scalable RIAs, but some enterprises just don’t
have the budget for it. Many smaller IT organizations still use the more familiar HTTP
or SOAP web services, because it’s an easy route into the world of RIA with only minor
changes on the backend.

Now there’s a faster, more powerful open source option. In February 2008, Adobe
released BlazeDS in conjunction with open sourcing the specification of the Action
Message Format (AMF) communication protocol. Offering many of the same capabil-
ities as LCDS, BlazeDS is a Java-based open source implementation of AMF, which
sends the data over the wire in a highly compressed binary form.

Large distributed applications greatly benefit by working with the strongly typed data.
Sooner or later developers will need to refactor the code, and if there is no data type
information available, changing the code in one place might break the code in another
and the compiler might not help you in identifying such newly introduced bugs.

This chapter will unleash the power of AMF and provide illustrations of how to create
a robust platform for development of modern RIA without paying hefty licensing fees.
It will discuss polling and server-side push techniques for client/server communica-
tions, as well as how to extend the capabilities of BlazeDS to bring it closer to LCDS.

263

BlazeDS Versus LCDS
Prior to Adobe’s BlazeDS, Flex developers who wanted to use the AMF protocol to
speed up the data communication between Flex and the server side of their application
had to select one of the third-party libraries, such as Open AMF, WebORB, or Granite
DS. The release of the open source BlazeDS, however, brought a lot more than just
support of AMF. You can think of BlazeDS as a scaled-down version of LCDS. As
opposed to LCDS, BlazeDS doesn’t support RTMP protocol, data management serv-
ices, or PDF generation, and has limited scalability. But even with these limitations, its
AMF support, ability to communicate with Plain Old Java Objects (POJO), and support
of messaging via integration with the Java Messaging Protocol make BlazeDS a highly
competitive player in the world of RIA. These features alone make it a good choice for
architecting RIA data communication compared to any AJAX library or a package that
just implements the AMF protocol.

Figure 6-1 provides a capsule comparison of BlazeDS and LiveCycle functions. The
items shown in gray type represent the features available only in LCDS. The features
of BlazeDS are highlighted in black.

Data management
Data synchronization SQL PDF generation

Portal deployment

Scalable real-time data push

Web-tier compiler
Hibernate
LiveCycle

ColdFusion
JMS

POJO

Offline applications

Web service, HTTP service
Publish and subscribe over

RTMP, polling and scalable HTTP
streamingProxy service

Remote object service

Data paging and push

Basic connectivity Messaging

Service adapters

LiveCycle and BlazeDS

Application support

Supported in BlazeDS

LCDS

Collaboration

Figure 6-1. Comparing functionality of BlazeDS and LCDS

One limitation of BlazeDS is that its publish/subscribe messaging is implemented over
HTTP using long-running connections rather than via RTMP as in LCDS. Under the
HTTP approach, the client opens a connection with the server, which allocates a thread
that holds this connection on the server. The server thread gets the data and flushes it
down to the client but then continues to hold the connection.

264 | Chapter 6: Open Source Networking Solutions

You can see the limit right there: because creating each thread has some overhead, the
server can hold only a limited number of threads. By default, BlazeDS is configured to
hold 10 threads, but it can be increased to several hundred depending on the server
being used. Even so, this may not be enough for enterprise-grade applications that need
to accommodate thousands of concurrent users.

Real-Time Messaging Protocol (RTMP) is not HTTP-based. It works like
a two-way socket channel without having the overhead of AMF, which
is built on top of HTTP. One data stream goes from the server to the
client, and the other goes in the opposite direction. Because the RTMP
solution requires either a dedicated IP address or port, it is not firewall-
friendly, which may be a serious drawback for enterprises that are very
strict about security. Adobe has announced their plans to open source
RTMP.

With a little help, however, BlazeDS can handle this level of traffic, as well as close
some of the other gaps between it and LCDS. For example, the section “The Network-
ing Architecture of BlazeDS” on page 277 offers a scalable solution based on the Blaz-
eDS/Jetty server. Also later in this chapter, you’ll learn how to enhance BlazeDS to
support data synchronization, PDF generation, and scalable real-time data push. In
addition to feature support, you’ll also examine the other piece of the puzzle: increasing
the scalability of the AMF protocol in BlazeDS.

Why Is AMF Important?
You may ask, “Why should I bother with AMF instead of using standard HTTP, Rest,
SOAP, or similar protocols?” The short answer is because the AMF specification is open
sourced and publicly available (http://download.macromedia.com/pub/labs/amf/amf3
_spec_121207.pdf).

The longer answer begins with the fact that AMF is a compact binary format that is
used to serialize ActionScript object graphs. An object can include both primitive and
complex data types, and the process of serialization turns an object into a sequence of
bytes, which contains all required information about the structure of the original object.
Because AMF’s format is open to all, Adobe as well as third-party developers can im-
plement it in various products to deserialize such pieces of binary data into an object
in a different VM (Virtual Machine), which does not have to be Flash Player. For ex-
ample, both BlazeDS and LCDS implement the AMF protocol to exchange objects
between Flash Player and the Java VM. There are third-party implementations of AMF
to support data communication between Flash Player and such server-side environ-
ments as Python, PHP, .NET, Ruby, and others.

Some of the technical merits of this protocol, when used for the enterprise application,
are:

Why Is AMF Important? | 265

http://download.macromedia.com/pub/labs/amf/amf3_spec_121207.pdf
http://download.macromedia.com/pub/labs/amf/amf3_spec_121207.pdf

Serialization and deserialization with AMF is fast.
BlazeDS (and LCDS) implementation of AMF is done in C and native to the plat-
form where Flash Player runs. Because of this, AMF has a small memory footprint
and is easy on CPU processing. Objects are being created in a single pass—there
is no need to parse the data (e.g., XML or strings of characters), which is common
for nonnative protocols.

AMF data streams are small and well compressed (in addition to GZip).
AMF tries to recognize the common types of data and group them by type so that
every value doesn’t have to carry the information about its type. For example, if
there are numeric values that fit in two bytes, AMF won’t use four as was required
by the variable data type.

AMF supports the native data types and classes.
You can serialize and deserialize any object with complex data types, including the
instances of custom classes. Flex uses AMF in such objects as RemoteObject,
SharedObject, ByteArray, LocalConnection, SharedObject, and all messaging oper-
ations and any class that implements the IExternalizable interface.

Connections between the client and the server are being used much more efficiently.
The connections are more efficient because the AMF implementation in Flex uses
automatic batching of the requests and built-in failover policies, providing robust-
ness that does not exist in HTTP or SOAP.

The remainder of the chapter will focus on how you can leverage these merits for your
own applications, as well as contrast AMF and the technologies that use it with tradi-
tional HTTP approaches.

AMF Performance Comparison
AMF usually consumes half of the bandwidth of and outperforms (has a shorter exe-
cution time than) other text-based data transfer technologies by 3 to 10 times depending
on the amount of data you are bringing to the client. It also usually takes several times
less memory compared to other protocols that use untyped objects or XML.

If your application has a server that just sends to the client a couple of
hundred bytes once in a while, AMF performance benefits over text
protocols are not obvious.

To see for yourself, visit http://www.jamesward.com/census, a useful website that ena-
bles you to compare the data transfer performance of various protocols. Created by
James Ward, a Flex evangelist at Adobe, the test site lets you specify the number of
database records you’d like to bring to the client, then graphs the performance times
and bandwidth consumed for multiple protocols.

266 | Chapter 6: Open Source Networking Solutions

http://www.jamesward.com/census

Figure 6-2 shows the results of a test conducted for a medium result set of 5,000 records
using out-of-the-box implementations of the technologies using standard GZip
compression.

Visit this website and run some tests on your own. The numbers become even more
favorable toward AMF if you run these tests on slow networks and low-end client
computers.

The other interesting way to look at performance is to consider what happens to the
data when it finally arrives at the client. Because HTTP and SOAP are text-based pro-
tocols, they include a parsing phase, which is pretty expensive in terms of time. The
RIA application needs to operate with native data types, such as numbers, dates, and
Booleans. Think about the volume of data conversion that has to be made on the client
after the arrival of 5,000 1 KB records.

Steve Souders, a Yahoo! expert in performance tuning of traditional (DHTML) web-
sites, stresses that major improvements can be achieved by minimizing the amount of
data processing performed on the client in an HTML page (see High Performance Web
Sites (http://oreilly.com/catalog/9780596529307) by Steve Souders [O’Reilly]). Using
the AMF protocol allows you to substantially lower the need for such processing, be-
cause the data arrives at the client already strongly typed.

Figure 6-2. James Ward’s benchmark site

Why Is AMF Important? | 267

http://oreilly.com/catalog/9780596529307
http://oreilly.com/catalog/9780596529307
http://oreilly.com/catalog/9780596529307

AMF and Client-Side Serialization
AMF is crucial for all types of serialization and communications. All native data seri-
alization is customarily handled by the class ByteArray. When serialized, the data type
information is marked out by the name included in the metadata tag RemoteClass.

Example 6-1 is a small example from the Flash Builder’s NetworkingSamples project
that comes with the book. It includes an application RegisteredClassvsUnregis-
tered.mxml and two classes: RegisteredClass and Unregistered.

Example 6-1. Serialization with and without the RemoteObject metatag

package
{
 [RemoteClass(alias="com.RegisteredClass")]
 public class RegisteredClass{
 }
}

package
{
 public class UnregisteredClass{
 }
}

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="test()">
<mx:Script>
 <![CDATA[
 import flash.utils.ByteArray

 private function serializeDeserialize(a:Object) : void {
 var ba : ByteArray = new ByteArray();
 ba.writeObject(a);
 ba.position = 0;
 var aa:Object = ba.readObject();
 trace(aa);
 }

 private function test():void {
 serializeDeserialize(new RegisteredClass());
 serializeDeserialize(new UnregisteredClass());
 }
]]>
</mx:Script>
</mx:Application>

In Example 6-1, the function serializeDeserialize() serializes the object passed as an
argument into a ByteArray, and then reads it back into a variable aa of type Object. The
application makes two calls to this function. During the first call, it passes an object
that contains the metadata tag, marking the object with a data type RegisteredClass;

268 | Chapter 6: Open Source Networking Solutions

zaremba
Comment on Text
global: is this the same as "metatag"?

yes, the meaning is the same, but metadata tag is the term that's used throughout Adobe documentation.

the second call passes the object that does not use this metadata tag. Running this
program through a debugger displays the following output in the console:

[SWF] /NetworkingSamples/NetworkingSamples.swf -
 798,429 bytes after decompression
[object RegisteredClass]
[object Object]

Annotating a class with the RemoteClass metadata tag allows Flash Player to store, send,
and restore information in the predictable, strongly typed format. If you need to persist
this class, say in AIR disconnected mode, or communicate with another .swf locally via
the class LocalConnection, following the rules of AMF communications is crucial. In
the example, RemoteClass ensures that during serialization, the information about the
class will be preserved.

HTTP Connection Management
To really appreciate the advantages of binary data transfers and a persistent connection
to the server, take a step back and consider how web browsers in traditional web ap-
plications connect to servers.

For years, web browsers would allow only two connections per domain. Because Flash
Player uses the browser’s connection for running HTTP requests to the server, it shares
the same limitations as all browser-based applications.

The latest versions of IE and Mozilla increased the default number of simultaneous
parallel HTTP requests per domain/window from two to six. It’s probably the biggest
news in the AJAX world in the last three years. For the current crop of AJAX sites serving
real WAN connections it means increasing the load speed and fewer timeouts/reliability
issues. By the way, most of the Opera and Safari performance gains over IE and Mozilla
in the past are attributed to the fact that they allowed and used four connections, ig-
noring the recommendations of the W3C (they suggested allowing only two
connections).

The fact that increasing the number of parallel connections increases network through-
put is easy to understand. Today’s request/response approach for browser communi-
cations is very similar to the village bike concept. Imagine that there are only a couple
of bikes that serve the entire village. People ride a bike and come back to give it to the
next person in line. People wait for their turns, keeping their fingers crossed that the
person in front of them won’t get lost in the woods during her ride. Otherwise, they
need to wait till all hope is gone (called timeout) and the village authorities provide
them with a new bike circa 1996.

Pretty often, by the time the new bike arrives it’s too late:the person decided to get
engaged in a different activity (abandon this site). As the travel destinations become
more distant (WAN) you are exposed to real-world troubles of commuting—latency
(500 ms for a geostatic satellite network), bandwidth limitations, jitter (errors),

HTTP Connection Management | 269

unrecoverable losses, etc. Besides that, the users may experience congestion caused by
the fact that your ISP decided to make some extra cash by trying to become a TV
broadcaster and a phone VoIP company, but lacks the required infrastructure. The
applications that worked perfectly on local/fast networks will crumble in every imagi-
nable way.

Obviously, more bikes (browser’s connections) mean that with some traffic planning
you can offer a lot more fun to the bikers (get much better performance and reliability).
You might even allocate one bike to a sheriff/firefighter/village doctor so he will provide
information on conditions and lost/damaged goods carried by the bikers. You can route
important goods in parallel so they will not get lost or damaged that easily.

You can really start utilizing the long-running connection for real data push now. But
first, let’s go back 10 years and try to figure out how the early adopters of RIAs devel-
oped with AJAX were surviving.

Even though AJAX as a term was coined only in 2005, the authors of
this book started using the DHTML/XMLHttpRequest combo (currently
known as AJAX) since the year 2000.

The Hack to Increase a Web Browser’s Performance
In the beginning of this century, most of the enterprises we worked with quietly rolled
out browser builds/service packs increasing the number of allowed HTTP connections.
This was just a hack. For Internet Explorer, the following changes to Windows registry
keys would increase the number of the browser connections to 10:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings
MaxConnectionsPer1_0Server 10
MaxConnectionsPerServer 10

With Mozilla’s Firefox, you have to recompile the source code of the entire browser.

It does solve most of the performance and reliability issues for a short while. The main
reason is that without imposed limits, software increases in size faster than transistor
capacity under Moore’s Law. And unlike in private networks in enterprises, without a
proper “city framework,” rampant requests will cause an overall Internet meltdown as
the initial rollout of more capable browsers gives them an unfair advantage in terms of
bandwidth share.

If a server receives eight connection requests, it’ll try to allocate the limited available
bandwidth accordingly, and, for instance, Mozilla’s requests will enjoy better through-
put than those of Internet Explorer, which on older and slower networks will cause
quality of service (QoS) problems. In other words, this solution has a very real potential
to cause more of the same problems it’s expected to solve.

270 | Chapter 6: Open Source Networking Solutions

Other Ways of Increasing a Web Browser’s Performance
Most enterprises have to control QoS of their clients’ communications. For example,
a company that trades stock has a service level agreement (SLA) with their clients
promising to push the new price quotes twice a second. To keep such a promise, the
enterprise should create and adopt a number of point-to-point solutions that provide
more efficient communication models, which fall into three categories:

HTTP batching and streaming of multiple requests in a single HTTP call and Comet
communications

Comet, a.k.a. reverse AJAX, allows the web server to push data to the web browser,
as opposed to a traditional request/response model. AMF performs automatic
batching of the requests. If your program executes a loop that generates 50 HTTP
requests to the server, AMF will batch them and will send them as one HTTP
request.

Imagine that someone wrote a loop in JavaScript that makes an
HTTP server request on each iteration. The browser can batch
these requests and send, say, 10 requests at a time. This is HTTP
batching. In this scenario, the browser would assign a message ID
to each request included in the batch, and arriving responses would
contain correlation IDs that would allow the browser to find the
matching requestors.

Binary components that work with two-directional sockets
This is the case used in multimedia streaming, where there are two separate chan-
nels, and each is used for sending data in one direction: either to or from the server.

Pluggable protocols, which are wrappers for standard protocols
Say you can develop some custom protocol called HTTPZ, which for the browsers
will look like HTTP, but under the hood will use streaming or even a socket-based
protocol like RTMP. The browser “believes” that it uses HTTP, the web server
receives RTMP, and the translation is done by HTTPZ—every party is happy.

The pluggable protocol option did not become popular, even though it allows moving
most of the problems from the browser to the OS level. The batching and streaming
options, however, did.

Regular HTTP is based on the request/response model, which has an overhead of es-
tablishing a connection (and consequently disconnecting) on each request. In the case
of streaming, this connection is opened only once (for more information, see the section
“Putting Streaming to Work” on page 274).

HTTP batching and streaming is a combination of a few technologies with a close
resemblance to how car traffic is controlled on some highways. There are dedicated
lanes for high-occupancy vehicles (HOV) that move faster during the rush hours. Such

HTTP Connection Management | 271

HOV lanes can be compared to the HTTP channels opened for streaming. For example,
you can program network communications in such a way that one channel allows only
two data pushes per second (a guaranteed QoS), while the other channel will try to
push all the data, which may cause network congestion, delays, and queuing.

As an example, the Flex/Flash AMF protocol tries to squeeze out every bit of bandwidth
and optimize queuing of the requests in the most efficient way—both on client and
server. As a result, your application uses the maximum bandwidth, and request queues
are short.

The results of such batching were so good that at Farata Systems, we started recom-
mending AMF to most of our customers (even those that have to use WebService or
HTTPService objects for communication). Using AMF to proxy requests via an AMF-
enabled server delivers results from the HTTP servers more efficiently.

If a client request uses a specific destination on a proxy server, this des-
tination can be configured to use an AMF channel, even if an
HTTPService object has been used as a means of communications.

With AMF, the data gets loaded faster than with nonbatched requests/responses. And
it plays nicely with the typical infrastructures that use firewalls as it piggybacks on the
existing browser HTTP requests.

However, for critical applications built on plain infrastructures a problem remains:
there is no QoS provided by the HTTP protocol, which may become a showstopper.
For example, think of a financial application that sends real-time price quotes to its
users. The server keeps sending messages, regardless of the current throughput of the
network, which in the case of network congestion will be causing problems with queue
overruns or lost packages.

Binary always on (re)connected socket protocols are a more logical and efficient solu-
tion. Unlike the request/response model, a typical socket connection is like a two-way
highway, with data moving in opposite directions independently. But before we fully
depart into the Communications 2.0 world, let’s make sure that you understand how
HTTP is shaping up these days.

The disconnected model of HTTP 1.0 was not practical. The overhead of connecting/
disconnecting for each request was not tolerable, and for the last eight years we have
not seen a single web browser using it. It has been completely replaced by HTTP 1.1
—the protocol that keeps connections open beyond request/response so the next com-
munications with the server happen faster. Under the hood, there are two-way sockets
that stay open—but browsers diligently follow the old model. They don’t create
bidirectional pipe-like connections, as in flash.net.NetConnection.

As web browsers started to host business applications, the need to process the real-time
data forced people to look into solutions better than polling, and a few server-side push

272 | Chapter 6: Open Source Networking Solutions

solutions were discovered. Although there were differences in implementations, the
main theme remained the same—the server would get requests and hold them for a
long time, flushing packages down when it became available.

The packages would reach the browser to be interpreted either by programs upon ar-
rival or executed in the iFrame (if packaged as <script/> sections of DHTML). The
important part was that people started to see that a server-driven model was valid, and
that it was a better fit for some applications. The servers started controlling the clients.

Currently, there are two approaches to breaking the request/response paradigm: the
Comet model and the model offered by the creators of the Jetty application server.

When we started writing this book, the draft of the Java Servlet 3.0
specification (JSR-315) was based on asynchronous servlets implemen-
ted in the Jetty Servlet container. Then, the public review of JSR-315
was drastically changed. You can read more on the subject in the post
titled “JSR-315: JSP Failings,” located at http://blogs.webtide.com/
gregw/entry/servlet_3_0_public_review.

What Is Comet?
A number of open source and commercial implementations of Comet exist in Java and
Python. They can be very different, capitalizing on nonblocking I/O, using optimized
threads, or offering more efficient native sockets support.

A servlet container in Jetty works in a half-duplex mode: it opens a dedicated streaming
connection for flushing the data to the client, but also allows request/responses.

The Comet model is a full duplex that uses a two-way socket implementation like in
Apache Tomcat that extends a conventional request/response model with events that
are being sent on an established HTTP connection.

With Comet, the idea is that the server provides a second model for the requests handler
in addition to the conventional one. There is a dedicated open connection that receives
events related to the requests. If you run a Java servlet, it will receive additional events
from the server: connect, read, error, and disconnect:

connect and disconnect
Define the life span of the connection object available for communications.

error
Notifies the servlet of the low-level errors in the transmission protocol.

read
Dispatched when there is a request coming from the client; allows the server to
read and process it. The server keeps connection and response objects and writes
(flushes) the information to the client as needed.

HTTP Connection Management | 273

http://blogs.webtide.com/gregw/entry/servlet_3_0_public_review
http://blogs.webtide.com/gregw/entry/servlet_3_0_public_review

Adding an event model to the server side brings symmetry to the client/server pro-
gramming model and greatly simplifies the asynchronous programming. Unfortu-
nately, existing implementations of this model are not overly reliable.

If you want to use the two-way socket model, you will need to write
some custom code using the Flash NetConnection object to stream the
data from the client to the server, too.

Consider how this model is different for fine-grained requests common in today’s AJAX
applications. Imagine that you’re in a coffee shop with a lousy WiFi connection sporting
1-second latency for a typical eBay response implemented as a web device, watching
30 items.

With the current browser settings (two connections per domain), it would take you 15
seconds to refresh all 30 items. With six allowed browser connections, this time is
reduced to five seconds, but will require a more powerful infrastructure on the server
side.

With the Comet-type requests, you can send all 30 requests without waiting for a single
response (the same will be done with AMF HTTP batching) and will receive all 30
responses asynchronously. Meanwhile, with HTTP batching, you would get all 30 re-
sponses at once, and need some kind of sorting adapters on both sides to distribute
batch members to the proper responders.

Putting Streaming to Work
Imagine a small village by the river. There is one boat, and whoever needs to go to the
other bank to buy some food takes this boat. No one in the village can go to the other
bank until the boat’s back. This is in some sense similar to the HTTP request/response
model of communication.

At some point, people who lived in the same village built a two-lane bridge over this
river. Each lane allows walking in one direction. All of a sudden you see that lots of
people are moving in both directions at the same time. The number of trips to the other
riverbank is a lot higher now. Yes, people carrying the shopping bags may go slower,
but they are all moving at the same time. And each trip is faster, too; there is no need
to embark/disembark from the boat (connect/disconnect). This is streaming.

RTMP implementation offers two-lane traffic (a two-directional socket)
and is a lot more efficient than the request/response model. Each con-
nected computer just sends the data in one direction to a dedicated
socket, which allows you to measure and estimate delivery metrics in
each direction. RTMP is an open protocol available at http://www.adobe
.com/devnet/rtmp/.

274 | Chapter 6: Open Source Networking Solutions

http://www.adobe.com/devnet/rtmp/
http://www.adobe.com/devnet/rtmp/

In multimedia applications, having an uninterrupted data delivery is a must, and the
request/response model doesn’t work here. When you go to http://www.youtube.com,
you expect to start watching the video immediately, without waiting until the entire
file is downloaded to the client. And after seeing the first frames of the video, you’d like
to have the rest in a smooth, uninterrupted mode, and this type of playback is supported
by buffering of the stream data.

Integrating Multimedia Solutions
For a long time, Flash Player was the de facto standard tool in delivering multimedia
—especially video. These capabilities are based on its NetConnection object and are
embedded in a number of classes, including Camera, Microphone, and Video.

NetConnection communicates with the server by establishing a full duplex open
connection—the two-way socket—and both the server and the client can initiate the
conversation. This is a far simpler programming model, and provides improved per-
formance for intensive two-way communications.

A standard solution is to separate the media portion into an instance (or a farm) of the
Flash Media Server. However, some applications might have different licensing and
integration requirements. Other alternatives include Red5, an open source server, and
Wowza, a commercial Java media server. The advantages of these drop-in servers is the
transparency in integration of streaming with the other parts of the application.

With the release of Flash 10, new sound capabilities with high-quality voice codecs and
audio capabilities open up a whole new world of human interaction. But the most
important feature driving new types of applications will be based on P2P support and
UDP communications built into Flash Player 10.

Unlike traditional web applications, they require very little infrastructure and band-
width as they use clients’ resources. These applications enable VoIP (Voice over Internet
Protocol), teleconferencing, screen sharing, and resource polling of applications on the
widest deployment platform.

The users of the business Flex applications want to have the same experience, too. In
this case, the stream consists of the Flex code and the data, so it’s important to make
the right decision about the amount of code that will have to be downloaded to the
user’s computer.

Consider a few types of web applications that benefit from breaking free from a tradi-
tional request/response model:

Applications built on the publish/subscribe model or the server-side push
In this scenario, the data is being sent to the client as soon as it becomes available
on the server. Typical examples of such applications are chat rooms, stock market
data feeds, and delivering videos to users.

Putting Streaming to Work | 275

http://www.youtube.com

Online transaction processing, analytical applications, and distributed services that need
to extend the request/response model

For example, a call center application has to broadcast the data modifications done
by one clerk to another to ensure that the second doesn’t work on the stale data.
For distributed request/response services, you can’t guarantee the response time,
because the response may sit on the server just because the client has a very limited
set of available connection objects, in which case your application would stall.

Applications that need to force the execution of the code on the client
Some applications benefit from the server-side components being able to directly
call methods on the objects that exist on the client side in Flash Player. Typical
cases are remote support and administration or workflow systems in which the
server needs to force the client to move to a new node of the workflow. BlazeDS
needs to be enhanced to support servers that can call clients.

Figure 6-3 illustrates three use cases of enterprise RIA:

Subscribe and publish
You send the data using BlazeDS and improve the scalability of the application.
You’ll see this demonstrated with the Jetty server scenario in the following section.

Remoting and SOA
A remote object takes care of publishing and subscribing, keeps track of the cor-
relation IDs of the messages received from the clients, and pushes the data to the
clients. In the SOA world, the data returned by the service may change over time,
and you can’t control it. In this model, you can’t control the response time, either.
SOA is a good use case for introducing data push to a rich client.

Remote control
You need to push the software or data updates to the client.

Enhanced
Flex/BlazeDS

framework

Remoting
and SOA

Subscribe
and publish

Remote
control

Figure 6-3. Use cases for streaming

276 | Chapter 6: Open Source Networking Solutions

To start building streaming solutions, you need to extend BlazeDS to utilize modern
JEE technologies. We’ll use asynchronous servlets offered by the Jetty server.

JEE stands for Java Enterprise Edition. It was formerly knows as J2EE.

The Networking Architecture of BlazeDS
BlazeDS provides a clean separation of the networking layer (a servlet container) from
the actual implementation of server-side services used by Flex clients. To recap what
you learned in Chapter 5, the elements that are communicating on the servlet container
level and delivering messages to and from services are called endpoints. If you open the
configuration file services-config.xml that comes with BlazeDS, you’ll find declarations
of several communication channels, for example:

<channel-definition id="my-amf" class="mx.messaging.channels.AMFChannel">
 <endpoint
url="http://{server.name}:{server.port}/{context.root}/messagebroker/amf"
class="flex.messaging.endpoints.AMFEndpoint"/>
</channel-definition>

By adding new or extending existing endpoints, you can add new or extend existing
protocols or even expose the low-level networking in the way required by your appli-
cation. Figure 6-4 depicts the business part of the application as a service that can be
accessed via an endpoint of the protocol being used (a BlazeDS implementation of AMF,
in our example). Both your application and BlazeDS live inside the servlet container.

Servlet container

Endpoint

Service

Figure 6-4. Server-side layers

The Networking Architecture of BlazeDS | 277

The following sections demonstrate how Farata Systems extended BlazeDS to work
with Java nonblocking I/O (NIO) and continuations (suspend/resume mode) offered
by the Jetty API.

Setting Up a BlazeDS Sample Application on Jetty
In this exercise, you’ll need to use Jetty, as it’s the only open source implementation of
the asynchronous servlets based on the suspend/resume mode at the time of this
writing.

To set up a BlazeDS sample application with Jetty, follow these three steps:

1. Download and install Jetty from http://dist.codehaus.org/jetty/ according to its in-
stallation instructions. The steps assume that you’ll install it into the folder /jetty,
but you can use any other folder; just modify the configuration files accordingly.

2. Download the BlazeDS turnkey distribution file from http://opensource.adobe.com/
wiki/display/blazeds/Release+Builds. Unzip it to a /samples folder. Locate the file
samples.war there and unzip it into the samples folder under jetty/webapps-plus/.
Start the sampledb database by executing the script provided with this turnkey
distro for your OS—for example, /samples/sampledb/startdb.sh.

3. Uncomment the following section in the file /jetty/etc/jetty-plus.xml to automati-
cally include all applications located in the folder webapps-plus:

<Call name="addLifeCycle">
<Arg>
<New class="org.mortbay.jetty.deployer.WebAppDeployer">
 <Set name="contexts"><Ref id="Contexts"/></Set>
 <Set name="webAppDir"><SystemProperty name="jetty.home" default="."/>/webapps-
 plus</Set>
 <Set name="parentLoaderPriority">false</Set>
 <Set name="extract">true</Set>
 <Set name="allowDuplicates">false</Set>
 <Set name="defaultsDescriptor"><SystemProperty name="jetty.home"
 default="."/>/etc/webdefault.xml</Set>
 <Set name="configurationClasses"><Ref id="plusConfig"/></Set>
</New>
</Arg>
</Call>

Now you can start Jetty by entering the following command at the prompt (in Win-
dows, replace the etc/ with another folder):

java -DOPTIONS=plus,jsp,ssl -jar start.jar etc/jetty.xml etc/jetty-ssl.xml
etc/jetty-plus.xml

Once the server starts, open http://localhost:8080/samples/ in your web browser and
make sure that both the Traders Desktop (http://localhost:8080/samples/#traderdesk-
top) and the Chat sample (http://localhost:8080/samples/testdrive-chat/index.html)
applications that come with BlazeDS work.

278 | Chapter 6: Open Source Networking Solutions

http://dist.codehaus.org/jetty/
http://opensource.adobe.com/wiki/display/blazeds/Release+Builds
http://opensource.adobe.com/wiki/display/blazeds/Release+Builds

Setting BlazeDS Messaging to Use the Jetty NIO API
Add the NIO messaging endpoint to the BlazeDS configuration:

1. Get the file http://myflex.org/books/entflex/nioblaze.jar and copy it into the appli-
cation’s folder, /jetty/webapps-plus/samples/WEB-INF/lib. This file is also available
with this book’s samples.

2. Open /jetty/webapps-plus/samples/WEB-INF/flex/services-config.xml and com-
ment out this section:

<!--channel-definition id="my-streaming-amf"
class="mx.messaging.channel.StreamingAMFChannel">
<endpoint
 url="http://{server.name}:{server.port}/{context.root}/messagebroker/
 streamingamf"
 class="flex.messaging.endpoints.StreamingAmfEndpoint"/>
</channel-definition-->

3. Add the following section there instead (please note that we are replacing the
standard StreamingAmfEndpoint with our own NioAmfEndpoint):

<channel-definition id="my-streaming-amf"
 class="mx.messaging.channel.StreamingAMFChannel">
<endpoint
 url="http://{server.name}:{server.port}/{context.root}/messagebroker/
 streamingamf"
 class="com.farata.nioblaze.messaging.endpoints.NioAmfEndpoint"/>
</channel-definition>

4. Restart Jetty. You should be able to run the same Trader Desktop or Chat appli-
cation, only this time you can support far more concurrent users, and shortly you’ll
see why.

NIO Performance Test
Jetty itself is powerful enough to support 20,000 connected users. The benchmark tests
were performed on a standard Amazon EC2 virtual server, and you can find details
about these tests at http://cometdaily.com/2008/01/07/20000-reasons-that-comet
-scales/.

When infused with BlazeDS, however, can Jetty still support thousands of users? We
recently put this question to the test at Farata Systems.

The Theory
BlazeDS was offered as a free version of LCDS remoting that also promised scaled-down
support of a modest number of concurrent users for data push.

But enterprise IT shops wanted the best of both worlds: an inexpensive but scalable
solution. The great part about LCDS and BlazeDS is that their code base is extendable
and you can teach these old dogs new tricks. The problem is that their original code is

The Networking Architecture of BlazeDS | 279

http://myflex.org/books/entflex/nioblaze.jar
http://cometdaily.com/2008/01/07/20000-reasons-that-comet-scales/
http://cometdaily.com/2008/01/07/20000-reasons-that-comet-scales/

targeting only conventional Java Servlet containers, and that the performance/scala-
bility of BlazeDS also depends on the number of concurrent connections supported by
the hosting server, such as Tomcat, JBoss, WebSphere, and so on.

Farata Systems architects started experiments in this area when the prerelease of Jetty
7 was announced (http://www.mortbay.org/jetty/).

BlazeDS runs in a servlet container, which maintains a thread pool. A thread is given
to a client request and is returned back to the reusable pool after the client has been
served. When the client uses a so-called long-running connection, the thread becomes
locked by that client until it finishes the request. So the number of the concurrent
subscribers in BlazeDS depends on the number of threads that a particular servlet con-
tainer can hold simultaneously.

Though the source code of BlazeDS has 10 as a default number of simultaneous con-
nections, it can be increased to several hundred, and the actual number depends on the
server’s threading configuration, CPU, and the size of its JVM heap memory. This
number can also be affected by the number of messages processed by the server in the
unit of time as well as the size of the messages.

Nonblocking I/O combined with Jetty’s suspend/resume processing mode allows you
to write code that is not tied to available server threads. The servlet container sends a
request for execution and puts it in a suspended mode, releasing the thread for other
requests. When the result comes back, it resumes the processing of the request, effi-
ciently recycling a smaller number of threads. Because of that, the number of streaming
connections can be increased to thousands.

The first goal was to create a module for BlazeDS to support Jetty’s suspend/resume
mode with the messaging based on AMF streaming. Additional endpoints (components
responsible for binding actual application services with the servlet container) were cre-
ated based on the BlazeDS open source implementation.

Three small changes are required to add NIO endpoints to a standard BlazeDS (or LCDS
for that matter) application in the standard Jetty installation:

1. Add Farata’s nioblazeds.jar to Jetty’s lib folder.

2. Modify the services-config.xml file of BlazeDS to change the standard thread-based
endpoint for AMF streaming with Farata’s NioAmfEndpoint, which supports Jetty’s
API.

3. Increase the parameter of Jetty’s number of open file handlers based on the number
of concurrent user requests that you are planning to process.

The Trader Desktop, a sample application that comes with BlazeDS, was successfully
deployed under BlazeDS/Jetty and tested without any changes in enhanced endpoints.

280 | Chapter 6: Open Source Networking Solutions

http://www.mortbay.org/jetty/

The source code of this solution is available in the CVS repository of the
Clear Toolkit framework in the NIOBlaze package, available at http://
cleartoolkit.cvs.sourceforge.net/viewvc/cleartoolkit/.

The next step was to stress-test this application using one of the commercial testing
software suites that supports the AMF protocol. Farata engineers teamed up with a
company called Neotys (http://neotys.com), the creator of a robust stress-testing prod-
uct called NeoLoad that allows testers to emulate the workload of tens of thousands
of users hitting a server via both the HTTP and AMF protocols.

This test was recorded, and you can watch a short screencast that emulates 5,000 users
working with the Trader Desktop over a five-minute period. To view it, go to: http://
myflex.org/demos/JettyBlazeDS/JettyBlazeDSloadTest.html. One screen is shown in
Figure 6-5.

The test starts with 200 users ramping up at the rate of 500 users per each 10 seconds.

Figure 6-5. Configuring performance tests with NeoLoad

In this demo, the server-side feed sends the messages about the latest stock prices to
the Flex subscribers. After that, you’ll be monitoring this process using ds-console, yet
another sample application that comes with BlazeDS.

The Networking Architecture of BlazeDS | 281

http://cleartoolkit.cvs.sourceforge.net/viewvc/cleartoolkit/
http://cleartoolkit.cvs.sourceforge.net/viewvc/cleartoolkit/
http://neotys.com
http://myflex.org/demos/JettyBlazeDS/JettyBlazeDSloadTest.html
http://myflex.org/demos/JettyBlazeDS/JettyBlazeDSloadTest.html

First, the monitor will show just one client with a small number of messages, and the
number of maximum streaming clients is set to 65,535.

Then, NeoLoad creates a large number of users. This test uses five machines to emulate
the load. The push count is the number of messages sent by the server. The server runs
on an eight-CPU machine. Watch the number of allocated threads and the number of
users—the number of threads is several times lower than the number of users at any
given time. Please note that even when the number of users grows, the number of
threads doesn’t. These processes are not expensive from the perspective of either the
memory or the CPU utilization.

In this test, the system was purposely restricted by introducing throttling in the
Feed.java file. During this five-minute test, the server pushed about 2.1 million mes-
sages. Because during the first 3 minutes (180 seconds) of the test NeoLoad was ramp-
ing up the number of users until it reached 5,000, you should count this time as half
of this amount, or 90 seconds. Adding another two minutes (after the first three) brings
the adjusted test time to 210 seconds or 10,000 messages per second. This means that
that each of 5,000 users received two messages per second, which matches the throttling
parameter that was set in Feed.java (400 ms of sleep time between messages broadcast).

Based on the server CPU and memory utilization this setup won’t have difficulties
supporting over 12,000 users, as long as external load generators are added and the
network bandwidth is increased.

One of the machines used in this test was an eight-core MacPro for the server, where
four of the cores were shared with the VM emulating one of the client’s machines. There
were also two 3 Ghz desktops, one MacBook Pro and one 2 Ghz Dell laptop; that’s the
one that will work really hard trying to parse 300 messages per second.

Figure 6-6 depicts a snapshot of the NeoLoad window during our performance test.

Farata ran the same test with an Apache Tomcat server using traditional thread-based
I/O and standard BlazeDS long polling. Tomcat comes preconfigured with 250 threads.
After gradually increasing this number, the same test can run for about 800 users, but
pretty soon the system becomes unstable, running out of threads and giving out mem-
ory errors.

Tomcat also has experimental NIO implementation of the servlet container imple-
menting Comet techniques. Farata Systems has created an endpoint adapter to utilize
the NIO of Jetty with BlazeDS. But while holding high the promises of a more efficient
full-duplex protocol, the current Tomcat Comet implementation had some reliability
issues.

The screencast should be treated as a feasibility study and technical comment, and not
as a benchmark of any sort, as the implementation still has a lot of room for improve-
ment. More tests are required for a proper scalability benchmark.

282 | Chapter 6: Open Source Networking Solutions

Based on these results, you may consider using open source BlazeDS in the most de-
manding enterprise Flex applications. If you are looking for a no-cost extensible solu-
tion that works in a standard web environment with corporate firewalls and requires
session management, properly tuned BlazeDS under a Jetty server becomes a good
scalable solution for your next RIA.

In the summer of 2009, Jetty started offering its own asynchronous im-
plementation of BlazeDS that utilizes Jetty 7 continuations. You can
read about it at the following blog post: http://blogs.webtide.com/athena/
entry/asynchronous_blazeds_polling_with_jetty.

Both LCDS and BlazeDS can be treated as a very good transport solution between Flash
Player on the client side and Java application server on the server side. But the main
focus of RIA architects should remain the same—how to minimize the amount of cod-
ing of application programmers that need to communicate with the server, which will
be the subject of the next section.

Data Access Automation
Once the transport technology has been selected, you need to try to remove the com-
plexity of the data access and persistence layer. The Data Management Services that

Figure 6-6. Monitoring performance tests with NeoLoad

Data Access Automation | 283

http://blogs.webtide.com/athena/entry/asynchronous_blazeds_polling_with_jetty
http://blogs.webtide.com/athena/entry/asynchronous_blazeds_polling_with_jetty

come with LCDS provide an excellent model for automation of this task. But you can
develop your own framework based on the open source products, and in the following
sections, you’ll learn how to re-create all the necessary components for a data persis-
tence framework.

To offer functionality similar to that of LCDS in our framework, we need to create the
following data management components:

• Data transfer objects

• ChangeObject

• Assembler

• A change-tracking collection

• A destination-aware collection

In the following sections, we’ll offer you Farata Systems’ version of such
components. If you like them, get their source code in the CVS reposi-
tory at SourceForge (http://cleartoolkit.cvs.sourceforge.net/cleartoolkit/)
and use them as you see fit. We also encourage you to enhance them
and make them available for others in the same code repository.

Data Transfer Objects
Using data transfer objects (DTOs) is very important for architecting automated up-
dates and synchronization. In Flex/Java RIA, there are at least two parties that need to
have an “exchange currency”: ActionScript and Java. Each of these parties has their
own contracts on how to support the data persistence. Let’s concentrate on the
ActionScript part first.

In the Café Townsend sample, the data objects responsible for the exchange between
Java and ActionScript are EmployeDTO.java and EmployeeDTO.as (see a fragment of
EmployeeDTO.as in Example 6-2). The Java side sends instances of EmployeDTO objects,
which are automatically re-created as their ActionScript peers on the frontend.

Example 6-2. Employee.DTO.as

/* Generated by Clear Data Builder (ActionScriptDTO_IManaged.xsl) */
package com.farata.datasource.dto
{
 import flash.events.EventDispatcher;
 import flash.utils.Dictionary;
 import flash.utils.ByteArray;
 import mx.events.PropertyChangeEvent;
 import mx.core.IUID;
 import mx.utils.UIDUtil;

 [RemoteClass(alias="com.farata.datasource.dto.EmployeeDTO")]
 [Bindable(event="propertyChange")]
 public dynamic class EmployeeDTO extends EventDispatcher //implements IManaged

284 | Chapter 6: Open Source Networking Solutions

http://cleartoolkit.cvs.sourceforge.net/cleartoolkit/

 {
 // Internals
 public var _nulls:String;

 // Properties
 private var _EMP_ID : Number;
 private var _MANAGER_ID : Number;
 ...
 public function get EMP_ID() : Number{
 return _EMP_ID;
 }
 public function set EMP_ID(value : Number):void{
 var oldValue:Object = this._EMP_ID;
 if (oldValue !== value) {
 this._EMP_ID = value;
 dispatchUpdateEvent("EMP_ID", oldValue, value);
 }
 }

 public function get MANAGER_ID() : Number{
 return _MANAGER_ID;
 }
 public function set MANAGER_ID(value : Number):void{
 var oldValue:Object = this._MANAGER_ID;
 if (oldValue !== value) {
 this._MANAGER_ID = value;
 dispatchUpdateEvent("MANAGER_ID", oldValue, value);
 }
 }

 public function get properties():Dictionary {
 var properties:Dictionary = new Dictionary();
 properties["EMP_ID"] = _EMP_ID;
 properties["MANAGER_ID"] = _MANAGER_ID;

 return properties;
 }

 public function set properties(properties:Dictionary):void {

 _EMP_ID = properties["EMP_ID"];
 _MANAGER_ID = properties["MANAGER_ID"];
 ...
 }

 private var _uid:String;
 public function get uid():String
 {
 return _uid;
 }
 public function set uid(value:String):void
 {
 _uid = value;
 }

Data Access Automation | 285

 public function EmployeeDTO() {
 _uid = UIDUtil.createUID();
 }

 public function newInstance() : * { return new EmployeeDTO();}

 private function dispatchUpdateEvent(propertyName:String,
 oldValue:Object, value:Object):void {
 dispatchEvent(
 PropertyChangeEvent.createUpdateEvent(this, propertyName,
 oldValue, value)
);
 }

 public function clone(): EmployeeDTO {
 var x:EmployeeDTO = new com.farata.datasource.dto.EmployeeDTO();
 x.properties = this.properties;
 return x;
 }
 }
}

The class starts with a [RemoteClass] metadata tag that instructs the compiler that this
class should be marshaled and re-created as its peer com.farata.data
source.dto.EmployeeDTO on the server side.

This class is an event dispatcher and any changes to its members will result in the update
event, which allows you to perform easy tracking of its properties’ changes by dis-
patching appropriate events. This feature is also important for the UI updates if the
DTOs are bound to UI controls, such as a DataGrid.

Note that all the properties in this class are getter/setter pairs: they can’t remain public
variables, because we want the dispatchUpdateEvent() method to be called every time
the variable’s value is being changed.

In addition to the functional properties like EMP_ID and EMP_FNAME, the class also con-
tains a setter and getter for the uid property; this qualifies the class as an implementer
of the IUID interface. Existence of a uid property allows easy indexing and searching
of records on the client.

However, implementing uid as a primary key on the server side is crucial in order to
ensure synchronization and uniqueness of updates. Usually uid represents the primary
key from a database table. The other function often required by automatic persistence
algorithms is getChangedPropertyNames(), in order to teach DTO to mark updated
properties (Example 6-3).

Example 6-3. EmployeeDTO.java

package com.farata.datasource.dto;
import java.io.Serializable;
import com.farata.remoting.ChangeSupport;

286 | Chapter 6: Open Source Networking Solutions

import java.util.*;
import flex.messaging.util.UUIDUtils;

public class EmployeeDTO implements Serializable, ChangeSupport {

 private static final long serialVersionUID = 1L;
 public String _nulls; // internals
 public long EMP_ID;
 public long MANAGER_ID;
 ...
 public Map getProperties() {
 HashMap map = new HashMap();
 map.put("EMP_ID", new Long(EMP_ID));
 map.put("MANAGER_ID", new Long(MANAGER_ID));
...
 return map;
}

// Alias names is used by code generator of CDB in the situations
// if select with aliases is used, i.e.
// SELECT from A,B a.customer cust1, b.customer cust2

// In this case plain names on the result set would be cust1 and cust2,
// which would complicate generation of the UPDATE statement.
// If you don't use code generators, there is no need to add aliasMap
// to your DTOs
public static HashMap aliasMap = new HashMap();

public String getUnaliasedName(String name) {
 String result = (String) aliasMap.get(name);
 if (result==null)
 result = name;

return result;
}

public String[] getChangedPropertyNames(Object o) {
 Vector v = new Vector();
 EmployeeDTO old = (EmployeeDTO)o;
 if (EMP_ID != old.EMP_ID)
 v.add(getUnaliasedName("EMP_ID"));

 if (MANAGER_ID != old.MANAGER_ID)
 v.add(getUnaliasedName("MANAGER_ID"));
 ...
 String [] _sa = new String[v.size()];
 return (String[])v.toArray(_sa);
}
}

To better understand how changes are kept, take a look at the internals of the
ChangeObject class, which stores all modifications performed on the DTO. It travels
between the client and the server.

Data Access Automation | 287

ChangeObject
ChangeObject is a special DTO that is used to propagate the changes between the server
and the client. The ChangeObject class exists in the Data Management Services of LCDS,
and is shown in Example 6-4. On the client side, it is just a simple storage container
for original and new versions of a record that is undergoing some changes. For example,
if the user changes some data in a DataGrid row, the instance of the ChangeObject will
be created, and the previous version of the DTO that represents this row will be stored
along with the new one.

Example 6-4. ChangeObject.as

package com.farata.remoting {
 [RemoteClass(alias="com.farata.remoting.ChangeObjectImpl")]
 public class ChangeObject {

 public var state:int;
 public var newVersion:Object = null;
 public var previousVersion:Object = null;
 public var error:String = "";
 public var changedPropertyNames:Array= null;

 public static const UPDATE:int=2;
 public static const DELETE:int=3;
 public static const CREATE:int=1;

 public function ChangeObject(state:int=0,
 newVersion:Object=null, previousVersion:Object = null) {
 this.state = state;
 this.newVersion = newVersion;
 this.previousVersion = previousVersion;
 }

 public function isCreate():Boolean {
 return state==ChangeObject.CREATE;
 }
 public function isUpdate():Boolean {
 return state==ChangeObject.UPDATE;
 }
 public function isDelete():Boolean {
 return state==ChangeObject.DELETE;
 }
 }
}

As you can see, every changed record can be in a DELETE, UPDATE, or CREATE state. The
original version of the object is stored in the previousVersion property and the current
one is in the newVersion. That turns the ChangeObject into a lightweight implementation
of the Assembler pattern, which offers a simple API to process all the data changes in
a standard way, similar to what’s done in the Data Management Services that come
with LCDS.

288 | Chapter 6: Open Source Networking Solutions

The Java counterpart of the ChangeObject (Example 6-5) should have few extra con-
venience generic methods. All specifics are implemented in a standard way in the
EmployeeDTO.

Example 6-5. ChangeObjectImpl.java

Package com.theriabook.remoting;
import java.util.*;
public class ChangeObjectImpl {
 public void fail() {
 state = 100;
 }
 public void fail(String desc) {
 // TODO Auto-generated method stub
 fail();
 error = desc;
 }
 public String[] getChangedPropertyNames() {
 // TODO Auto-generated method stub
 changedNames = newVersion.getChangedPropertyNames(previousVersion);
 return changedNames;
 }
 public Map getChangedValues()
 {
 if ((newVersion==null) || (previousVersion==null)) return null;
 if(changedValues == null)
 {
 if(changedNames == null)
 changedNames = getChangedPropertyNames();
 if (newMap == null)
 newMap = newVersion.getProperties();
 changedValues = new HashMap();
 for(int i = 0; i < changedNames.length; i++)
 {
 String field = changedNames[i];
 changedValues.put(field, newMap.get(field));
 }
 }
 return Collections.unmodifiableMap(changedValues);
 }
 public Object getPreviousValue(String field) {
 if (previousMap == null)
 previousMap = previousVersion.getProperties();
 return previousMap.get(field);
 }
 public boolean isCreate() {
 return state == 1;
 }
 public boolean isDelete() {
 return state == 3;
 }
 public boolean isUpdate() {
 return state == 2;
 }
public void setChangedPropertyNames(String [] columns)

Data Access Automation | 289

 {
 changedNames = columns;
 changedValues = null;
 }
public void setError(String s) {
 error = s;
 }
 public void setNewVersion(Object nv) {
 newVersion = (ChangeSupport)nv;
 changedValues = null;
 }
 public void setPreviousVersion(Object o) {
 previousVersion = (ChangeSupport)o;
 }
 public void setState(int s) {
 state = s;
 }

//---------------------- E X T E N S I O N S--------------------------
 public int state = 0;
 public ChangeSupport newVersion = null;
 public ChangeSupport previousVersion = null;
 public String error ="";

 protected Map newMap = null;
 protected Map previousMap = null;
 protected String[] changedNames = null;
 protected Map changedValues = null;
}

Assembler and DAO Classes
In Core J2EE Patterns, the Transfer Object Assembler means a class that can build
DTOs from different data sources (see http://java.sun.com/blueprints/corej2eepatterns/
Patterns/TransferObjectAssembler.html). In Flex/Java RIA, the Assembler class would
hide from the Flex client actual data sources used for data retrieval. For example, it can
expose the method getEmployees() for retrieval of the EmployeeDTO objects that are ac-
tually retrieved from more than one data source.

For simplicity, the method getEmployees() shown in Example 6-6 delegates the pro-
cessing to a single DAO (Data Access Object), but this does not have to be the case,
and the data required for population of the list of EmployeeDTOs can be coming from
several data sources.

Similarly, for data updates the client calls the sync() method without knowing the
specifics; the DAO class or classes take care of the data persistence.

In the example framework, you’ll build an Assembler class similar to what Adobe rec-
ommends creating in the case of using LCDS. The instances of ChangeObject are used
for communication between Flex and the Java Assembler class, which in turn will use
them for communication with DAO classes.

290 | Chapter 6: Open Source Networking Solutions

http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObjectAssembler.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObjectAssembler.html

The Assembler pattern cleanly separates the generic Assembler’s APIs from specifics of
the DAO implementation.

Example 6-6. EmployeeAssembler.java

package com.farata.datasource;

import java.util.*;

public final class EmployeeAssembler{
 public EmployeeAssembler(){
 }

 public List getEmployees() throws Exception{
 return new EmployeeDAO().getEmployees();
 }

 public final List getEmployees_sync(List items){
 return new EmployeeDAO().getEmployees_sync(items);
 }
}

The two main entry points (data retrieval and updates) will show you how easy it is to
build a DAO adapter.

First, you need to separate the task into the DAO and Assembler layers by introducing
methods with fill (retrieve) and sync (update) functionality. The complete source code
of the EmployeeDAO class is included in the code samples accompanying this book, and
the relevant fragments from this class follow in Example 6-7.

Example 6-7. Fill and sync fragment from EmployeeDAO.java

package com.farata.datasource;
import java.sql.*;
import java.util.*;
import flex.data.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.transaction.*;
import com.farata.daoflex.*;

public final class EmployeeDAO extends Employee {

 public final List getEmployees_sync(List items) {
 Coonection conn = null;
 try {
 conn = JDBCConnection.getConnection("jdbc/test");
 ChangeObject co = null;
 for (int state=3; state > 0; state--) { //DELETE, UPDATE, CREATE
 Iterator iterator = items.iterator();
 while (iterator.hasNext()) { // Proceed to all updates next
 co = (ChangeObject)iterator.next();
 if(co.state == state && co.isUpdate())
 doUpdate_getEmployees(conn, co);

Data Access Automation | 291

 if(co.state == state && co.isDelete())
 doDelete_getEmployees(conn, co);
 if(co.state == state && co.isCreate())
 doCreate_getEmployees(conn, co);
 }
 }
 } catch(DataSyncException dse) {
 dse.printStackTrace();
 throw dse;
 } catch(Throwable te) {
 te.printStackTrace();
 throw new DAOException(te.getMessage(), te);
 } finally {
 JDBCConnection.releaseConnection(conn);
 }
 return items;
 }
 public final List /*com.farata.datasource.dto.EmployeeDTO[]*/
 getEmployees_fill() {

 String sql = "select * from employee where dept_id=100";
 ArrayList list = new ArrayList();
 ResultSet rs = null;
 PreparedStatement stmt = null;
 Connection conn = null;
 try {
 conn = JDBCConnection.getConnection("jdbc/test");
 stmt = conn.prepareStatement(sql);
 rs = stmt.executeQuery();
 StringBuffer nulls = new StringBuffer(256);
 while(rs.next()) {
 EmployeeDTO dto = new dto.EmployeeDTO();
 dto.EMP_ID = rs.getLong("EMP_ID");
 if(rs.wasNull()) { nulls.append("EMP_ID|"); }
 dto.MANAGER_ID = rs.getLong("MANAGER_ID");
 if(rs.wasNull()) { nulls.append("MANAGER_ID|"); }
 ...
 dto.uid = "|" + dto.EMP_ID;
 list.add(dto);
 }
 return list;
 } catch(Throwable te) {
 te.printStackTrace();
 throw new DAOException(te);
 } finally {
 try {rs.close(); rs = null;} catch (Exception e){}
 try {stmt.close(); stmt = null;} catch (Exception e){}
 JDBCConnection.releaseConnection(conn);
 } }

As you can see in Example 6-7, the implementation of the fill method is really
straightforward. Review the code of the sync method, and you’ll see that it iterates
through the collection of ChangeObjects; calls their methods isCreate(), isUpdate(),

292 | Chapter 6: Open Source Networking Solutions

and isDelete(); and calls the corresponding function in the DAO class. These functions
are shown in the example.

Implementation of the insert and delete statements is based on new or old versions
wrapped inside ChangeObject. Example 6-8 calls the method getNewVersion() to get the
data for insertion in the database and getPreviousVersion() for delete.

Example 6-8. Create and delete fragment from EmployeeDAO.java

 private ChangeObject doCreate_getEmployees(Connection conn,
 ChangeObject co) throws SQLException{

 PreparedStatement stmt = null;
 try {
 String sql = "INSERT INTO EMPLOYEE " +
 "(EMP_ID,MANAGER_ID,EMP_FNAME,EMP_LNAME,
 DEPT_ID,STREET,CITY,STATE,ZIP_CODE,PHONE,
 STATUS,SS_NUMBER,SALARY,START_DATE,TERMINATION_DATE,
 BIRTH_DATE,BENE_HEALTH_INS,BENE_LIFE_INS,
 BENE_DAY_CARE,SEX)"+
 " values (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";

 stmt = conn.prepareStatement(sql);
 EmployeeDTO item = (EmployeeDTO) co.getNewVersion();
 stmt.setLong(1, item.EMP_ID);
 stmt.setLong(2, item.MANAGER_ID);
 ...
 if (stmt.executeUpdate()==0)
 throw new DAOException("Failed inserting.");
 co.setNewVersion(item);
 return co;
 } finally {
 try { if(stmt!=null) stmt.close(); stmt = null;}
 catch (Exception e){// exception processing goes here}
 } }

 private void doDelete_getEmployees(Connection conn, ChangeObject co)
 throws SQLException{
 PreparedStatement stmt = null;
 try {
 StringBuffer sql = new StringBuffer
 ("DELETE FROM EMPLOYEE WHERE (EMP_ID=?)");
 EmployeeDTO item = (EmployeeDTO) co.getPreviousVersion();
 stmt = conn.prepareStatement(sql.toString());
 stmt.setLong(1, item.EMP_ID);

 if (stmt.executeUpdate()==0)
 throw new DataSyncException(co, null,
 Arrays.asList(new String[]{"EMP_ID"}));
 } finally {
 try { if(stmt!=null) stmt.close(); stmt = null;
 } catch (Exception e){}
 } }

Data Access Automation | 293

To form the update statement, you need both the previous and the new version of the
data available inside ChangeObject instances (Example 6-9).

Example 6-9. Update fragment from EmployeeDAO.java

private void doUpdate_getEmployees(Connection conn, ChangeObject co)
 throws SQLException{

 String updatableColumns ",EMP_ID,MANAGER_ID,EMP_FNAME,EMP_LNAME,
 DEPT_ID,STREET,CITY,STATE,ZIP_CODE,
 PHONE,STATUS,SS_NUMBER,SALARY,START_DATE,
 TERMINATION_DATE,BIRTH_DATE,BENE_HEALTH_INS,
 BENE_LIFE_INS,BENE_DAY_CARE,SEX,";

 PreparedStatement stmt = null;

 try {
 StringBuffer sql = new StringBuffer("UPDATE EMPLOYEE SET ");
 EmployeeDTO oldItem =
 (EmployeeDTO) co.getPreviousVersion();
 String [] names = co.getChangedPropertyNames();
 if (names.length==0) return;

 for (int ii=0; ii < names.length; ii++) {
 if (updatableColumns.indexOf("," + names[ii] +",")>=0)
 sql.append((ii!=0?", ":"") + names[ii] +" = ? ");
 }

 sql.append(" WHERE (EMP_ID=?)");
 stmt = conn.prepareStatement(sql.toString());

 Map values = co.getChangedValues();
 int ii, _jj;
 Object o;
 _jj = 0;

 for (ii=0; ii < names.length; ii++) {
 if (updatableColumns.indexOf("," + names[ii] +",")>=0) {
 _jj++;
 o = values.get(names[ii]);
 if (o instanceof java.util.Date)
 stmt.setObject(
 _jj,DateTimeConversion.toSqlTimestamp((java.util.Date)o));
 else
 stmt.setObject(_jj, o);
 }
 }

 _jj++;
 stmt.setLong(_jj++, oldItem.EMP_ID);

 if (stmt.executeUpdate()==0)
 throw new DataSyncException(co, null,
 Arrays.asList(new String[]{"EMP_ID"}));
 } finally {

294 | Chapter 6: Open Source Networking Solutions

 try { if(stmt!=null) stmt.close(); stmt = null;
 } catch (Exception e){}
 } }

}

You can either manually write the code shown in Examples 6-2 to 6-9, or use the Clear
Data Builder for automated code generation.

The code in the examples is generic and can be either generated for the best performance
or parameterized for Java frameworks such as Spring or Hibernate.

DataCollection Class
It’s time to establish an ActionScript collection that will have two important features:

• It will know how to keep track of changes to its data.

• It will be destination-aware.

Such a collection would keep track of the data changes made from the UI. For example,
a user modifies the data in a DataGrid that has a collection of some objects used as a
data provider. You want to make a standard Flex ArrayCollection a little smarter so
that it’ll automatically create and maintain a collection of ChangeObject instances for
every modified, new, and deleted row.

We’ve developed a class DataCollection that will do exactly this seamlessly for the
application developer. This collection also encapsulates all communications with the
server side via RemoteObject, and it knows how to notify other users about the changes
made by you if they are working with the same data at the same time.

Shown in Example 6-10, this collection stores its data in the property source, the array
of ChangeObjects in modified, and the name of the remote destination in destination.
Every time the data in the underlying collection changes, this collection catches the
COLLECTION_CHANGE event, and based on the event’s property kind (remove, update, add)
removes or modifies the data in the collection. To support undo functionality, all
modified objects are stored in the properties deleted and modified.

Example 6-10. DataCollection.as—take 1

package com.farata.collections {
 [Event(name="propertyChange", type="mx.events.PropertyChangeEvent")]
 [Bindable(event="propertyChange")]

 public class DataCollection extends ArrayCollection {

 public var destination:String=null;
 protected var ro:RemoteObject = null;
 public var deleted:Array = new Array();
 public var modified:Dictionary = new Dictionary();
 public var alertOnFault:Boolean=true;
 private var trackChanges:Boolean=true;

Data Access Automation | 295

 // The underlaying data of the ArrayCollection
 override public function set source(s:Array):void {
 super.source = s;
 list.addEventListener(CollectionEvent.COLLECTION_CHANGE,
 onCollectionEvent);
 resetState();
 refresh();
 }
 // collection's data changed
 private function onCollectionEvent(event:CollectionEvent) :void {
 if (!trackChanges) return;
 switch(event.kind) {
 case "remove":
 for (var i:int = 0; i < event.items.length; i++) {
 var item:Object = event.items[i];
 var evt:DynamicEvent = new DynamicEvent("itemTracking");
 evt.item = item;
 dispatchEvent(evt);
 if (evt.isDefaultPrevented()) break;
 var co:ChangeObject = ChangeObject(modified[item]);
 var originalItem:Object=null;
 if (co == null) {
 // NotModified
 originalItem = item;
 } else if (!co.isCreate()) {
 // Modified
 originalItem = co.previousVersion;
 delete modified[item];
 modifiedCount--;
 } else {
 // NewModified
 delete modified[item];
 modifiedCount--;
 }
 if (originalItem!=null) {
 deleted.push(originalItem);
 deletedCount = deleted.length;
 };
 }
 break;
 case "add":
 for (i = 0; i < event.items.length; i++) {
 item = event.items[i];
 evt = new DynamicEvent("itemTracking");
 evt.item = item;
 dispatchEvent(evt);
 if (evt.isDefaultPrevented()) break;
 modified[item] = new ChangeObject
 (ChangeObject.CREATE, cloneItem(item), null);
 modifiedCount++;
 }
 break;
 case "update":
 for (i = 0; i < event.items.length; i++) {

296 | Chapter 6: Open Source Networking Solutions

 item = null;
 var pce:PropertyChangeEvent =
 event.items[i] as PropertyChangeEvent;
 if (pce != null) {
 item = pce.currentTarget; //as DTO;
 if(item==null)
 item = pce.source;
 evt = new DynamicEvent("itemTracking");
 evt.item = item;
 dispatchEvent(evt);
 if (evt.isDefaultPrevented()) break;
 }
 if (item != null) {
 if(modified[item] == null) {
 if (item.hasOwnProperty("properties")) {
 var oldProperties:Dictionary =
 item["properties"];
 oldProperties[pce.property] = pce.oldValue;
 var previousVersion:Object = cloneItem(item,
 oldProperties)
 } else {
 previousVersion = ObjectUtil.copy(item);
 previousVersion[pce.property] = pce.oldValue;
 }
 modified[item] = new ChangeObject(ChangeObject.UPDATE,
 item, previousVersion);
 modifiedCount++;
 }
 co = ChangeObject(modified[item]);
 if (co.changedPropertyNames == null) {
 co.changedPropertyNames = [];
 }
 for (i = 0; i < co.changedPropertyNames.length; i++)
 if (co.changedPropertyNames[i] == pce.property)
 break;
 if (i >= co.changedPropertyNames.length)
 co.changedPropertyNames.push(pce.property);
 }
 }

 break;

 }
 // to be continued
 }

For our DataCollection to really be useful for developers, it has to offer an API for
querying and manipulating its state. Developers should be able to query the collection
to find out whether this particular object is new, updated, or removed. The modified
variable of DataCollection is a reference to ChangeObject’s, and each of them can “in-
troduce” itself as new, updated, or removed. Hence we are adding the methods listed
in Example 6-11 to the DataCollection.

Data Access Automation | 297

zaremba
Comment on Text
variable? class? please clarify.

Replace "them" with "the ChangeObject instances"

Example 6-11. Adding more methods to DataCollection

 public function isItemNew(item:Object):Boolean {
 var co: ChangeObject = modified[item] as ChangeObject;
 return (co!=null && co.isCreate());
 }
 public function setItemNew(item:Object):void {
 var co: ChangeObject = modified[item] as ChangeObject;
 if (co!=null){
 co.state = ChangeObject.CREATE;
 }
 }
 public function isItemModified(item:Object):Boolean {
 var co: ChangeObject = modified[item] as ChangeObject;
 return (co!=null && !co.isCreate());
 }
 public function setItemNotModified(item:Object):void {
 var co: ChangeObject = modified[item] as ChangeObject;
 if (co!=null) {
 delete modified[item];
 modifiedCount--;
 }
 }

 private var _deletedCount : int = 0;
 public function get deletedCount():uint {
 return _deletedCount;
 }

 public function set deletedCount(val:uint):void {
 var oldValue :uint = _deletedCount ;
 _deletedCount = val;
 commitRequired = (_modifiedCount>0 || deletedCount>0);
 dispatchEvent(PropertyChangeEvent.createUpdateEvent(this, "deletedCount",
oldValue, _deletedCount));
 }

 private var _modifiedCount : int = 0;
 public function get modifiedCount():uint {
 return _modifiedCount;
 }
 public function set modifiedCount(val:uint) : void{
 var oldValue :uint = _modifiedCount ;
 _modifiedCount = val;
 commitRequired = (_modifiedCount>0 || deletedCount>0);
 dispatchEvent(PropertyChangeEvent.createUpdateEvent(this, "modifiedCount",
oldValue, _modifiedCount));
 }

 private var _commitRequired:Boolean = false;
 public function set commitRequired(val :Boolean) :void {
 if (val!==_commitRequired) {
 _commitRequired = val;
 dispatchEvent(PropertyChangeEvent.createUpdateEvent(this,
"commitRequired", !_commitRequired, _commitRequired));
 }

298 | Chapter 6: Open Source Networking Solutions

yfain11
Comment on Text
Move this all the way to the right

yfain11
Comment on Text
Move this all the way to the right

yfain11
Comment on Text
Move this all the way to the right

 }
 public function get commitRequired() :Boolean {
 return _commitRequired;
 }

 public function resetState():void {
 deleted = new Array();
 modified = new Dictionary();
 modifiedCount = 0;
 deletedCount = 0;
 }

The DataCollection can “tell” if any of its objects are new, removed, or updated; keeps
the counts of modified and deleted objects; and knows if commit (saving changes) is
required.

All the changes are accessible as the properties deletes, inserts, and updates. The
property changes will get you the entire collection of the ChangeObjects (Example 6-12).

Example 6-12. Adding more properties to DataCollection

public function get changes():Array {
 var args:Array = deletes;
 for (var item:Object in modified) {
 var co: ChangeObject =
 ChangeObject(modified[item]);
 co.newVersion = cloneItem(item);
 args.push(co);
 }
 return args;
 }

 public function get deletes():Array {
 var args:Array = [];
 for (var i :int = 0; i < deleted.length; i++) {
 args.push(
 new ChangeObject(
 ChangeObject.DELETE, null,
 ObjectUtils.cloneItem(deleted[i])
)
);
 }
 return args;
 }
 public function get inserts():Array {
 var args:Array = [];
 for (var item:Object in modified) {
 var co: ChangeObject = ChangeObject(modified[item]);
 if (co.isCreate()) {
 co.newVersion = ObjectUtils.cloneItem(item);
 args.push(co);
 }
 }
 return args;
 }

Data Access Automation | 299

 public function get updates():Array {
 var args:Array = [];
 for (var item:Object in modified) {
 var co: ChangeObject = ChangeObject(modified[item]);
 if (!co.isCreate()) {
 // make up to date clone of the item
 co.newVersion = ObjectUtils.cloneItem(item);
 args.push(co);
 }
 }
 return args;
 }

This collection should also take care of the communication with the server and call the
fill() and sync() methods. Because the DataCollection internally uses Flex remoting,
it’ll create the instance of the RemoteObject with result and fault handlers.

The application developer will just need to create an instance of DataCollection, then
specify the name of the remote destination and the remote method to call for data
retrieval and update.

As you saw in Example 1-27:

collection = new DataCollection();
collection.destination="com.farata.Employee";
collection.method="getEmployees";
...
collection.fill();

The fill() method here invokes the remote method getEmployees(). If the sync()
method is not specified, its default name will be getEmployees_sync(). After the code
fragment in Example 6-13 is added to DataCollection, it’ll be able to invoke a remote
object on the server after creating the instance of RemoteObject in the method cre
ateRemoteobject(). The method fill() calls invoke(), which in turn creates an instance
of the remote method using getOperation() on the remote object.

Example 6-13. Adding destination awareness to DataCollection

 public var _method : String = null;
 public var syncMethod : String = null;

 public function set method (newMethod:String):void {
 _method = newMethod;
 if (syncMethod==null)
 syncMethod = newMethod + "_sync";
 }
 public function get method():String { return _method; }

 protected function createRemoteObject():RemoteObject {
 var ro:RemoteObject = null;
 if(destination==null || destination.length==0)
 throw new Error("No destination specified");

 ro = new RemoteObject();

300 | Chapter 6: Open Source Networking Solutions

 ro.destination = destination;
 ro.concurrency = "last";
 ro.addEventListener(ResultEvent.RESULT, ro_onResult);
 ro.addEventListener(FaultEvent.FAULT, ro_onFault);
 return ro;
 }

 public function fill(... args): AsyncToken {
 var act:AsyncToken = invoke(method, args);
 act.method = "fill";
 return act;
 }

 protected function invoke(method:String, args:Array):AsyncToken {
 if(ro==null) ro = createRemoteObject();
 ro.showBusyCursor = true;
 var operation:AbstractOperation = ro.getOperation(method);
 operation.arguments = args;
 var act:AsyncToken = operation.send();
 return act;
 }

 protected function ro_onFault(evt:FaultEvent):void {
 CursorManager.removeBusyCursor();
 if (evt.token.method == "sync") {
 modified = evt.token.modified;
 modifiedCount = evt.token.modifiedCount;
 deleted = evt.token.deleted;
 }
 dispatchEvent(evt);
 if(alertOnFault && !evt.isDefaultPrevented()) {
 var dst:String = evt.message.destination;
 if(dst==null || (dst!=null && dst.length==0))
 try{ dst = evt.target.destination; } catch(e:*){};

 var ue:UnhandledError = UnhandledError.create(null, evt,
 DataCollection, this, evt.fault.faultString,
 "Error on destination: " + dst);
 ue.report();
 }
 }

 public function sync():AsyncToken {
 var act:AsyncToken = invoke(syncMethod, [changes]);
 act.method = "sync";
 act.modified = modified;
 act.deleted = deleted;
 act.modifiedCount=modifiedCount;
 return act;
 }

 }
}

Data Access Automation | 301

Let’s recap what you’ve done. You subclassed ArrayCollection and created the
DataCollection class that remembers all the changes to the underlying collection in the
form of ChangeObject instances. Each ChangeObject “knows” if it’s there because the
user modified, removed, or added a new object to the collection. The DataCollection
internally creates a RemoteObject based on the name of the destination and calls the
sync() method, passing the collection of ChangeObjects to it for persistence on the
server. Data retrieval is performed by calling DataCollection.fill().

Deep Data Synchronization with BlazeDS
Due to space constraints, you’ve been presented with the simplified fragments of the
DataCollection code to highlight its main features and give you a push in the right
direction, should you want to create your own version of such a collection. Here are a
few more possible approaches that may prove useful.

You can find the complete and up-to-date source code of the
DataCollection class (900+ lines of code) in the SourceForge repository
at http://tinyurl.com/cqnw8x.

Nested DataCollections
Previously, you learned about data synchronization between DataCollection and re-
mote Java objects via the method sync(). But what if you have a situation with nested
DataCollection objects that can be modified on the client side? How do you synchronize
the changes in this case? Here’s the magic line of code that will perform deep synchro-
nization of the DataCollection and all its nested children:

collection.sync(true);

If you don’t like manual coding, Clear Data Builder will perform deep synchronization
of hierarchical DataCollections with the server, so that if an item of the collection con-
tains child collections (Example 6-16), the entire tree of changes gets synchronized with
the Java backend in one transaction.

Consider a sample order-processing application (Figure 6-7) that allows the user to
navigate from order to order, editing the master information (order) as well as its details
(order items).

The user can modify either of the data grids. All interactive changes are accumulated
in the underlying DataCollection until the button labeled Commit is clicked. That’s
exactly when deep sync happens in one transaction—it’s all or nothing, the commit of
all changes or complete rollback.

Each of the data grids is supported by a subclass of DataCollection: OrderCollection
and OrderItemCollection, respectively (Example 6-14).

302 | Chapter 6: Open Source Networking Solutions

http://tinyurl.com/cqnw8x

Example 6-14. OrderCollection and OrderItemCollection

package collections {
import com.farata.collections.DataCollection;
public class OrderCollection extends DataCollection {
 public function OrderCollection(source:Array=null) {
 super(source);
 destination="com.farata.test.Order";
 method="getOrders";
 }
}
}

package collections {
import com.farata.collections.DataCollection;
public class OrderItemCollection extends DataCollection {
 public function OrderItemCollection(source:Array=null) {
 super(source);
 destination="com.farata.test.Order";
 method="getOrderItems";
 }
}
}

The source code of the application shown in Figure 6-7 is listed in Example 6-15.

Example 6-15. The code of the order-processing application object

<?xml version="1.0" encoding="UTF-8"?>
<!--OrderEntryDemo.mxml -->
<mx:Application

Figure 6-7. The order-processing application

Deep Data Synchronization with BlazeDS | 303

 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns="*" xmlns:collections="collections.*">
 <collections:OrderCollection id="orders"/>
 <mx:ControlBar>
 <mx:Button label="Fill" click="selectedOrder=null;orders.fill()" />
 <mx:Button label="Commit" click="orders.sync(true)"
 enabled="{orders.commitRequired}" />
 </mx:ControlBar>
 <mx:VDividedBox >
 <OrdersPanel id="master" orders="{orders}"
 orderSelectionChange="selectedOrder = event.order"
 />
 <OrderItemsPanel id="detail" width="100%"
 selectedOrder="{selectedOrder}"
 />
 </mx:VDividedBox>
 <mx:Script>
 <![CDATA[
 import com.farata.test.dto.OrderDTO;
 [Bindable] private var selectedOrder:OrderDTO;
]]>
 </mx:Script>
</mx:Application>

The example application contains two custom objects: OrdersPanel and
OrderItemsPanel. The OrdersPanel object uses OrderCollection as a data provider for
its data grid. Each item of the OrderCollection carries orderItems referring to the child
collection of line items of this order. At the application level, you need to expose only
the master collection orders, which hold the entire master/detail data hierarchy.

The Commit button is enabled automatically when there are changes to commit (the
collection’s array of ChangeObjects is not empty). On click, the sync(true) is called,
requesting deep synchronization, or persistence of all nested DataCollections:

<mx:Button label="Commit" click="orders.sync(true)"
 enabled="{orders.commitRequired}" />

As mentioned earlier, you can substantially reduce the amount of manual coding in
DTOs: Clear Data Builder will do it for you. In particular, it takes the Java class
Order written by you (Example 6-17) and generates the ActionScript class _OrderDTO
and its subclass OrderDTO (Example 6-16).

Example 6-16. A DTO with nested collection orderItems

package com.farata.test.dto{
import collections.OrderItemCollection;
import com.farata.collections.dto.HierarchicalDTOAdapter;
import com.farata.collections.dto.IHierarchicalDTO;

[RemoteClass(alias="com.farata.test.dto.OrderDTO")]
public class OrderDTO extends _OrderDTO implements IHierarchicalDTO{
[Transient] [Bindable] public var orderItems:OrderItemCollection;
[Transient] public var adapter:HierarchicalDTOAdapter;

304 | Chapter 6: Open Source Networking Solutions

public function OrderDTO() {
 super();
 adapter = new HierarchicalDTOAdapter(this);
 orderItems = new OrderItemCollection();
 adapter.addCollection(orderItems);
}

public function get childCollections():Array {
 return adapter.childCollections;
}

public override function set order_id(orderId:String):void {
 if (orderId !== super.order_id) {
 super.order_id = orderId;
 orderItems.fill(order_id);
 }
}
}//OrderDTO
}

Note the [Transient] metadata tags that ensure that these objects won’t be serialized
and sent to the server.

Though the properties of the _OrderDTO will match the fields returned by the SQL Select
specified in the doclet section of getOrders() in Example 6-18, the subclass OrderDTO
is your playground. You can add any code there, and it won’t be overwritten by the
next CDB code generation.

In particular, the secret sauce here is that OrderDTO implements the IHierarchicalDTO
interface, which you have to add manually to the generated OrderDTO if you want your
collection to include nested collections. You’ll also need to add code that uses
HierarchicalDTOAdapter, the getter childCollections, and the setter order_id as it’s
done in the example.

Example 6-17 is the abstract Java class that is used with CDB to generate an Action-
Script DTO from Example 6-16.

Example 6-17. Order.java

package com.farata.test;
import java.util.List;
/**
* @daoflex:webservice
* pool=jdbc/test
*/
public abstract class Order
{
/**
* @daoflex:sql
* sql=:: select order_id, customer_first_name,
* customer_last_name, order_date from simple_order
* ::
* transferType=OrderDTO[]
* keyColumns=order_id

Deep Data Synchronization with BlazeDS | 305

zaremba
Comment on Text
correct xref?

No it's not. The correct reference is Example 6-17

* updateTable=simple_order
* autoSyncEnabled=true
*/
public abstract List getOrders();
/**
* @daoflex:sql
* sql=select * from simple_order_item WHERE ORDER_ID=:orderId
* transferType=OrderItemDTO[]
* updateTable=simple_order_item
* keyColumns=order_id,item_id,product_name
* autoSyncEnabled=true
*/
public abstract List getOrderItems(String orderId);
}

CDB doesn’t force you to use SQL for the generation of ActionScript
DTOs and automating the work with fill() and sync() methods. CDB
allows your DataCollections to remote to any Java class implementing
the com.farata.daoflex.IJavaDAO interface that returns an arbitrary Java
DTO (see CDB documentation at http://sourceforge.net/projects/clear
toolkit/files/ for more details).

The autoSyncEnabled attribute in Example 6-17 comes in handy when more than one
user works with the same application and the same piece of data; Clear Data Builder
offers an autonotification mechanism for data modifications. Changing the value of the
autoSyncEnabled attribute allows you to turn on or off the sending of such notifications.
For details, see the following post: http://www.tinyurl.com/autosync.

Batching Remote Calls
In Example 6-7, you saw that the sync() method performed three steps (delete, update,
and insert items) to maintain the referential integrity of data changes. If you want to
perform updates of more than one DataCollection in one transaction, you can batch
them. In the order-processing application, you have a case of nested collections, and
children have to be deleted prior to parents, and parents need to be inserted prior to
children. But you may have another business reason to run multiple updates as one
transaction.

That’s where the BatchService class from clear.swc comes into play. It treats a sequence
of several remote method calls as a batch, or, simply as an array of BatchMember objects
containing such elements as destination name, method name, and array of arguments.

Instead of making multiple remote calls, BatchService sends the entire batch as an
argument of one remote call. On the server side, this call is performed by a Java class,
com.farata.remoting.BatchGateway, located in daoflex-runtime.jar, which comes with
CDB. In turn, BatchGateway’s method execute(List<BatchMember>) invokes the required

306 | Chapter 6: Open Source Networking Solutions

http://sourceforge.net/projects/cleartoolkit/files/
http://sourceforge.net/projects/cleartoolkit/files/
http://www.tinyurl.com/autosync

remote calls sequentially, wrapping the entire sequence begin/commit/rollback as pre-
scribed by the Java Transaction API (Figure 6-8).

<mx:Application>

BatchService
Methods:
 send(Batch)
Events:
 RESULT
 FAULT

ActionScript/MXML

BatchGateway
Methods:
 executeBatch()

Flex Remoting

<destination id=”BatchGateway”>

Figure 6-8. Batching remote calls

The following code snippet illustrates how you can add two collections from the order-
processing example to one batch and send it for processing to the server:

var bs: com.farata.remoting.BatchService;
 ...
 bs = new BatchService();
 bs.addEventListener(FaultEvent.FAULT, onFault);
 bs.registerCollection(orders, 0); //0 - default (top) priority, parent
 bs.registerCollection(orderItems,1); //1 - priority, child of "0"
 ...
 var batch:Array = bs.batchRegisteredCollections();
 bs.send(batch);

You can use the BatchService not only with DataCollections, but also with regular Flex
collections. It allows you to batch the execution of any sequence of remote calls.

Users of the SQL-based branch of CDB benefit from automatic generation of the re-
quired Java functions. Otherwise, your Java DAO has to implement the interface
IBatchTransactionServiceSupport.

If your transaction includes only a data collection, consider using DataCollec
tion.sync(true), which further reduces the amount of manually written code required
to perform transactional persistence of associated collections.

By now, you should have a good understanding of how to approach data automation
in Flex and BlazeDS, and the next section will show you how to use the headers of the
AMF messages that travel with your data in the protocol layer.

Using AMF Message Headers
The data access is automated, and the data gets transferred over the AMF protocol,
which, as you may remember, is built on top of HTTP. The next goal is to continue
minimizing the amount of coding that application programmers need to do in the

Using AMF Message Headers | 307

client/server communication. For this, we’ll try to modify the existing communications
layer by adding to it application-specific information.

Sometimes, certain information needs to be passed from the client without introducing
additional arguments to the application function calls. For example, if the user ID needs
to be passed to the server-side function getEmployee(), you may avoid adding a pa-
rameter userId to the function signature. Instead, it can be added to the AMF message
on the protocol level. Besides the user ID, you may need to pass some security restric-
tions, application tokens, or the client context—think of HTTP cookies. Although you
might need to add these parameters at certain execution points, you may not pass them
as part of the API.

Though the AMF payload is located in the bodies of the messages that are being sent,
you can still add headers to these messages. Here is a quick five-step process:

1. Define a class to store the data you want to be passed in the message headers—
sort of like your own cookies—for example, some operation context (Exam-
ple 6-18).

Example 6-18. OperationContext.as

package com.farata.rpc.remoting {
 import flash.utils.Dictionary;
 import mx.messaging.messages.IMessage;

 public final class OperationContext extends Object
 {
 public static var globalHeaders : Dictionary = new Dictionary();
 public var headers : Dictionary = new Dictionary();

 public function _onBeforeInvoke(msg:IMessage):void {
 var fld:Object = null;
 for(fld in globalHeaders)
 msg.headers[fld] = globalHeaders[fld];

 for(fld in headers)
 msg.headers[fld] = headers[fld];
 }
 }
}

2. Extend the Flex Operation class from the communication layer to append the pre-
vious headers on the remote method invocation. Our Operation class will instan-
tiate OperationContext and will call its method _onBeforeInvoke() every time its
invoke() method is being called (Example 6-19).

Example 6-19. Customized Operation.as

package com.farata.rpc.remoting.mxml
{
 import mx.core.mx_internal;
 use namespace mx_internal;

308 | Chapter 6: Open Source Networking Solutions

 import mx.rpc.remoting.mxml.Operation;
 import mx.rpc.remoting.RemoteObject;
 import mx.rpc.AsyncToken;
 import mx.messaging.messages.IMessage;
 import com.farata.rpc.remoting.OperationContext;

 public class Operation extends mx.rpc.remoting.mxml.Operation
 {
 public function Operation
 (remoteObject : RemoteObject = null,
 name : String = null) {

 super(remoteObject, name);
 }

 public var context:OperationContext = new OperationContext();

 mx_internal override function invoke(msg:IMessage,
 token:AsyncToken=null):AsyncToken
 {
 context._onBeforeInvoke(msg);
 return super.invoke(msg, token);
 }
 }
}

3. To complete the client-side extensions, extend Flex RemoteObject and make sure
that it uses the extended Operation instead of its original one (Example 6-20).

Example 6-20. Customized RemoteObject.as

package com.farata.rpc.remoting.mxml
{
 import mx.rpc.remoting.mxml.RemoteObject;
 import mx.rpc.AbstractOperation;
 import mx.core.mx_internal;
 use namespace mx_internal;

 public class RemoteObject extends mx.rpc.remoting.mxml.RemoteObject {

 public function RemoteObject(destination:String=null):void {
 super(destination);
 }

 override public function getOperation(name:String):AbstractOperation {
 var o:Object = _operations[name];
 var op:AbstractOperation = o as AbstractOperation;
 if (op == null)
 {
 op = new Operation(this, name); // extended Operation
 _operations[name] = op;
 op.asyncRequest = asyncRequest;
 }
 return op;
 }

Using AMF Message Headers | 309

 }
}

4. To intercept the additional headers and make them available to the server-side Java
programs, create a placeholder for the headers on the Java side and keep the data
located in this placeholder in the Java ThreadLocal object to avoid a mix-up between
different client requests (Example 6-21).

Example 6-21. MessageContext.java

package com.farata.remoting;

import java.util.Hashtable;
public class MessageContext {
 public static void setParams(Hashtable session)
 {
 sessions.set(session);
 }
 public static Hashtable getParams()
 {
 return (Hashtable)sessions.get();
 }
 private static ThreadLocal sessions = new ThreadLocal();
 }

5. As shown in Example 6-22, modify the AMF endpoint to load the
MessageContext object upon servicing the client’s requests (don’t forget to specify
this endpoint on the AMF channel in the services-config.xml configuration file).

Example 6-22. CustomAMFEndpoint.java

package com.farata.remoting;
import java.util.Hashtable;

import flex.messaging.endpoints.*;

import flex.messaging.MessageBroker;
import flex.messaging.config.ChannelSettings;
import flex.messaging.messages.Message;

public class CustomAMFEndpoint extends AMFEndpoint {
 public CustomAMFEndpoint() {
 super();
 }

 public CustomAMFEndpoint(boolean enableManagement) {
 super(enableManagement);

 }
 public Message serviceMessage(Message message) {
 Hashtable ht = new Hashtable();
 ht.put("context", message.getHeaders());
 MessageContext.setParams(ht);
 return super.serviceMessage(message);

310 | Chapter 6: Open Source Networking Solutions

 }
}

Once the system part is done, you can set the properties on the OperationContext
object in your application code, just like this:

OperationContext.globalHeaders["name"] = "john".

On the Java side, you can retrieve headers sent from the client by retrieving the
corresponding parameter(s) from the MessageContext object:

public String helloUser() {
 Hashtable ht = MessageContext.getParams();
 String userId = (String)context.get("name");
 return "Hello, " + userId;
}

Data Push in Data Access
To give you an example of BlazeDS at work, we’re going to revisit the Café Townsend
application and bring it even closer to reality. It’s great that the café owner’s wife can
populate (and update) employee data from a database, but in the real world of enter-
prise applications, more than one user often must work with the same data.

Say that users A and B have populated the employees’ data, and user B decides to update
a record in the database. Will user A be notified about this change, or will she keep
working with stale data?

You want multiple users to be able to update the table Employee simultaneously and to
promote the data changes to other users instantaneously. Such data synchronization is
available with LCDS Data Management Services, and with adjustments, you can ach-
ieve similar functionality using the open source implementation of AMF, as well.

To start, examine the Assembler class that will be working closely with EmployeeDAO. As
you can see in Example 6-23, the Java code takes all the changes submitted by any user
and broadcasts them to all clients subscribed to the destination com.farata.data
source.Employee.getEmployees.

Example 6-23. Server-side push with the Assembler class

package com.farata.datasource;
import java.util.*;
import flex.messaging.MessageBroker;
import flex.messaging.messages.AsyncMessage;
import flex.messaging.util.UUIDUtils;

public final class EmployeeAssembler{

 public List /*EmployeeDTO[]*/ getEmployees() throws Exception {
 return new EmployeeDAO().getEmployees();
 }

Data Push in Data Access | 311

 public final List getEmployees_sync(List items) {

 List result = new EmployeeDAO().getEmployees_sync(items);

 MessageBroker msgBroker = MessageBroker.getMessageBroker(null);
 AsyncMessage msg = new AsyncMessage();
 msg.setDestination("com.farata.datasource.Employee.getEmployees");
 msg.setClientId(UUIDUtils.createUUID(true));
 msg.setMessageId(UUIDUtils.createUUID(true));
 msg.setTimestamp(System.currentTimeMillis());
 msg.setBody(result);
 msgBroker.routeMessageToService(msg, null);

 return result;
 }

 public List /*DepartmentDTO[]*/ getDepartments() throws Exception{
 return new EmployeeDAO().getDepartments();
 }
}

Next, you need to receive these messages on the client and apply the changes. As you
can see in Example 6-24, the Flex client receives the changes via subscription and ap-
plies them (the subscription name is a destination name).

Example 6-24. Receiving pushed data on the client

private var _subscription : Consumer ;
private var _subscriptionName : String ;

public function set feed(subscriptionName : String) : void {
 _subscription = new Consumer();
 _subscription.destination = subscriptionName;
 _subscription.addEventListener("message", messageHandler);
 _subscription.subscribe();
 _subscriptionName = subscriptionName;
}

public function get feed() : String {
 return _subscriptionName;
}

protected function messageHandler(ev:MessageEvent):void
{
 if (ev.message.body is ChangeObject)
 processChange(ev.message.body as ChangeObject) ;
 if (ev.message.body is ArrayCollection)
 for (var i:int = 0; i<ev.message.body.length; i++)
 processChange(ev.message.body[i] as ChangeObject) ;
 }

protected function processChange(co : ChangeObject) : void {

switch (co.state) {
 case ChangeObject.CREATE:

312 | Chapter 6: Open Source Networking Solutions

 addItem(co.newVersion);
 break;
 case ChangeObject.DELETE:
 var uid:String = co.previousVersion.uid;
 for (var j :int = 0; j < length; j++) {
 if(getItemAt(j).uid == uid) {
 removeItemAt(j);
 break;
 }
 }
 break;
 case ChangeObject.UPDATE:
 uid = co.newVersion.uid;
 for (j = 0; j < length; j++) {
 if(getItemAt(j).uid == uid) {
 var item: EventDispatcher=getItemAt(j) as EventDispatcher;
 item["properties"] = co.newVersion["properties"];
 // notify the UI of the change
 item.dispatchEvent(
 PropertyChangeEvent.createUpdateEvent(item,"any","x","y"));
 break;
 }
 }
 break;
 }
}

Example 6-24 is a simplified code snippet of updating the client content based on the
data pushed from the server. It assumes that the function getItemAt() works with the
data collection that needs to be updated. It does not deal with conflicts or application
of concurrent changes, because this part is application-specific and has to be enforced
based on the best strategy to avoid conflicts rather than forcing the user to deal with
them—either via record locking or multistage update.

The code of Example 6-24 depends upon the uid value of the DTO. You
need to make sure that a unique, consistent ID is being used by every
user. The simplest way to do it is by mapping uid to the database primary
key on the server side.

You can also use a data push to implement the background retrieval of the large data
sets. All you need to do is to push the retrieval results as ChangeObjects with the
CREATED flag on.

A Server as a Command Center
Strange as it sounds, a clock is another excellent example of streaming. Using a stream-
ing AMF channel to deliver the server time, you can create a clock that updates its

A Server as a Command Center | 313

display every second. As a bonus, the clock application demonstrates another useful
concept: the reverse remote procedure call (RPC).

Reverse RPC
A remote procedure call is when a client invokes a function on the server-side object.
For example, you can create an instance of the RemoteObject that points at a destination
(a Java class) configured in the server-side BlazeDS. Then, this Flex client calls a method
on this destination.

The example clock application instructs a server to control the client when it wants,
the way it wants. This is a reverse RPC: the server calls a client. Traditional server-side
destinations are usually preconfigured in XML files, such as remoting-config.xml; how-
ever, you don’t have this luxury on the client. Instead, during runtime you need to pass
the name of the client destination, the method to call, and an array of parameters, if
any. Here, the AMF protocol becomes quite handy once again. Remember, it offers an
easy way to serialize a Java object on the server and deserialize it as an ActionScript
object on the client.

If you understand the concept of DTO being an exchange currency between Java and
ActionScript, the rest of this section won’t be difficult. Just think outside the box and
create a DTO that will carry not some application-specific data (e.g.,the current server
time), but the metadata—the name of the destination, a method to call on the client,
and its parameters.

Example 6-25 shows the server-side Java DTO that wraps up the data and metadata.

Example 6-25. RemoteCall.java

package com.farata.remoting ;
import java.util.*;

public class RemoteCall {
 public String destinationName; // destination configured on the server
 public String methodName; // method to call on the client
 public List parameters; // method arguments

 public RemoteCall(String d, String m, List p) {
 destinationName = d;
 methodName = m;
 parameters = p;
 }
}

When instances of RemoteCall objects arrive at the client, they are represented as the
ActionScript instances in Example 6-26.

Example 6-26. RemoteCall.as

package com.farata.remoting {
 import mx.collections.ArrayCollection;

314 | Chapter 6: Open Source Networking Solutions

 [RemoteClass(alias="com.farata.remoting.RemoteCall")]
 public class RemoteCall {
 public var destinationName:String;
 public var methodName:String;
 public var parameters:ArrayCollection;

 public function RemoteCall(destinationName:String=null,
 methodName:String=null,
 parameters:ArrayCollection=null) {

 this.destinationName = destinationName;
 this.methodName = methodName;
 this.parameters = parameters;
 }
 }
}

BlazeDS, with the help of AMF, automatically turns any instance of RemoteCall.java
into an instance of RemoteCall.as. The big idea is to have the server push this Remote
Call to the client, which should obediently call the requested method (the method
Name property of the RemoteCall instance) on the specified object with the provided
parameters.

Add the following destination in the message-config.xml file where BlazeDS is deployed:

<destination id="ControlCenter">
 <channels>
 <channel ref="my-streaming-amf"/>
 </channels>
</destination>

Please note that this destination is configured to use the streaming AMF channel.
BlazeDS includes a class, MessageBroker, that knows how to push messages to desti-
nations.

At this point, you know that the server will have to create instances of RemoteCall objects
and send them to the destination called ControlCenter. To do this, simply write another
Java class called ControlCenter.java, as shown in Example 6-27. Note once again that
this code sends not just the data to the client, but also the information about the RPC.

Example 6-27. ControlCenter.java

package com.farata.remoting;
import java.util.*;
import flex.messaging.MessageBroker;
import flex.messaging.messages.AsyncMessage;
import flex.messaging.util.UUIDUtils;

public class ControlCenter {
 private static ControlCenterThread thread;

 //start a new thread to send RemoteCall instances
 public void start() {

A Server as a Command Center | 315

 if (thread == null) {
 thread = new ControlCenterThread();
 thread.start();
 }
 }

 public void stop() {
 if (thread != null){
 thread.running = false;
 thread = null;
 }
 }

 public static class ControlCenterThread extends Thread {
 public boolean running = true;

 public void run() {

 MessageBroker msgBroker = MessageBroker.getMessageBroker(null);
 String clientID = UUIDUtils.createUUID();

 while (running) {

 // create a message object set the destination and
 // assign unique client and message IDs
 AsyncMessage msg = new AsyncMessage();
 msg.setDestination("ControlCenter");
 msg.setClientId(clientID);
 msg.setMessageId(UUIDUtils.createUUID());
 msg.setTimestamp(System.currentTimeMillis());

 // Create an array of parameters to be used as
 // arguments for the setTime() function call
 ArrayList params = new ArrayList();
 // Add current system time
 params.add(new Date()); //

 // Create RemoteCall wrapper an use it as the message body
 msg.setBody(new RemoteCall("clock", "setTime", params));
 msgBroker.routeMessageToService(msg, null);

 try {
 // pause the loop for one second
 Thread.sleep(1000);
 } catch (InterruptedException e) { }
 }
 }
 }
}

The CallCenter program creates and starts a separate thread named CallCenterTh
read that every second creates a new instance of the RemoteCall, puts it into the message
body of AsyncMessage, and using the MessageBroker publishes it to the destination called
ControlCenter.

316 | Chapter 6: Open Source Networking Solutions

The Flex client shown in the following example creates a consumer object and sub-
scribes it to the destination ControlCenter.

We borrowed the code for the alarm clock UI from Adobe’s manual on programming
ActionScript 3. This example was used there for explaining events (see http://livedocs
.adobe.com/flex/3/html/help.html?content=16_Event_handling_7.html). For your con-
venience, we’ve included this code in Flash Builder’s project NetworkingSamples, which
contains all examples from this chapter.

In Example 6-28’s Flex application you can find the consumer that is ready to consume
messages from the destination ControlCenter. RemoteObject is used to start or stop the
server-side feed.

Example 6-28. RemotingViaStreaming.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:remoting="com.farata.remoting.*"
 xmlns:example="com.example.programmingas3.clock.*"
 creationComplete="co.subscribe()" layout="vertical" horizontalAlign="left">

 <mx:Consumer destination="ControlCenter" id="co"
 message="handleMessage(event.message)"/>

 <mx:RemoteObject destination="ControlCenterRO" id="ro"/>
 <mx:Button label="Start" click="ro.start()"/>
 <mx:Button label="Stop" click="ro.stop()"/>
 <mx:Label text="Time"/> <mx:Label width="259" id="serverClock"/>
 <example:SimpleClock id="clock" creationComplete="clock.initClock()"/>

 <mx:Script>
 <![CDATA[
 import com.farata.remoting.RemoteCall;
 import mx.messaging.messages.IMessage;

 private function handleMessage(msg:IMessage) : void {
 if (msg.body is RemoteCall) {
 var rc:RemoteCall = msg.body as RemoteCall;
 this[rc.methodName].apply(this, rc.parameters.source);
 }
 }

 public function setTime(d:Date) : void {
 serverClock.text = d.toTimeString();
 clock.setTime(d);
 }
]]>
</mx:Script>
</mx:Application>

When the consumer receives the message, the function handleMessage() extracts the
instance of RemoteCall from the message body and calls the method whose name is
located in the property RemoteCall.methodName:

A Server as a Command Center | 317

http://livedocs.adobe.com/flex/3/html/help.html?content=16_Event_handling_7.html
http://livedocs.adobe.com/flex/3/html/help.html?content=16_Event_handling_7.html

var rc:RemoteCall = msg.body as RemoteCall;
this[rc.methodName].apply(this, rc.parameters.source);

In Example 6-28, this [rc.methodName] gets the reference to the Function object based
on the received name, which is setTime() here. Then, the function apply() calls this
method, passing parameters contained in the RemoteCall object.

This technique is yet another way to implement the command design pattern, but here
the server publishes a message that is a command to the client to call a function specified
in methodName.

Extending the Protocol
Although this technique of making RPC calls from the server is pretty cool, you can
make it even better by hiding the processing of the received messages at the protocol
level, so that the application developers will use this enhanced consumer without
needing to know how it works under the hood.

First, extend the AMF endpoint and move the consumer portion into the new class
RemoteStreamingChannel, which extends the standard StreamingAMFChannel, which will
be responsible for filtering and executing remote procedure calls.

Note the metatag [Mixin] in Example 6-29. In Flex, it’s used to ensure that a static
initializer’s code located in the method init() will be executed as soon as the
SystemManager becomes available.

Example 6-29. RemoteStreamingChannel.as

package com.farata.messaging.channel{
 import com.farata.remoting.RemoteCall;

 import flash.utils.Dictionary;
 import mx.managers.ISystemManager;
 import mx.messaging.Consumer;
 import mx.messaging.channels.StreamingAMFChannel;
 import mx.messaging.events.MessageEvent;
 import mx.messaging.messages.IMessage;

 [Mixin]
 public class RemoteStreamingChannel extends StreamingAMFChannel{

 public static var destinations:Dictionary = new Dictionary();

 public function RemoteStreamingChannel(id:String=null, uri:String=null){
 super(id, uri);
 this.addEventListener(MessageEvent.MESSAGE, filterAndInvoke,false,1);
 }

 // if the receieved message is an instance of the RemoteCall,
 // get the destination and call the passed method on it
 protected function filterAndInvoke(evt:MessageEvent) : void {
 var msg : IMessage = evt.message;

318 | Chapter 6: Open Source Networking Solutions

 if (msg.body is RemoteCall) {
 var rc:RemoteCall = msg.body as RemoteCall;
 var destination : Object = destinations[rc.destinationName];
 if (destination)
 var result:* =
 destination[rc.methodName].apply(destination, rc.parameters.source);
 else
 //log the error
 trace("missing destination " + rc.destinationName);
 evt.preventDefault();
 }
 }

 public static function init(systemManager:ISystemManager) : void {
 //stub for static initializer
 var c:Consumer = new Consumer();
 c.destination = "ControlCenter";
 c.subscribe();
 }
 }
}

If the code in the Example 6-28 was calling the specified function on the this object,
you can make it more generic by specifying the destination object on the client and
calling the function on it:

destination[rc.methodName].apply(destination, rc.parameters.source);

To let BlazeDS know that you want to use this endpoint on the client instead of the
original StreamingAMFChannel, change the channel configuration in services-config.xml
(Example 6-30).

Example 6-30. Modified channel definition in services-config.xml

<channel-definitionid="my-streaming-amf"
 class="com.farata.messaging.channel.RemoteStreamingChannel">
<endpointurl="http://{server.name}:{server.port}/{context.root}/messagebroker/
 streamingamf"
class="com.farata.nioblaze.messaging.endpoints.NioAmfEndpoint"/>
</channel-definition>

The application in Example 6-31 uses the new channel.

Example 6-31. RemotingViaStreamingGeneric.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:remoting="com.farata.remoting.*"
 xmlns:example="com.example.programmingas3.clock.*"
 creationComplete="RemoteStreamingChannel.destinations['clock']=simpleClock;"
 layout="vertical" horizontalAlign="left">

 <mx:RemoteObject destination="ControlCenterRO" id="ro"/>
 <mx:Button label="Start" click="ro.start()"/>
 <mx:Button label="Stop" click="ro.stop()"/>

A Server as a Command Center | 319

zaremba
Sticky Note
italics ok here?

italics is not needed here

 <example:SimpleClock id="simpleClock" creationComplete="clock.initClock()"/>

 <mx:Script>
 <![CDATA[
 import com.farata.messaging.channel.RemoteStreamingChannel;
]]>
 </mx:Script>

</mx:Application>

Upon the creationComplete event, this application assigns the SimpleClock object as
the client destination of all that goes under the name clock:

RemoteStreamingChannel.destinations['clock']=simpleClock;

The server-side sender in Example 6-27 is sending a command to call the function
setTime() of the destination clock, which is now mapped to the instance of the
SimpleClock component:

msg.setBody(new RemoteCall("clock", "setTime", params));

The destination clock was not used in the MXML application shown in Exam-
ple 6-28, which was calling the function setTime() on the this object no matter what.
But the more generic application shown in Example 6-31 explicitly routes the server
calls to the destination clock.

And the clock (Figure 6-9) is ticking, driven by the reverse RPC calls from the server.

Now you own a communication channel on both the server and client sides and you’re
ready to program high-level protocols.

Custom Serialization and AMF
AMF is a very efficient protocol, and part of that efficiency is thanks to the strict rules
for supporting a limited set of data types in an optimized way. One of the most frequent
cases in which it needs to be customized is when you have to work with non-UTC
Date and Time. UTC stands for Coordinated Universal Time.

First, you need to understand how Flex deals with transfer of the Date objects. Dates
are always transferred to/from Flex clients as UTC Date, where no time zone informa-
tion is available on the object. Translation to the UTC/local time happens automatically
on the AMF protocol level, which adds the client time zone offset to the incoming dates
and subtracts it from outgoing ones.

The server does not know about the client’s time zone; it always operates in UTC time.
This means that if a user from New York City entered 1:00 p.m. as the time, a user in
Denver, Colorado, will see it as 11:00 a.m. In some applications, such behavior may
be desirable, but this is not the case in a global application in which the users can be
located around the world.

320 | Chapter 6: Open Source Networking Solutions

The user wants to enter the time in the client’s local time; 1:00 p.m. will be 1:00 p.m.
regardless of the time zone of the person who entered this time.

For example, requests for an appointment for the installation of the local TV cable
service may be handled by a call center located on the other side of the globe. Ashish
from the call center talks to you, and if you agreed to see the cable guy at 10:00 a.m.,
he enters 10:00 a.m. in the application. By the way, the server can be located in yet
another time zone. This should be irrelevant for the distributed RIA.

Such an application has to operate without the use of time zones, or, for that matter,
in one time zone. This can be done either on the server side by keeping the client time
zone information in the session and adjusting the dates on each transfer or by com-
municating the date as a String. In either case, it requires additional application code
that should be added in multiple places that deal with dates.

However, there is more elegant solution if, during data transfer, you’ll be using the
ActionScript metadata tag transient. Examine Example 6-32, which contains the code
of an ActionScript DTO called LineItemDTO.

Example 6-32. LineItemDTO.as

package com.farata.datasource.dto{

import flash.events.EventDispatcher;

[RemoteClass(alias="com.farata.datasource.dto.LineItemDTO")]

Figure 6-9. The clock controlled by the server

Custom Serialization and AMF | 321

[Bindable(event="propertyChange")]

 public class LineItemDTO extends EventDispatcher {
 private var _myDate : Date;

 // myDateUTC is not to be used on the client
 protected function get myDateUTC() : Date {
 return _myDate==null? null:
 new Date(_myDate.valueOf() - _myDate.getTimezoneOffset()*60000);
 }

 // myDateUTC is not to be used on the client
 protected function set myDateUTC(value : Date):void {
 var oldValue:Object = _myDate;
 if (oldValue !== value) {
 this._myDate = value == null? null:
 new Date(value.valueOf() + value.getTimezoneOffset()*60000);
 }
 }

[Transient]
 public function get myDate() : Date {
 return _myDate;
 }

 public function set myDate(value : Date):void {
 var oldValue:Object = this._myDate;
 if (oldValue !== value) {
 this._myDate = value;
 dispatchUpdateEvent("myDate", oldValue, value);
 }
 }

On the server, its Java twin may look like Example 6-33.

Example 6-33. LineItemDTO.java

package com.farata.datasource.dto;

import java.io.Serializable;
import java.util.*;

 public class LineItemDTO implements Serializable{
 transient public java.util.Date myDate;

 // This getter is serialized as a property myDateUTC
 public java.util.Date getMyDateUTC() {
 return myDate;
 }

 public void setMyDateUTC(java.util.Date value){
 this.myDate = value;
 }
}

322 | Chapter 6: Open Source Networking Solutions

Please note the use of the keyword transient, which server-side JVM interprets like
this: “Don’t serialize the value of this member variable when you’ll be sending the
LineItemDTO instances over the wire.”

On the other hand, when JavaBean LineItemDTO.java gets serialized, the word get gets
cut off from the getMyDateUTC and arrives as a myDateUTC property of the object
LineItemDTO.as, where it’s automatically converted into the UTC Date.

That’s all there is to it. You have normal public variables on both sides, and AMF
serialization works transparently, keeping the Date and Time values in the UTC zone
on both sides (you also need to set the JAVA VM time zone to UTC), and now you are
always operating in the server’s time zone.

This code will work in any implementation of the AMF protocol: BlazeDS, LCDS,
OpenAMF, WebORB, GraniteDS, and so on.

Armed with this knowledge, reevaluate your needs for local versus global time to avoid
the follow-up calls from the call center in India at 2:00 in the morning.

Even though this example uses custom AMF serialization for dates, you may use the
same technique to provide custom serialization for any other application-specific
objects.

Security Appliances
Once you’ve developed and tested your Flex application locally, and you’re ready to
share it with the rest of the world, you need to move it to a secured hosting environment.
Usually, for simplicity and performance, enterprises deploy Java EE servers behind
standalone SSL accelerators and load balancers. Sometimes, it’s just an Apache server
or similar appliance.

This means that the client sends the data via an SSL channel to such an SSL appliance
configured on the edge of a firewall. The appliance authenticates the user and maintains
the session, and in turn calls the application server running on the intranet via unse-
cured HTTP to minimize the CPU load on the application server.

In this setup, you have to use a secured endpoint on the client side and an unsecured
endpoint on application server. You can configure the channel to use such a pair of
endpoints in the services-config.xml file of BlazeDS, but this would require separate
builds and configuration files for external and internal deployments. As an alternative,
you might want to switch the channels and endpoints dynamically during the runtime,
based on which protocol is being used: HTTP or HTTPS.

During the preInitialize event of the Flex application, you can apply a regular ex-
pression and find out whether it was started via a secure or nonsecure protocol
(Example 6-34).

Security Appliances | 323

Example 6-34. Switching channels and endpoints

import mx.messaging.config.ServerConfig;

private function preinitializeApplication() : void {

 const reUrl:RegExp= /(http|https):\/\/(([^:]+)(:([^@]+))?@)?([^:\/]+)(:([0-
 9]{2,5}))?(\/([\w#!:.?+=&%@!\-\/]+))?/;

 const appUrl:String = Application.application.url;

 const parts:Array = reUrl.exec(appUrl);

 if (parts!=null)
 if (parts[1] == "https")
 {
 const channels:XMLList = ServerConfig.xml..channels.channel;
 for (var channel:String in channels) {
 if (channels[channel].@type=="mx.messaging.channels.AMFChannel") {

 channels[channel].@type="mx.messaging.channels.SecureAMFChannel";
 var endpoint : XML = channels[channel].endpoint[0];
 var uri:String = endpoint.@uri
 uri = uri.replace(/^http:/, "https:");
 uri = uri.replace(/\{server.port\}/, "443");
 endpoint.@uri = uri;
 }
 }
 }
}

This code checks to see whether the application is executed over the secure HTTPS
protocol. If it is, the code goes through the ServerConfig singleton and updates the
channel specifications to use a secured endpoint, the HTTPS protocol, and port number
443 on the web server. Because the client executes this code, you can have a single
configuration point for a variety of deployment options.

Third-Party Networking Solutions
AMF is an open protocol, and various vendors offer their implementations. Your RIA
may or may not use Java on the server side, and you may consider the following alter-
natives to BlazeDS, which are available as open source projects or offered by third-party
vendors:

WebORB
This family of products by the Midnight Coders includes implementations of AMF
for Java, .NET, Ruby on Rails, and PHP (http://www.themidnightcoders.com/we
borb/). WebORB offers the best reliability and performance for these platforms,
and it is free. Its .NET stack is the most impressive one, as it offers full-featured
messaging, RTMP support, data push, and the best .NET integration. The Java

324 | Chapter 6: Open Source Networking Solutions

http://www.themidnightcoders.com/weborb/
http://www.themidnightcoders.com/weborb/

stack of WebORB is similar to the BlazeDS offering; it also uses Red5 for RTMP/
multimedia integration.

RubyAMF
Available from http://code.google.com/p/rubyamf/, RubyAMF is an open source
implementation of Ruby.

AMFPHP
Available from http://www.amfphp.org, AMFPHP is an open source implementa-
tion of PHP.

PyAMF
Available from http://pyamf.org, PyAMF is an open source product for Python.

Granite Data Services (GDS)
Available from http://www.graniteds.org, GDS is a free open source package that
offers functionality similar to LCDS. It caters to developers that use Flex and AMF
to communicate with server-side POJOs and such Java technologies and frame-
works as EJB3, Seam, Spring, and Guice. It also features Comet-like data commu-
nications with AMF, as well as Tide, a framework that positions itself as an
alternative to Cairngorm, combined with the Data Management Services offered
by LCDS.

Red5
An open source Flash server, Red5 supports RTMP and AMF remoting and stream-
ing of audio and video (http://code.google.com/p/red5/). Red5 is written in Java and
can be installed on any platform that supports Java. Even though typically Red5 is
considered to be an alternative to Flash Media Server, you may also start using it
as an alternative to BlazeDS. You can use either a standalone version of Red5, or
deploy it in the Java servlet container as a WAR file. (At the time of this writing,
Red5 has not been officially released and is at version 0.9 Final.)

Summary
This chapter covered a lot of ground. Not only did you learn how data can travel be-
tween Flex and Java using the AMF protocol, but you also learned how to automate
the coding of the objects that are being transported by AMF. You got familiar with the
internals of the pretty powerful DataCollection object, and went through a set of code
fragments that illustrate various techniques applicable to creating a data synchroniza-
tion solution based on Flex remoting.

The authors of this book have created and made available a fully functional version of
such a DataCollection object, and we’ve provided the reference to its complete code
on SourceForge. You’ll revisit DataCollection in Chapter 9, where its subclass,
OfflineDataCollection, will do a good job synchronizing data between the local and
remote databases in an AIR application. Finally, you’ve learned yet another advanced

Summary | 325

http://code.google.com/p/rubyamf/
http://www.amfphp.org
http://pyamf.org
http://www.graniteds.org
http://code.google.com/p/red5/

technique for pushing the data from the server to the client, via the AMF protocol
implemented in BlazeDS and making reverse RPC calls.

And the most exciting part is that in this chapter we’ve been using only open source
solutions!

326 | Chapter 6: Open Source Networking Solutions

CHAPTER 7

Modules, Libraries, Applications, and
Portals

Before software can be reusable, it first has to be usable.

—Ralph Johnson

Flex Portals and Modularization
For many people, the word “portal” stands for content personalization, as in Yahoo!
or iGoogle. In the enterprise world, portals are mainly about content aggregation.
HTML portals consist of pieces wrapped into HTML tags; Flex portals aggregate Flex
applications or modules into a bigger Flex application. Quite naturally, aggregation
does not exist without modularization. After all, while developing any decent size ap-
plication, we tend to break it to smaller, relatively independent parts.

Such intervening of aggregation and modularization determines the layout of this
chapter. You’ll start with image loading as the nucleus of Flex modularization, and
then progress to Flex modules and subapplications. You’ll learn how to use such classes
as Loader and URLLoader and how they deal with style modules and code modules.

This chapter will suggest an approach of creating custom Flex portals that load and
communicate with independently built and compiled subapplications: portlets. Fi-
nally, you will learn how to integrate existing Flex application as legacy portlets in a
JSR 168 portal.

Basic Modularization: Image
The essence of Flex application modularization is dynamic loading of the byte code.

Consider the following two lines of code:

<mx:Image source="@Embed('assets/logo.png')"/>
<mx:Image source="assets/logo.png"/>

327

The first line illustrates image embedding. It increases the size of the application by the
size of the image. As a result, the application carries the image as a part of the SWF file.
The loading of such applications takes longer, but the actual rendering of the image
will be faster, as there is no need to make a network call just to bring the image to the
client.

The second line of code illustrates runtime loading of the image bytes. This time the
application’s .swf does not include the image logo.png and loads faster than the em-
bedded one. The download of logo.png will need additional time, but that time will be
deferred until the view that contains the image is displayed.

Now consider an alternative, explicit way of image embedding:

<mx:Script>
 <![CDATA[
 [Embed(source="assets/farata_logo.png")]
 [Bindable] private var logoClass:Class;
]]>
</mx:Script>

<mx:Image source="{logoClass}"/>
<mx:Button icon="{logoClass}"/>

This method explicitly exposes the variable logoClass of type Class. In fact, the Flex
compiler generates an instance of mx.core.BitmapAsset that is a wrapper around the
ByteArray of the actual image. The similar variable is generated when you use the
@Embed metatag, although explicit embedding lets you reuse it multiple times. The re-
source pointed to by the URL, in this case assets/farata_logo.png, gets copied across
the network and displayed on the stage. In case of embedding, copying is done during
compilation of the SWF and the job of the Image component is reduced to merely
displaying the content of a ByteArray. Importantly, the source property of the Image
may outright point to an existing ByteArray representing an image.

You can get a reference to this ByteArray with the help of the class
flash.net.URLLoader, as presented in Example 7-1.

Example 7-1. Separating transfer of byte code from loading into stage

<mx:Script>
 [Bindable] private var imageData:ByteArray;
 private function loadImage():void {
 var urlRequest:URLRequest = new URLRequest(IMAGE_URL);
 var urlLoader:URLLoader = new URLLoader();
 urlLoader.dataFormat = URLLoaderDataFormat.BINARY;
 urlLoader.addEventListener(Event.COMPLETE, onComplete);
urlLoader.load(urlRequest);
 }
 private function onComplete(event:Event):void{
 var urlLoader:URLLoader = event.target as URLLoader;
 imageData = urlLoader.data as ByteArray;
 }
</mx:Script>

328 | Chapter 7: Modules, Libraries, Applications, and Portals

<mx:Button label="Load Image" click="loadImage()" />
<mx:Image id="image" source="{imageData}"/>

The code snippet in Example 7-1 emphasizes that transferring of the remote byte code
over the network (by URLLoader) and adding it to the stage (by Image) are two inde-
pendent actions.

Using this technique for image loading is a good demonstration of two important ap-
plication modularization concepts:

• The ultimate subjects of the dynamic loading are class definitions, either definitions
of assets or components.

• Transfer of the byte code and actual creation of class definitions are two separate
actions.

Once you master loading a single image, you can move up to style modules, which
enable you to load many images in one shot.

Runtime Style Modules
Say you have a set of images that collectively, via CSS, determine the skin of your
application, as in Example 7-2.

Example 7-2. Sample CSS file

/* styles.css */
Application {
 background-image:Embed("assets/background.png") ;
 background-size:"100%" ;
}
.arrowLeft {
 skin: Embed("assets/arrow_right.png") ;
 over-skin: Embed("assets/arrow_right_rollover.png") ;
 down-skin: Embed("assets/arrow_right_down.png") ;
}

.arrowRight {
 skin: Embed("assets/arrow_left.png") ;
 over-skin: Embed("assets/arrow_left_rollover.png") ;
 down-skin: Embed("assets/arrow_left_down.png") ;
}

.tileStyle {
 skin: Embed("assets/tile.png") ;
 over-skin: Embed("assets/tile_rollover.png") ;
 down-skin: Embed("assets/tile_rollover.png") ;
}

.minimizeStyle{
 skin: Embed("assets/minimizeall.png") ;
 over-skin: Embed("assets/minimizeall_rollover.png") ;

Runtime Style Modules | 329

 down-skin: Embed("assets/minimizeall_rollover.png") ;
}

.restoreStyle {
 skin: Embed("assets/restoreall.png") ;
 over-skin: Embed("assets/restoreall_rollover.png") ;
 down-skin: Embed("assets/restoreall_rollover.png") ;
}

.saveButtonStyle {
 skin: Embed("assets/save_gray.png") ;
 over-skin: Embed("assets/save_rollover.png") ;
 down-skin: Embed("assets/save_rollover.png") ;
}
.showPanelButtonDown {
 skin: Embed("assets/gray_down_small.png") ;
 over-skin: Embed("assets/rollover_down_small.png") ;
 down-skin: Embed("assets/rollover_down_small.png") ;
}
.hidePanels {
 skin: Embed("assets/hide_panels.png") ;
 over-skin: Embed("assets/hide_panels_rollover.png") ;
 down-skin: Embed("assets/hide_panels_rollover.png") ;
}
.showPanels {
 skin: Embed("assets/show_panels.png") ;
 over-skin: Embed("assets/show_panels_rollover.png") ;
 down-skin: Embed("assets/show_panels_rollover.png") ;
}

.controlBarPanelStyle {
 border-style: none ;
 fillColors: #4867a2, #4f75bf ;
 border-skin: ClassReference("border.SimpleGradientBorder");
}

A CSS file can be compiled to the corresponding .swf. To do so via Flash Builder, right-
click the filename and select Compile CSS to SWF. Now you can dynamically load all
required byte code, define classes, create instances, and apply styles to objects that are
already present in the display list—all with the single instruction StyleMan
ager.loadStyleDeclarations(), as shown in Example 7-3.

Example 7-3. Dynamic style loading via StyleManager

<?xml version="1.0" encoding="utf-8"?>
<!-- RuntimeStyleDemo.mxml -->
<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:navigation="com.farata.portal.navigation.*"
layout="absolute"
click="toggleStyles()"
>
<mx:Script>
<![CDATA[

330 | Chapter 7: Modules, Libraries, Applications, and Portals

import mx.modules.IModuleInfo;
import mx.modules.ModuleManager;
private function toggleStyles():void {
 var moduleInfo:IModuleInfo = ModuleManager.getModule('styles.swf');
 if (moduleInfo.loaded) {
 StyleManager.unloadStyleDeclarations('styles.swf');
 } else {
 StyleManager.loadStyleDeclarations('styles.swf');
 }
}
]]>
</mx:Script>
<navigation:ControlBar/>
</mx:Application>

The sample application presented in Example 7-3 allows you to load and unload the
compiled stylesheet styles.swf when the user clicks anywhere in the application area.
Figure 7-1 illustrates the striking difference before and after the styles were loaded.

When developing a portal, you can apply similar styling techniques. If every portlet is
styled dynamically, making them conform to the required look and feel is simply a
matter of adjusting and recompiling the relevant CSS files. Perhaps the portal owner
may even rebuild the CSS module without bothering the creator of the portlet. The
portlet itself will not have to be rebuilt to change its appearance.

Example 7-4 represents the top level control bar of a sample portal desktop.

Example 7-4. ControlBar of a sample portal

<?xml version="1.0" encoding="utf-8"?>
<!-- com.farata.portal.navigation.ControlBar.mxml -->
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="28" verticalAlign="middle"
 styleName="controlBarPanelStyle">

 <mx:HBox verticalAlign="middle" horizontalGap="10" paddingLeft="10">
 <mx:Button id="saveButton" height="16" width="16"
 styleName="saveButtonStyle" toolTip="Save Portal"
 useHandCursor="true" buttonMode="true"/>
 <mx:Button id="showTopPanelButton" height="16" width="16"
 styleName="hidePanels" toolTip="Hide/Show Top Panel"
 useHandCursor="true" buttonMode="true"/>
 <mx:Button id="showPanelButton" height="16" width="16"
 styleName="showPanelButtonDown" toolTip="Show Panel"
 useHandCursor="true" buttonMode="true"/>
 </mx:HBox>
 <mx:HBox width="100%" horizontalAlign="right" paddingRight="5">
 <mx:HBox borderStyle="solid" cornerRadius="13"
 borderThickness="0" horizontalGap="0" >
 <mx:Button styleName="arrowRight"
 useHandCursor="true" buttonMode="true" />
 <mx:Button styleName="arrowLeft"
 useHandCursor="true" buttonMode="true" />
 <mx:filters>

Runtime Style Modules | 331

 <mx:BevelFilter />
 <mx:GlowFilter color="#d3dffd"/>
 </mx:filters>
 </mx:HBox>
 <mx:Button
 styleName="tileStyle" toolTip="Arrange Windows"
 useHandCursor="true" buttonMode="true" />
 <mx:Button styleName="minimizeStyle" toolTip="Minimize All "
 useHandCursor="true" buttonMode="true" />
 <mx:Button styleName="restoreStyle" toolTip="Restore All
 useHandCursor="true" buttonMode="true" />
 </mx:HBox>
</mx:HBox>

Figure 7-1. RuntimeStyleDemo with styles.swf loaded (top) and unloaded (bottom)

332 | Chapter 7: Modules, Libraries, Applications, and Portals

Now you are ready to investigate the most obvious part of the modularization API.

Real Actors: Loader and URLLoader
So far this chapter has touched briefly on the Image, StyleManager, and ModuleManager
classes, and equally briefly used ModuleManager. To further your understanding of the
modularization techniques, you need to be aware of two important connections:

• The Image class is a descendant of SWFLoader, the Flex component that facilitates
loading of SWF files in addition to images, such as JPEG and GIF.

• Both SWFLoader and ModuleManager delegate the actual loading to flash.dis
play.Loader.

As the saying goes, all roads lead to Rome, and for your purposes Rome is
flash.display.Loader. Be it SWFLoader, ModuleManager, StyleManager (or the similar
ResourceManager), modularization is all about loading and unloading classes via
flash.display.Loader, the only Flash component that creates class definitions and class
instances from the remote URL. In addition, flash.display.Loader can create classes
from the existing byte code, for instance, the byte cide obtained with the help of
flash.net.URLLoader (as illustrated in Example 7-1).

Loading Modules with Module Loader
The simplest way you can modularize your application is by using Flex modules. The
class Module is a VBox that, like Application, is a Container that also gets compiled, along
with the dependent classes, to a separate .swf file. Example 7-5 illustrates a trivial
module.

Example 7-5. Example of the module

<?xml version="1.0"?>
<!-SimpleModule.xml -->
<mx:Module xmlns:mx=http://www.adobe.com/2006/mxml layout="vertical">
 <mx:Text text="This is the simplest module" >
</mx:Module>

Any functional part of your application UI that can be developed and tested independ-
ently is a good candidate to become a module. The advantages are obvious: you can
delegate the development and testing efforts to a different team or allocate a different
time slot to it. Modularization will also improve memory utilization, because you can
unload the module when the application does not need it anymore.

For Flash Builder to compile your module, it needs to be included into the .action-
ScriptProperties file of your project. You typically add the module via the project’s
properties, as shown in Figure 7-2 or by using the New Module wizard.

Loading Modules with Module Loader | 333

yfain11
Cross-Out

yfain11
Replacement Text
code

The easiest way to load a module to your application during runtime is via Module
Loader, a descendant of the VBox that has an extra API to load and unload module SWF
files, as shown in Example 7-6.

Example 7-6. Loading a module via ModuleLoader

<?xml version="1.0"?>
<!-- ModuleLoaderDemo.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:HBox>
 <mx:Button label="Load Module"
 click="moduleLoader.loadModule('SimpleModule.swf')" /> <mx:Button
label="Unload Module"
 click="moduleLoader.unloadModule()"
 enabled="{moduleLoader.loaderInfo.bytesTotal!=0}"/>
 </mx:HBox>
<mx:ModuleLoader id="moduleLoader"/>
</mx:Application>

As you could figure by now, the ultimate performer of the class loading in the case of
the ModuleLoader is, again, flash.display.Loader. Being clear on the role of
flash.display.Loader will help you understand other concepts in this chapter.

Preloading Modules with ModuleManager
In addition to ModuleLoader, which is a high-level module API, Flex offers
ModuleManager. The prime benefit of using ModuleManager is that you can separate the
transfer of the module byte code over the network, which is potentially a lengthy

Figure 7-2. Registration of the module to be compiled by Flash Builder

334 | Chapter 7: Modules, Libraries, Applications, and Portals

operation, from the actual creation of the module instance(s). Certainly, you could do
it yourself with the URLLoader (as illustrated in Example 7-1), but you should take ad-
vantage of the nice abstraction layer provided by the ModuleManager class. In particular,
the contract of the ModuleManager guarantees that you won’t transfer the module bytes
over the network more than once.

To load a module into a singleton registry of modules provided by ModuleManager, you
use a module proxy, such as an implementation of the IModuleInfo interface, corre-
sponding to the module URL. You then perform the load() via this module proxy, as
shown in Example 7-7. The actual loading task will be delegated to
flash.display.Loader.

Example 7-7. Module preloading technique

private var moduleInfoRef:Object = {};

private function loadModule(moduleUrl:String):void {
 var moduleInfo:IModuleInfo = ModuleManager.getModule(moduleUrl);
 moduleInfo.addEventListener(ModuleEvent.READY, onModuleReady) ;
 //You need to protect moduleInfo from being garbage-collected
 moduleInfoRef[moduleUrl] = moduleInfo;
 moduleInfo.load();
}

// Module is loaded. You may create modules via event.module.factory
private function onModuleReady(event:ModuleEvent):void {
 // Remove 'protection' from moduleInfo
 moduleInfoRef[event.module.url]=null;
}

The code, similar to the function loadModule(), can be called well in advance of the
immediate need of the module. Then, to create an instance of the module, you obtain
another instance of the module proxy and use its factory property, as shown in
Example 7-8.

Example 7-8. Creating an instance of the preloaded module

private function createModuleInstance(moduleUrl:String,
parent:UIComponent=null):Module {
 var module:Module;
 var moduleInfo:IModuleInfo = ModuleManager.getModule(moduleUrl);
 var flexModuleFactory:IFlexModuleFactory = moduleInfo.factory;
 if (flexModuleFactory != null) {
 module = flexModuleFactory.create() as Module;
 if (parent) {
 parent.addChild(module);
 }
 }
 return module;
}

Preloading Modules with ModuleManager | 335

yfain11
Cross-Out

yfain11
Replacement Text
parent.addChild(module); // in Flex 4 use addElement()

If this code looks confusing and leaves you wondering what to think of IFlexModule
Factory and where create() comes from, try this: from the Flash Builder project’s
Properties, navigate to Flex Compiler, and in the pop-up window add the compiler
option -keep in the field Additional Compiler Arguments to see the generated Action-
Script code. Then, in the src/generated folder, open the file _SimpleMod-
ule_mx_core_FlexModuleFactory.as. The Flex compiler adds an implementation of
IFlexModuleFactory for each module, similar to the one shown in the Example 7-9.

Example 7-9. Compiler-generated descendant of FlexModuleFactory

package{
public class _SimpleModule_mx_core_FlexModuleFactory
 extends mx.core.FlexModuleFactory
 implements IFlexModuleFactory{
 . . .
 override public function create(... params):Object{
 if (params.length > 0 && !(params[0] is String))
 return super.create.apply(this, params);

 var mainClassName:String = params.length == 0 ? "SimpleModule" :
 String(params[0]);
 var mainClass:Class = Class(getDefinitionByName(mainClassName));
 if (!mainClass) return null;

 var instance:Object = new mainClass();
 if (instance is IFlexModule)
 (IFlexModule(instance)).moduleFactory = this;
 return instance;
 }

 override public function info():Object {
 return {
 compiledLocales: ["en_US"],
 compiledResourceBundleNames: ["containers", "core", "effects",
 "skins", "styles"],
 creationComplete: "onCreationComplete()",
 currentDomain: ApplicationDomain.currentDomain,
 mainClassName: "SimpleModule",
 mixins: ["_SimpleModule_FlexInit",
"_richTextEditorTextAreaStyleStyle", "_ControlBarStyle",
. . .
"_SimpleModuleWatcherSetupUtil"]
 }
 }
}
}

Finally, to enable the unloading of the module, you need to detach all module instances
from their parents. To that end, the example application maintains a Dictionary of
loaded modules instances, one per module URL:

[Bindable]private var modules:Dictionary = new Dictionary();

336 | Chapter 7: Modules, Libraries, Applications, and Portals

Although this example deals with only one module (SimpleModule.swf), you may up-
grade this code to a reusable utility. Then the unloading of the module can be coded
like in Example 7-10.

Example 7-10. Module unloading technique

private function unloadModule(moduleUrl:String):void {
 var moduleInfo:IModuleInfo = ModuleManager.getModule(moduleUrl);
 if (moduleInfo.loaded) {
 var moduleList:Array = modules[moduleUrl];
 for each(var module:Module in moduleList) {
 module.parent.removeChild(module);
 }
 delete modules[moduleUrl];
 moduleInfo.unload();
 moduleInfo.release();
 }
 isModuleLoaded = false;
}

Figure 7-3 illustrates the example application after creation of one instance of
SimpleModule. Example 7-11 lists the complete code of the ModuleManagerDemo
application.

Figure 7-3. ModuleManagerDemo with one instance of the module

Example 7-11. Complete code of ModuleManagerDemo

<?xml version="1.0" encoding="utf-8"?>
<!-- ModuleManagerDemo.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script>
 <![CDATA[
 import mx.core.UIComponent;
 import mx.controls.Alert;

Preloading Modules with ModuleManager | 337

yfain11
Comment on Text
Add the following line below this one:

// If more then one module instance was loaded, unload each one

 import mx.modules.Module;
 import mx.core.IFlexModuleFactory;
 import mx.modules.IModuleInfo;
 import mx.events.ModuleEvent;
 import mx.modules.ModuleManager;

 private const MODULE_URL:String='SimpleModule.swf';
 private var moduleInfoRef:Object = {};
 [Bindable]private var modules:Dictionary = new Dictionary();

 private function loadModule(moduleUrl:String,
 applicationDomain:ApplicationDomain=null):void {
 var moduleInfo:IModuleInfo = ModuleManager.getModule(moduleUrl);
 moduleInfo.addEventListener(ModuleEvent.READY, onModuleReady) ;
 moduleInfo.addEventListener(ModuleEvent.ERROR, onModuleError) ;
 moduleInfoRef[moduleUrl] = moduleInfo;
 moduleInfo.load(
 applicationDomain?
 applicationDomain:ApplicationDomain.currentDomain
);
 }

 private function createModuleInstance(moduleUrl:String,
 parent:UIComponent=null):Module {
 var module:Module;
 var moduleInfo:IModuleInfo = ModuleManager.getModule(moduleUrl);
 var flexModuleFactory:IFlexModuleFactory = moduleInfo.factory;
 if (flexModuleFactory != null) {
 module = flexModuleFactory.create() as Module;
 var moduleList:Array = modules[moduleUrl] ? modules[moduleUrl] :
 new Array();
 moduleList.push(module);
 modules[moduleUrl] = moduleList;
 if (parent) {
 parent.addChild(module);
 }
 }
 return module;
 }

 [Bindable] private var isModuleLoaded:Boolean=false;
 private function onModuleReady(event:ModuleEvent):void {
 // Module is loaded. You may create module instances
 // via event.module.factory (moduleInfo)
 moduleInfoRef[event.module.url]=null;
 isModuleLoaded = true;
 }

 private function onModuleError (event:ModuleEvent):void {
 Alert.show(event.errorText);
 }

 private function unloadModule(moduleUrl:String):void {
 var moduleInfo:IModuleInfo = ModuleManager.getModule(moduleUrl);
 if (moduleInfo.loaded) {

338 | Chapter 7: Modules, Libraries, Applications, and Portals

 var moduleList:Array = modules[moduleUrl];
 for each(var module:Module in moduleList) {
 module.parent.removeChild(module);
 }
 delete modules[moduleUrl];
 moduleInfo.unload();
 moduleInfo.release();
 }
 isModuleLoaded = false;
 }
]]>
</mx:Script>

 <mx:HBox>
 <mx:Button label="Load Module" click="loadModule(MODULE_URL)" />
 <mx:Button label="Instantiate Module"
 click="createModuleInstance(MODULE_URL, this)"
 enabled="{isModuleLoaded}"/>
 <mx:Button label="Unload Module"
 click="unloadModule(MODULE_URL)"
 enabled="{isModuleLoaded}"/>
 </mx:HBox>
</mx:Application>

Note that Example 7-11 applies the concept of application domains:

moduleInfo.load(
 applicationDomain?applicationDomain:ApplicationDomain.currentDomain
);

You’ll learn about domains a bit later in this chapter. For now, suffice it to say that the
code loads module classes into the same area (in memory) where the classes of the
calling applications were loaded.

Whether via ModuleLoader or ModuleManager, you have loaded your module. How will
the application communicate with it?

Communicating with Modules
You’ve designed your modules to be independent, but there should be provisions to
allow external applications to communicate with them, pass them some information
and receive response notifications. From the user’s point of view, it may look like an
innocent drag-and-drop action, but internally you must resort to one of the several
available means of communication. We will start with direct references to the module
variables and methods.

First, consider the method-based interfaces. We’ll assume that you have the
IGreeting interface, as shown in Example 7-12.

Communicating with Modules | 339

Example 7-12. IGreeting interface

//IGreeting.as
package
{
 public interface IGreeting {
 function getGreeting():String;
 function setGreeting(value:String):void;
 }
}

Further, suppose that a module, such as ModuleWithIGreeting in Example 7-13, is
implementing this interface. Please notice that calling setGreeting() will modify the
bindable variable greeting that affects the title of the module’s panel.

Example 7-13. Example of a module implementing the IGreeting interface

<?xml version="1.0"?>
<!- ModuleWithIGreeting.mxml -->
<mx:Module xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*"
 implements="IGreeting"
 creationComplete="onCreationComplete()"
>
 <mx:Script>
<![CDATA[
 [Bindable] private var greeting:String="";

 public function setGreeting(value:String):void {
 greeting = value;
 }
 public function getGreeting():String {
 return greeting;
 }
]>
 </mx:Script>
 <mx:Panel id="panel" title="Module With Greeting{greeting}" width="400"
height="200">
 </mx:Panel>
</mx:Module>

How can your application take advantage of the fact that the loaded module imple-
ments a known interface? Assuming that it has used a ModuleLoader, as the following
snippet shows, you can cast its child property to the IGreeting interface:

var greeting:IGreeting = moduleLoader.child as IGreeting;
greeting.setGreeting(" loaded by application");

Then again, no one prevents you from simply referencing the panel from Mod-
uleWithIGreeting by name:

var module:Module = moduleLoader.child as Module;
var panel:Panel = module.getChildByName("panel") as Panel;
trace(panel.title); //Simple Module loaded by application

340 | Chapter 7: Modules, Libraries, Applications, and Portals

The complete ReferenceCommunicationDemo application is presented in
Example 7-14.

Example 7-14. ReferenceCommunicationDemo application

<?xml version="1.0"?>
<!-- ReferenceCommunicationDemo.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script>
<![CDATA[
 import mx.modules.Module;
 import mx.containers.Panel;

 private const MODULE_URL:String="ModuleWithIGreeting.swf";

 private function modifyLoadedContent():void {
 var greeting:IGreeting = moduleLoader.child as IGreeting;
 greeting.setGreeting(" loaded by application");

 var module:Module = moduleLoader.child as Module;
 var panel:Panel = module.getChildByName("panel") as Panel;
 trace(panel.title); //Simple Module loaded by application
}
]]>
</mx:Script>
 <mx:HBox>
 <mx:Button label="Load Module"
 click="moduleLoader.loadModule(MODULE_URL)" />
 <mx:Button label="Modify Content"
 click="modifyLoadedContent()"/>
 <mx:Button label="Unload Module"
 click="moduleLoader.unloadModule()"
 enabled="{moduleLoader.loaderInfo.bytesTotal!=0}"/>
 </mx:HBox>

 <mx:ModuleLoader id="moduleLoader"/>
</mx:Application>

This application has three buttons labeled Load Module, Modify Content, and Unload
Module (Figure 7-4), each associated with a similarly named function. This separation
of functions enables you to profile the application and verify that there is no memory
leak associated with module unloading.

Although this interface-based method of working with modules is appealing, use it with
care: it uses direct references to the modules, and any unreleased direct reference will
indefinitely lock your module in memory. Against this backdrop, the elegance of the
interfaces does not matter much.

The best way to make sure you do not have unreleased references is to avoid them to
begin with. Instead, use events to communicate with the loaded modules. To do so,
you need an EventDispatcher that can be commonly accessed by the module and the
loading application (here’s yet another example of the Mediator design pattern from

Communicating with Modules | 341

Chapter 2). One object that suits the task particularly well is sharedEvents, accessible
as loader.loaderInfo.sharedEvents from the module and loading application as well.

The complete code of the sample application EventCommunicationDemo is presented in
Example 7-15. Note that in the loadModule(), you subscribe to Event.COMPLETE to be
sent by the modules upon loading and creating the module’s display list. Then, the
onComplete() handler application itself sends an event to the module. The module, as
you will see soon, interprets this event to modify a panel’s header.

Example 7-15. EventCommunicationDemo application

<?xml version="1.0"?>
<!-- EventCommunicationDemo.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script>
<![CDATA[
 import mx.events.DynamicEvent;
 import mx.controls.Alert;
 import mx.events.ModuleEvent;
 import mx.modules.Module;

 private const MODULE_URL:String="ModuleWithEvents.swf";
 [Bindable] private var moduleLoaded:Boolean;

 private function loadModule():void {
 // Subscribe to notifications from the module
 var sharedEventDispatcher:IEventDispatcher =
 moduleLoader.loaderInfo.sharedEvents;
 sharedEventDispatcher.addEventListener(
 Event.COMPLETE, onModuleCreated
);
 moduleLoader.loadModule(MODULE_URL);
 moduleLoaded = true;
 }

Figure 7-4. ReferenceCommunicationDemo

342 | Chapter 7: Modules, Libraries, Applications, and Portals

 // This event "comes" from the module
 private function onModuleCreated(event:Event):void {
 trace("Module CreateComplete happened");
 //Send commands to the module
 var sharedEventDispatcher:IEventDispatcher =
 moduleLoader.loaderInfo.sharedEvents;
 var dynamicEvent:DynamicEvent = new DynamicEvent("command");
 dynamicEvent.data = " Two-way talk works!";
 sharedEventDispatcher.dispatchEvent(dynamicEvent);
 }
 private function unloadModule():void {
 moduleLoader.unloadModule();
 moduleLoaded = false;
 }

]]>
</mx:Script>
 <mx:HBox>
 <mx:Button label="Load Module" click="loadModule()" />
 <mx:Button label="Unload Module" click="unloadModule()"
 enabled="{moduleLoaded}"/>
 </mx:HBox>

 <mx:ModuleLoader id="moduleLoader"/>
</mx:Application>

Example 7-16 presents the corresponding module sample ModuleWithEvents. Notice the
handler of the creationComplete event. It subscribes to the command events sent by the
application and notifies the application that the module is ready for receiving such
events by dispatching Event.COMPLETE.

The syntax of addEventListener() specifies weak reference, because strong reference to
the sharedEventDispatcher would prevent the module from being garbage-collected. If
you run the application and click on the button Load Module, you will see the screen
shown in Figure 7-5.

The panel’s header will read “Module With Events. Two-way talk works!” to emphasize
the fact that the application and the module exchange events in both directions. You
may want to actually profile the application and watch how referencing of the event
listener (weak versus strong) dramatically affects the ability to unload the module.

Example 7-16. Counterpart module example to EventCommunicationDemo

<?xml version="1.0"?>
<!- ModuleWithEvents.mxml -->
<mx:Module xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="onCreationComplete()"
 >
 <mx:Script>
 <![CDATA[
 import mx.events.DynamicEvent;

Communicating with Modules | 343

 [Bindable] private var command:String="";
 private function onCreationComplete():void {
 var sharedEventDispatcher:IEventDispatcher =
 systemManager.loaderInfo.sharedEvents
 //Subscribe to command from the application
 sharedEventDispatcher.addEventListener(
 "command", onCommand,false,0,true
); //Strong reference would lock the module to application

 // Notify the applications that creation has completed
sharedEventDispatcher.dispatchEvent(new Event(Event.COMPLETE)
);
 }

 private function onCommand(event:DynamicEvent):void {
 command = event.data as String;
 }
]]>
</mx:Script>
 <mx:Panel id="panel" title="Module With Events. {command}" width="400"
 height="200"/>
</mx:Module>

Figure 7-5. EventCommunicationDemo application

Introducing Application Domains
You’re packing for the snorkeling trip with your kid. Into your travel bag you put the
two new pairs of goggles you bought just yesterday. Meanwhile, your small one found
two old pairs in the garage and placed them in his backpack. You arrive to the beach
with two sets of goggles. Which ones are you going to use?

• You are a perfectionist. You want the spotless snorkeling, and use the new goggles.

344 | Chapter 7: Modules, Libraries, Applications, and Portals

• You are a good father. You want your kid to feel that his preparation for the trip
was important and use the old goggles.

• You are a pedant. You use new goggles. Your kid should have consulted with you
instead of bringing old ones.

Now, if we replace travel bag with a parent application domain, your kid’s backpack
with a child application domain and start discussing class definitions instead of goggles,
the only choice you are going to get is #3, or “delegate to your parent.”

Classes get loaded into application domains, which form a tree. By default, a module’s
classes get loaded into the child domain (of the application or parental module). The
child has access to all classes in the parental chain. This means that a module can create
all the classes the application can (your kid can use your goggles).

On the contrary, the application does not get access to the classes carried by the module
(you are not allowed to open your kid’s backpack), and the child can’t reload the class
already known to the parent (your goggles are the only ones your kid gets to use).

The application ModuleDomainDemo illustrates this concept. Its ModuleLoader has an
applicationDomain property set to a bindable expression that depends on the user-
controlled radio button:

<mx:ModuleLoader id="moduleLoader"
 applicationDomain="{
 same_domain.selected?
 ApplicationDomain.currentDomain:
 new ApplicationDomain(ApplicationDomain.currentDomain)
 }"
/>

For the complete code of ModuleDomainDemo, see Example 7-19 (a bit
later).

The subexpression ApplicationDomain.currentDomain refers to the domain that the very
code containing this expression belongs to. In the example’s case, it means the domain
that keeps the class definitions of the application itself. At the same time, the expression
new ApplicationDomain(ApplicationDomain.currentDomain) refers to the child of that
domain. These are two alternative application domain settings when you are loading
the modules: the same domain or a child domain (default). The module that you are
going to load is a slightly modified version of the SimpleModule you used earlier: it
explicitly links in CustomGrid control as shown in Examples 7-17 and 7-18.

Example 7-17. SimpleModule with linked-in CustomGrid component

<?xml version="1.0"?>
<!-- SimpleModule -->
<mx:Module xmlns:mx="http://www.adobe.com/2006/mxml"

Introducing Application Domains | 345

 ><mx:Script>
 <![CDATA[
 CustomGrid; //Needed only for ModuleDomainDemo
]]>
 </mx:Script>
 <mx:Panel id="panel" title="Simple Module" width="400" height="200">
 </mx:Panel>
</mx:Module>

Example 7-18. CustomGrid component

<?xml version="1.0" encoding="utf-8"?>
<!-- CustomGrid.mxml -->
<mx:DataGrid xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:columns>
 <mx:Array>
 <mx:DataGridColumn dataField="name" headerText="Name" width="150"/>
 <mx:DataGridColumn dataField="phone" headerText="Phone"/>
 </mx:Array>
 </mx:columns>
</mx:DataGrid>

The application attempts dynamic creation of the CustomGrid, purely by class name. To
obtain the class definition from the current application domain, use the loaderInfo
property shared by all display objects:

var clazz:Class =
 loaderInfo.applicationDomain.getDefinition("CustomGrid") as Class;
dg = DataGrid(new clazz());

Run the application and make sure that the radio button Same Domain is selected. This
means that classes will get loaded into the ApplicationDomain.currentDomain. In other
words, you have allowed your kid to put his things into your bag (it’s a “MiracleCom-
pactPro” bag, all right, because it does not accept the same article twice). Click Load
Module and then click Create Custom Grid. The application will look as shown in
Figure 7-6. The application (not the module!) has created DataGrid using the class from
the module’s .swf.

Unload the module and then load it with the radio button Child Domain selected. The
application won’t be able to create the CustomGrid. It’s out of the application’s reach
now, because you loaded modules classes in the isolated child application domain
(Figure 7-7).

By no means are we suggesting the use of modules instead of the libraries, as far as
reusable resources are concerned (we discuss libraries in the next section). Exam-
ple 7-19, ModuleDomainDemo.mxml, merely illustrates the class isolation provided by
the application domains. That said, if you find yourself loading your modules into the
same domain—you’ve got company! Provided you use careful class naming, this is a
viable alternative to child domains.

346 | Chapter 7: Modules, Libraries, Applications, and Portals

yfain11
Cross-Out

yfain11
Replacement Text
Restart the application and load the module

Figure 7-6. ModuleDomainDemo: loading the module to the same domain

Figure 7-7. ModuleDomainDemo: loading the module to the child domain

Introducing Application Domains | 347

Example 7-19. Complete code of ModuleDomainDemo

<?xml version="1.0"?>
<!-- ModuleDomainDemo.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.controls.DataGrid;

 private const MODULE_URL:String = "SimpleModule.swf";
 [Bindable] private var moduleLoaded:Boolean;

 private var dg:DataGrid;
 private function createCustomGrid():void {
 try {
 var clazz:Class =
 loaderInfo.applicationDomain.getDefinition("CustomGrid") as Class;
 } catch (error:ReferenceError) {
 Alert.show ("Definition of 'CustomGrid' class can not be found
 in the current domain of the application ","Class Not Found Error");
 return;
 }
 dg = DataGrid(new clazz());
 dg.dataProvider = [
 {name:"Anatole Tartakovsky", phone:"5618325611"},
 {name:"Victor Rasputnis", phone:"7184017234"},
 {name:"Yakov Fain",phone:"7322342654"}
];
 addChild(dg);
 }

 [Bindable] private var moduleLoaded:Boolean;
 private function loadModule():void {
 moduleLoader.loadModule(MODULE_URL);
 moduleLoaded=true;
 }

 private function unloadModule():void {
 removeChild(dg); // Remove references to the module
 dg = null;
 moduleLoader.unloadModule();
 moduleLoaded=false;
 }]]>
 </mx:Script>
 <mx:VBox>
 <mx:HBox>
 <mx:RadioButton groupName="domain" label="Same Domain"
 id="same_domain" selected="true" enabled="{!moduleLoaded}"/>
 <mx:RadioButton groupName="domain" label="Child Domain"
 id="child_domain" enabled="{!moduleLoaded}"/>
 </mx:HBox>

 <mx:HBox>
 <mx:Button label="Load Module" click="loadModule(MODULE_URL) " />
 <mx:Button label="Create Custom Grid" click="createCustomGrid()" />

348 | Chapter 7: Modules, Libraries, Applications, and Portals

 <mx:Button label="Unload Module" click="unloadModule()"
 enabled="{moduleLoaded}"/>
 </mx:HBox>
 </mx:VBox>

 <mx:ModuleLoader id="moduleLoader"
 applicationDomain="{
 same_domain.selected?
 ApplicationDomain.currentDomain:
 new ApplicationDomain(ApplicationDomain.currentDomain)
 }"
 />

</mx:Application>

Paying Tribute to Libraries
If you need to modularize reusable components, look no further than libraries: Runtime
Shared Libraries (RSL), to be specific. Assuming that you are using Flash Builder, the
basic procedure is:

1. Create a Flex Library project containing classes to be reused (call it, say,
ComponentLibrary).

2. Add a mapping to this project to the Flex Build Path of the application(s) that
makes use of the library classes.

If you do not have the source code, add a mapping to the SWC file of the library com-
piled by a third party instead of to the library project. Look in the Flex Build Path of
your application: all Flex framework classes are added via several .swc files, similar to
Figure 7-8.

At this configuration level, library projects merely separate development of the business
application from building of the reusable components; however, your application is
still built as monolithic .swf. Why? Because when you add mapping to the library project
or .swc of the compiled library, the default link type is “Merged into code.” This is static
linking, where the application .swf contains only those classes it could determine as
required at compile time. Recall the dynamic instantiation from Example 7-19:

var clazz:Class =
 loaderInfo.applicationDomain.getDefinition("CustomGrid") as Class;
dg = DataGrid(new clazz());

Assuming the CustomGrid class belongs to ComponentLibrary, under “Merged into
code,” this dynamic instantiation will not work, because definition of the CustomGrid
will not become a part of the application .swf.

If you want to reference CustomGrid explicitly, you may add the following line to your
application:

import CustomGrid; CustomGrid;

Paying Tribute to Libraries | 349

Alternatively, you may add -includes CustomGrid to the compiler options.

Either way, you are not using the library (RSL), you’re only creating a monolithic SWF
via a library project. To use the RSL, change the link type to “Runtime shared library.”
Figure 7-9 shows one way to do it, with the option “Automatically extract swf to de-
ployment” turned on. What this really means is that the SWF of the library (RSL) will
be created on each compile of the application. (You’ll learn about the opposite setting
of this option later in the chapter.)

According to Figure 7-9, after building an application that is mapped to the Compo-
nentLibrary (Flex Library) project, you will find ComponentLibrary.swf in the output
folder.

Now your application is using an RSL. To be precise, the compiler-generated code will
have flash.display.Loader (what else?) preload the classes of the RSL .swf into
ApplicationDomain.currentDomain. In other words, the default application domain set-
ting for libraries is the same domain as the application (same bag for you and your kid).

Figure 7-8. Default link type: merge into code

350 | Chapter 7: Modules, Libraries, Applications, and Portals

The application .swf gets smaller, because it does not carry the footprint of any of the
library classes, whether statically required or not. That said, you incurred extra .swf
content: the library itself. If you are developing an intranet application, the size does
not matter much. Additionally, if you are deploying for extranet use, recall that li-
brary .swf files get cached in the browser cache per domain.

On top of that, as far as Flex framework RSLs are concerned, the latest releases of Flash
Player 9 and Player 10 support Adobe-signed RSLs that get cached by the Flash Player;
these .swf files are cached across different server domains.

Figure 7-9. RSL link type defaults to autoextraction of the RSL SWF

Paying Tribute to Libraries | 351

RSLs: “Under”-Libraries
Unfortunately, RSLs fail to deliver on the promise of dynamic linking. As it turns out,
a SWF of the RSL itself does not contain all the code that the RSL requires to function.
The complementary part is generated by the Flex compiler as part of the application’s
(or module’s) bootstrap. That’s not all.

Besides dependency of an RSL SWF on the application’s bootstrap, the very bootstrap
is totally ignoring any library class that the application does not reference statically. As
a result, dynamic instantiation of RSL-based classes fails.

This section demonstrates the problem. If you are looking for the immediate solution,
skip to the section “Bootstrapping Libraries as Applications” on page 357.

Here you will create a Flex Library Project, ComponentLibrary, with a single compo-
nent, CustomPanel (Example 7-20).

Example 7-20. CustomPanel, to be dynamically loaded by LibraryDemo

<!-- com.farata.samples.CustomPanel.mxml -->
<mx:Panel xmlns:mx="http://www.adobe.com/2006/mxml"
 title="'Custom' Panel #{instanceNumber}"
 width="300" height="150"
 creationComplete="instanceNumber=++count;"
>
 <mx:Script>
 public static var count:int;
 [Bindable] private var instanceNumber:int;
 </mx:Script>
</mx:Panel>

The example application, LibraryDemo, will merely attempt to dynamically create in-
stances of the CustomPanel using applicationDomain.getDefinition(), as shown in
Example 7-21.

Example 7-21. Library Demo dynamically loads CustomPanel

<!-- LibraryDemo -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
>
 <mx:Button label="CreatePanel"
click="createComponent('com.farata.samples.CustomPanel')"/>
 <mx:Script>
 <![CDATA[
 //import mx.containers.Panel;Panel; // Make sure this is commented out

 private var displayObject:DisplayObject;
 private function createComponent(componentName:String) : void {
 var clazz : Class =
loaderInfo.applicationDomain.getDefinition(componentName) as Class;
 displayObject = DisplayObject(new clazz());
 addChild(displayObject);

352 | Chapter 7: Modules, Libraries, Applications, and Portals

 }
]]>
 </mx:Script>
</mx:Application>

To test the application, add the ComponentLibrary project to the Flex Build Path of the
application project, as shown in Figure 7-9. Now, if you run the application and click
Create Panel, the application will crash, as shown in Figure 7-10.

Figure 7-10. LibraryDemo fails to dynamically create CustomPanel

If, however, you uncomment this line:

//import mx.containers.Panel;Panel;

the application will run successfully, as shown in Figure 7-11.

Consider the problem. Debugging the application reveals that the null pointer error
happens because of an uninitialized instance variable of the Panel class:
titleBarBackground. The corresponding snippet of the Panel.as is presented in Exam-
ple 7-22. At the time of the crash, the titleBarBackground class is null.

Example 7-22. First snippet of Panel.as

override protected function layoutChrome(unscaledWidth:Number,
 unscaledHeight:Number):void
{

Paying Tribute to Libraries | 353

 super.layoutChrome(unscaledWidth, unscaledHeight);
 . . .
 titleBarBackground.move(0, 0);
 . . .
}

Figure 7-11. If you link in the Panel class, LibraryDemo works well

Following the lead, in the same Panel.as you will discover that the value of
titleBarBackground is dependent on dynamic instantiation of titleBackgroundSkin
(Example 7-23).

Example 7-23. Second snippet of Panel.as

var titleBackgroundSkinClass:Class = getStyle("titleBackgroundSkin");

if (titleBackgroundSkinClass){
 titleBarBackground = new titleBackgroundSkinClass();
. . .

354 | Chapter 7: Modules, Libraries, Applications, and Portals

Because you did not do anything beyond linking in the Panel to make the Library-
Demo application work, the difference between the working application and the buggy
one must be in the generated code. Specifically, the difference is in the compiler-
generated descendant of SystemManager, _LibraryDemo_mx_managers_SystemManager,
which is the main application class.

The code of the nonworking application is presented in Example 7-24. Note that the
class implements IFlexModuleFactory again. You came across this interface first during
the discussion of loading modules with ModuleManager. At that time, you learned that
modules get bootstrapped by classes implementing IFlexModuleFactory interface (see
Example 7-9). As you see now, the same technique works with applications.

Also note the currentDomain and rsls properties of the object returned by the info()
method. This rsls property contains the url of the ComponentLibrary.swf that will be
loaded in the current domain of the application.

And last, compare the mixins array with Example 7-25, which presents the second
version of the mixins array—this time taken from the working application (the one
where you force linking in of the Panel class). This is the only place where two appli-
cations are different! And the only two lines that make this difference mention _Contro
BarStyle and _Panel mixin classes. FYI: the mixin class is a helper class with the method
initialize(baseObject).

Example 7-24. Compiler-generated SystemManager for the LibraryDemo (nonworking version)

// Compiler-generated SystemManager for the LibraryDemo
package
{

import . . .

[ResourceBundle("containers")]
[ResourceBundle("core")]
[ResourceBundle("effects")]
[ResourceBundle("skins")]
[ResourceBundle("styles")]
public class _LibraryDemo_mx_managers_SystemManager
 extends mx.managers.SystemManager
 implements IFlexModuleFactory
{
 public function _LibraryDemo_mx_managers_SystemManager() {
 super();
 }

 override public function create(... params):Object {
 if (params.length > 0 && !(params[0] is String))
 return super.create.apply(this, params);

 var mainClassName:String = params.length == 0 ? "LibraryDemo" :
 String(params[0]);
 var mainClass:Class = Class(getDefinitionByName(mainClassName));
 if (!mainClass)

Paying Tribute to Libraries | 355

 return null;

 var instance:Object = new mainClass();
 if (instance is IFlexModule)
 (IFlexModule(instance)).moduleFactory = this;
 return instance;
 }

 override public function info():Object {
 return {
 compiledLocales: ["en_US"],
 compiledResourceBundleNames: ["containers", "core", "effects",
 "skins", "styles"],
 currentDomain: ApplicationDomain.currentDomain,
 layout: "vertical",
 mainClassName: "LibraryDemo",
 mixins: ["_LibraryDemo_FlexInit", "_richTextEditorTextAreaStyleStyle",
"_alertButtonStyleStyle", "_textAreaVScrollBarStyleStyle", "_headerDateTextStyle",
"_globalStyle", "_todayStyleStyle", "_windowStylesStyle", "_ApplicationStyle",
"_ToolTipStyle", "_CursorManagerStyle", "_opaquePanelStyle", "_errorTipStyle",
"_dateFieldPopupStyle", "_dataGridStylesStyle", "_popUpMenuStyle",
"_headerDragProxyStyleStyle", "_activeTabStyleStyle",
"_ContainerStyle", "_windowStatusStyle", "_ScrollBarStyle",
"_swatchPanelTextFieldStyle", "_textAreaHScrollBarStyleStyle", "_plainStyle",
"_activeButtonStyleStyle", "_advancedDataGridStylesStyle", "_comboDropdownStyle",
"_ButtonStyle", "_weekDayStyleStyle", "_linkButtonStyleStyle"],
 rsls: [{url: "ComponentLibrary.swf", size: -1}]

 }
 }
}

}

Example 7-25. mixins array from the compiler-generated SystemManager for the working version of
the LibraryDemo

mixins: ["_LibraryDemo_FlexInit", "_richTextEditorTextAreaStyleStyle",
"_ControlBarStyle",
"_alertButtonStyleStyle", "_textAreaVScrollBarStyleStyle", "_headerDateTextStyle",
"_globalStyle", "_todayStyleStyle", "_windowStylesStyle", "_ApplicationStyle",
"_ToolTipStyle", "_CursorManagerStyle", "_opaquePanelStyle", "_errorTipStyle",
"_dateFieldPopupStyle", "_dataGridStylesStyle", "_popUpMenuStyle",
"_headerDragProxyStyleStyle", "_activeTabStyleStyle",
"_PanelStyle",
"_ContainerStyle", "_windowStatusStyle", "_ScrollBarStyle",
"_swatchPanelTextFieldStyle", "_textAreaHScrollBarStyleStyle", "_plainStyle",
"_activeButtonStyleStyle", "_advancedDataGridStylesStyle", "_comboDropdownStyle",
"_ButtonStyle", "_weekDayStyleStyle", "_linkButtonStyleStyle"]

MXML applications are, by design, two-phased. The first phase is the bootstrap (the
first frame of the Flex application or Flex module .swf). At this time, the application
preloads the RSLs and manipulates support classes generated by the compiler, such as
mixins. In this example’s case, not knowing about Panel made the Flex compiler omit

356 | Chapter 7: Modules, Libraries, Applications, and Portals

creation and use of _ControlBarStyle and _PanelStyle mixins, which in turn lead to an
uninitialized titleBackgroundSkin and, finally, a reference error in the panel’s
layoutChrome(). All in all, there are two problems:

• RSLs are not quite reusable libraries. They are “under”-libraries that require boot-
strap support from the loading .swf.

• The bootstrap code generated by the Flex compiler fails to support classes that
your application (or module) is referencing dynamically.

Now that we’ve admitted the problems, the rest is technicality.

Bootstrapping Libraries as Applications
Step back a little and consider Flex library projects, or more specifically, library .swc
files. At the end of the day, when you link your application with the library, you link
it with the .swc, whether made from sources in a library project or obtained from a third
party.

If you recall, Figure 7-9 included the option “Automatically extract swf to deployment
path.” Being an option, it underscores the two missions of the SWC. The critical mis-
sion is to resolve the compile-time references for the application. The optional mission
is to begin autoextracting the RSL SWF.

Here comes the big idea: do not rely on the automatically extracted library SWF, be-
cause it’s incomplete, and do not trust the bootstrap from the application SWF, because
the application does not necessarily know about all library classes. Instead, purposely
create this knowing application yourself, merge it with the library classes, and give it
the same name as the SWF of the library that otherwise would have been autoextracted.
In other words, say “no” to autoextraction. Replace it with the custom compilation of
the library as a fully bootstrapped application. Doing so changes nothing in how the
main application gets compiled, but it no longer relies on bootstrap generation for the
main application. Copy the custom-compiled library into the deployment folder, and
when the main application loads the library (for instance ComponentLibrary.swf), it
will not know that it is loading a self-sufficient, custom-compiled SWF instead of the
immature, autoextracted one.

Example 7-26 contains the example of the ComponentLibrary_Application class that is
added to the library project to bootstrap the library. Notice the static reference to the
CustomPanel: it is your responsibility to add such references as import com.farata.sam
ples.CustomPanel; CustomPanel; to the body of the ComponentLibrary_Application
class whenever you add new components to the library. Importantly, all these references
stay encapsulated in the library itself. This library will not need outside help to guar-
antee the success of the dynamic calls.

Paying Tribute to Libraries | 357

Example 7-26. Example of bootstrapping the library as SimpleApplication to consolidate compiler-
generated and manual code in one SWF

// ComponentLibrary_Application.as
// Example of Library bootstrapped as SimpleApplication
// Libraries created this way do not have problems with dynamic class references
package {
 import mx.core.SimpleApplication;

 public class ComponentLibrary_Application extends SimpleApplication {

 import com.farata.samples.CustomPanel; CustomPanel;

 public function ComponentLibrary_Application() {
 // Custom library initialization code should go here
 trace("ComponentLibrary_Application.swf has been loaded and initialized");
 }

 }
}

Example 7-27 contains the example of the ComponentLibrary_Bootstrap.mxml class
derived from the ComponentLibrary_Application.

Example 7-27. MXML extension of the bootstrap to force MXML compiler into code generation

<?xml version="1.0" encoding="UTF-8"?>
<!-- ComponentLibrary_Bootstrap.mxml
 By wrapping ComponentLibrary_Application into MXML tag, we
 force Flex compiler to create all mixins required by the
 library classes (in the generated bootstrap class)
-->
<ComponentLibrary_Application xmlns="*" />

This extra step up to MXML is required to trick the Flex compiler into generating its
own bootstrap class (the code of that class is shown in Example 7-30). Finally, Exam-
ple 7-28 contains the example of the Ant script that can be used to compile the SWF
of the self-initializing library.

Example 7-28. Ant script that compiles ComponentLibrary_Bootstrap.mxml

<project name="Library-Application" default="compile" basedir="." >
 <target name="compile">
 <property name="sdkdir" value="C:/Program Files/Adobe/Flash Builder 3 Plug-
 in/sdks/3.2.0" />
 <property name="swclibs" value="${sdkdir}/frameworks/libs" />
 <property name="application.name" value="ComponentLibrary_Bootstrap" />
 <property name="library.name" value="ComponentLibrary" />
 <exec executable="${sdkdir}/bin/mxmlc.exe" dir="${basedir}">
 <arg line="-external-library-
 path='${swclibs}/player/9/playerglobal.swc'"/>
 <arg line="-keep-generated-actionscript=true "/>
 <arg line="src/${application.name}.mxml"/>
 <arg line="-output bin/${library.name}.swf"/>
 </exec>

358 | Chapter 7: Modules, Libraries, Applications, and Portals

 </target>
</project>

When you run this script in Flash Builder, you will see output similar to that of Exam-
ple 7-29.

Example 7-29. Output of the Ant script compiling library-bootstrapped-as-application

Buildfile: C:\workspaces\farata.samples\ComponentLibrary\build.xml
compile:
 [exec] Loading configuration file C:\Program Files\Adobe\Flash Builder 3
 Plug-in\sdks\3.2.0\frameworks\flex-config.xml
 [exec] C:\workspaces\farata.samples\ComponentLibrary\bin\ComponentLibrary.swf
 (181812 bytes)
BUILD SUCCESSFUL
Total time: 5 seconds

Make sure you copy ComponentLibrary.swf into the output folder of your application
project and do not forget to turn off the autoextraction of the SWF, as shown in
Figure 7-12.

Figure 7-12. Autoextraction of the RSL SWF is turned off to avoid overwriting the custom-compiled
library

Congratulations! Just created a bulletproof Flex RSL. If you are a practitioner, your job
is complete. If you are a researcher, however, you may want to look at Example 7-30,
which is the bootstrap class generated by the Flex compiler in response to this Ant-
based compilation. Notice it contains yet another implementation of the IFlexModule
Factory interface. In response to the base class being flex.core.SimpleApplication, the
compiler generates a descendant of mx.core.FlexApplicationBootstrap (as opposed to
mx.managers.SystemManager, which is being generated in response to mx.core.Applica
tion). Upon the load of the library’s SWF, Flash will instantiate the ComponentLi
brary_Bootstrap_mx_core_FlexApplicationBootstrap class. Construction of the

Paying Tribute to Libraries | 359

superclass results in calling the create() method, which consumes the return of the
method info(). This way, the library bootstrap is completely owned and controlled by
the library itself.

Example 7-30. Compiler-generated main class for the bootstrapped library

// Compiler-generated descendant of the FlexApplicationBootstrap
package
{

import flash.text.Font;
import flash.text.TextFormat;
import flash.system.ApplicationDomain;
import flash.utils.getDefinitionByName;
import mx.core.IFlexModule;
import mx.core.IFlexModuleFactory;

import mx.core.FlexApplicationBootstrap;

[ResourceBundle("containers")]
[ResourceBundle("core")]
[ResourceBundle("effects")]
[ResourceBundle("skins")]
[ResourceBundle("styles")]
public class _ComponentLibrary_Bootstrap_mx_core_FlexApplicationBootstrap
 extends mx.core.FlexApplicationBootstrap
 implements IFlexModuleFactory
{
 public function _ComponentLibrary_Bootstrap_mx_core_FlexApplicationBootstrap()
 {

 super();
 }

 override public function create(... params):Object
 {
 if (params.length > 0 && !(params[0] is String))
 return super.create.apply(this, params);

 var mainClassName:String = params.length == 0 ?
 "ComponentLibrary_Bootstrap" : String(params[0]);
 var mainClass:Class = Class(getDefinitionByName(mainClassName));
 if (!mainClass)
 return null;

 var instance:Object = new mainClass();
 if (instance is IFlexModule)
 (IFlexModule(instance)).moduleFactory = this;
 return instance;
 }

 override public function info():Object{
 return {
 compiledLocales: ["en_US"],
 compiledResourceBundleNames: ["containers", "core", "effects",

360 | Chapter 7: Modules, Libraries, Applications, and Portals

 "skins", "styles"],
 currentDomain: ApplicationDomain.currentDomain,
 mainClassName: "ComponentLibrary_Bootstrap",
 mixins: ["_ComponentLibrary_Bootstrap_FlexInit",
"_richTextEditorTextAreaStyleStyle",
"_ControlBarStyle",
"_alertButtonStyleStyle", "_textAreaVScrollBarStyleStyle", "_headerDateTextStyle",
"_globalStyle", "_todayStyleStyle", "_windowStylesStyle", "_ApplicationStyle",
"_ToolTipStyle", "_CursorManagerStyle", "_opaquePanelStyle", "_errorTipStyle",
"_dateFieldPopupStyle", "_dataGridStylesStyle", "_popUpMenuStyle",
"_headerDragProxyStyleStyle", "_activeTabStyleStyle",
"_PanelStyle",
"_ContainerStyle", "_windowStatusStyle", "_ScrollBarStyle",
"_swatchPanelTextFieldStyle", "_textAreaHScrollBarStyleStyle", "_plainStyle",
"_activeButtonStyleStyle", "_advancedDataGridStylesStyle", "_comboDropdownStyle",
"_ButtonStyle", "_weekDayStyleStyle", "_linkButtonStyleStyle",
 "_CustomPanelWatcherSetupUtil"]
 }
 }
}

}

Read the blog "Avoiding pitfalls of Flex RSL with Self Initialized Libra-
ries” at http://flexblog.faratasystems.com/2010/01/27/taming-flex-rsl for
more information.

Sibling Domains and Multiversioning
By now, it should be clear that applications, modules, and libraries (albeit bootstrapped
as applications) are simply different forms of packaging .swf files. Libraries assume the
tightest coupling with the loading code, and that’s why they get preloaded (by the
application’s code generated by the Flex compiler). Modules get loaded and unloaded
on demand, because they are needed only conditionally and only temporarily. Appli-
cations are similar to modules, in that they get loaded and unloaded on demand. The
important advantage of applications over modules (as units of modularization) is that
applications are self-sufficient, which allows you to mix multiple application .swfs
compiled against different versions of the Flex framework (Flex 3.1, Flex 3.2, Flex 4.0,
and so on).

Let’s elaborate. As you already know, libraries get loaded into the same domain as the
application: ApplicationDomain.currentDomain. Accordingly, to avoid conflicts, a li-
brary has to be compiled against the same version of the Flex framework as the enclosing
application. With modules, you get to choose between the same domain or a child
domain (new ApplicationDomain(ApplicationDomain.currentDomain)), but even in the
latter case, the class search starts with the parent domain. Again, to avoid conflicts,
modules have to be compiled against the same version of the Flex framework as the
consuming application. When it comes to applications, you still may use same-domain

Sibling Domains and Multiversioning | 361

http://flexblog.faratasystems.com/2010/01/27/taming-flex-rsl

or child-domain techniques, provided that the loading application and subapplication
are compiled against the same version of the Flex framework. What if you can’t re-
compile the Flex 3.2 subapplication and you want to load it from the Flex 4 main
application? Then you need to load into the domain that is the sibling of the main
application domain (new ApplicationDomain(null)).

Sibling domains allow ultimate separation of classes; you absolutely have to load the
sub into the sibling domain to support multiversioning. That said, you may want to
indiscriminately use sibling domains even when multiversioning is not an issue. A typ-
ical use case for this is portals, when you have to integrate portlets, perhaps developed
by a third party. In brief:

• If you can compile from sources, make modules and load them into the same do-
main or a child domain.

• If you are integrating compiled applications, use sibling domains.

To simplify the discussion, the following sections will use the term “portlet” instead of
the subapplication and “portal” instead of the loading application.

Four Scenarios of Loading Portlets
To load and unload a portlet, you have to use SWFLoader (unless you are into writing
your own loader). As you remember, SWFLoader is a wrapper around flash.dis
play.Loader. As such, SWFLoader exposes the loaderContext property that controls the
application domain precisely, like it does it for Loader. For instance, Example 7-31’s
MXML illustrates the loading of the RemoteApplication.swf portlet using the default
loaderContext.

Example 7-31. Using SWFLoader with default LoaderContext

<mx:SWFLoader id="swfLoader"
 source="http://localhost:8080/RemoteSite/RemoteApplication.swf"
/>

Identical results can be achieved by Example 7-32’s script.

Example 7-32. Using SWFLoader with explicit LoaderContext

private function loadApplication():void {
 swfLoader.loaderContext = new LoaderContext(
 false,
 new ApplicationDomain(ApplicationDomain.currentDomain)
);
 swfLoader.source = "http://localhost:8080/RemoteSite/RemoteApplication.swf";
}

In both cases, the portlet’s classes get loaded in the child domain of the portal, according
to the default loaderContext of a flash.display.Loader. However, there is more to
loaderContext than controlling the application domain.

362 | Chapter 7: Modules, Libraries, Applications, and Portals

When a Flex application is loaded from a web domain, Flash Player, by default, assigns
it a security sandbox. Applications coming from the different web domains get assigned
different sandboxes. As an example, consider that the portal comes from http://local-
host and loads the portlet from http://127.0.0.1. Unless you deviate from the default
settings, these two applications will be assigned different sandboxes. Remember that
class definitions get loaded into application domains and that application domains
form a tree. There is one and only one tree per sandbox.

You can read more about sandboxes in the Flash documentation (Adobe often refers
to them as security domains as well), but a few important points should be noted here:

• You can indicate the sandbox preference in the constructor of the LoaderContext.
For instance, Example 7-33’s code snippet results in loading classes into the current
security sandbox.

Example 7-33. Forced loading into the current sandbox

swfLoader.loaderContext = new LoaderContext(
 false,
 new ApplicationDomain(
 ApplicationDomain.currentDomain
)
 SecurityDomain.currentDomain
)

• Although you can easily load portlets from other web domains into the current
sandbox, there is no way you can programmatically load the portlet from the same
web domain into the different sandbox. In other words, you can admit strangers
into your family, but you can’t expel your kin. And the only way to load a portlet
into a different sandbox is to host it in a different web domain or subdomain.

• Assigning a different sandbox automatically means using a totally different appli-
cation domain. After all, once in the different family, you do need a different bag!

To sum up, there are only four loaderContext combinations that you can arrange either
programmatically or via hosting the portlet on the different subdomain:

• Different Sandbox Different Domain (DSDD)

• Same Sandbox Different (sibling) Domain (SSDD)

• Same Sandbox Child Domain (SSCD)

• Same Sandbox Same Domain (SSSD)

Table 7-1 illustrates how you can achieve a particular combination—DSDD, SSDD,
SSCD, and SSSD (in this order)—provided that the portal and the portlet are hosted
by the different web domains. You can explicitly use the loaderContext property or you
can manipulate loadForCompatibility and trustContent.

Sibling Domains and Multiversioning | 363

zaremba
Comment on Text
unclear. bag of what? please reword.

yfain11
Cross-Out

yfain11
Replacement Text
Different sandbox means a totally different tree of application domains.

Table 7-1. Loading portlets across web domains

loaderContext syntax SWFLoader syntax
swfLoader.loaderContext=new
 LoaderContext(false,
 new ApplicationDomain(null),
 null
);

<mx:SWFLoader
id="swfLoader"
/>

swfLoader.loaderContext=new
 LoaderContext(false,
 new ApplicationDomain(null),
 SecurityDomain.currentDomain
);

<mx:SWFLoader
id="swfLoader"
loadForCompatibility="true"
trustContent="true"
/>

swfLoader.loaderContext=new
 LoaderContext(false,
 new ApplicationDomain(
 ApplicationDomain.currentDomain
),
 SecurityDomain.currentDomain
);

<mx:SWFLoader
id="swfLoader"

trustContent="true"
/>

swfLoader.loaderContext=new
 LoaderContext(false,
 ApplicationDomain.applicationDomain,
 SecurityDomain.currentDomain
);

Not applicable

Table 7-2 illustrates how the combination SSDD, SSCD, and SSSD can be achieved,
provided that the portal and the portlet are located on the same web domain.

Table 7-2. Loading portlets from the same web domain

loaderContext syntax SWFLoader syntax
swfLoader.loaderContext=new
 LoaderContext(false,
 new ApplicationDomain(null)
);

<mx:SWFLoader
id="swfLoader"
loadForCompatibility="true"
/>

swfLoader.loaderContext=new
 LoaderContext(false,
 new ApplicationDomain(
 ApplicationDomain.currentDomain
)
);

<mx:SWFLoader
id="swfLoader"
/>

swfLoader.loaderContext=new
 LoaderContext(false,
 ApplicationDomain.currentDomain
);

Not applicable

Some of these scenarios make more sense than the others. In particular, the Same
Sandbox Same Domain scenario is the one most prone to class name clashing. To
reiterate: duplicate loading of a class in the tree of application domains is not possible.
At the same time, sub’s code can easily and perhaps inadvertently modify static variables
of the classes hosted by the parent application. This relates to classes, such as

364 | Chapter 7: Modules, Libraries, Applications, and Portals

mx.core.Application and mx.messaging.config.ServerConfig, for instance, and their
properties application and xml, respectively.

On the opposite end is the Different Sandbox Different Domain scenario. Here you
have the ultimate class isolation, which supports multiversioning plus ultimate security
(more on this a bit later), at the price of a not-so-seamless user experience. For instance,
the pop ups and alerts of the portlet will appear centered and clipped relative to the
portlet rather than the entire portal, as shown in Figure 7-13.

The remaining two scenarios are Same Sandbox Child Domain and Same Sandbox
Different Domain. The latter should be considered the top choice for enterprise portals,
as it supports multiversioning and delivers a seamless user experience. The simpler
scenario, Same SandBox Child Domain, is the one you’ll examine next. After that, you’ll
investigate scenarios that provide multiversioning support.

Figure 7-13. DifferentSandboxDifferentDomainDemo; pop up is centered relatively to the loaded
portlet

Sibling Domains and Multiversioning | 365

Default Portlet Loading: Same Sandbox Child Domain
Same Sandbox Child Domain is the default scenario when the application and the
subapplication are located in a single web domain. Unless you tell SWFLoader other-
wise, portlet classes get loaded into the child application domain. To see how this
works, start with a sample portlet, such as RegularApplication.mxml, in Example 7-34.

Example 7-34. RegularApplication.mxml—sample portlet

<?xml version="1.0"?>
<!-- RegularApplication.mxml-->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" implements="IGreeting"
 backgroundColor="0xffeeff" xmlns:local="*"
 creationComplete="onCreationComplete()">
<mx:Script>
<![CDATA[
 import mx.events.DynamicEvent;
 import mx.controls.Alert;
 import events.RemoteEvent;

 [Bindable] private var command:String="";
 [Bindable] public var greeting:String = "";

 public function setGreeting(value:String):void {
 greeting = value;
 }
 public function getGreeting():String {
 return greeting;
 }

 private function onCreationComplete():void {
 Alert.show("Loaded application talks back...");
 // While you may use systemManager["swfBridge"] in the DSDD and SSDD,
 // systemManager.loaderInfo.sharedEvents will work always
 var swfBridge:IEventDispatcher = systemManager.loaderInfo.sharedEvents;

 // Subscribe to command from the application
 swfBridge.addEventListener("command", onCommand,false,0,true);
 // Notify the application that creation has completed
 var evt:RemoteEvent = new RemoteEvent("creationComplete");
 evt.data = ". Loaded application reported createComplete!";
 swfBridge.dispatchEvent(evt);
 }

 private function onCommand(event:Event):void {
 command = event["data"] as String;
 }

]]>
</mx:Script>
 <mx:Panel title="Loaded Application - Google News {greeting}{command}."
 width="90%" height="90%">
 <local:GoogleNews width="100%" height="100%"/>

366 | Chapter 7: Modules, Libraries, Applications, and Portals

 </mx:Panel>
</mx:Application>

RegularApplication.mxml implements the interface IGreeting from Example 7-12. Un-
der the SSCD scenario, a portlet will see the definition of the IGreeting loaded by the
portal. Accordingly, the portal will be able to cast the portlet to IGreeting, as shown
in Example 7-35 (you may compare swfLoader.content with moduleLoader.child).

Example 7-35. Interface-based scripting of the portlet loaded into the child domain

public function modifyValue():void {
 var systemManager:SystemManager = SystemManager(swfLoader.content);
 var loadedApplication:IGreeting = systemManager.application as IGreeting;
 loadedApplication.setGreeting(" accessed from outside");
}

Similarly to the way you arranged event-based communication with the modules, this
portlet listens to and communicates with the loading application via loaderInfo.share
dEvents (Example 7-36).

Example 7-36. Event-based portlet-portal communication via sharedEvents

private function onCreationComplete():void {
 var swfBridge:IEventDispatcher = systemManager.loaderInfo.sharedEvents;

 // Subscribe to command from the application
 swfBridge.addEventListener("command", onCommand,false,0,true);

 // Notify the application that creation has completed
 var evt:RemoteEvent = new RemoteEvent("creationComplete");
 evt.data = ". Loaded application reported createComplete!";
 swfBridge.dispatchEvent(evt);
}

Make sure to deploy RegularApplication.mxml into an entirely dedicated BlazeDS or
LCDS context. This example creates a combined Flex/Java LCDS/WTP project called
RemoteSite, as shown in Figure 7-14. (Please see the Adobe documentation on how to
create a combined Flex/Java project with LiveCycle Data Services and WTP.) Having
a dedicated Flex/JEE project enables you to define destinations of the portlet without
affecting a portal or another portlet application.

To the RemoteSite/WebContent/WEB-INF/flex/proxy-config.xml file of this project, you
need to add the destination GoogleNews, as shown in Example 7-37:

Example 7-37. GoogleNews proxy destination

<destination id="GoogleNews">
 <properties>
 <url>http://news.google.com/?output=rss</url>
 </properties>
</destination>

Sibling Domains and Multiversioning | 367

Example 7-38 presents the class GoogleNews, a descendant of DataGrid that encapsulates
HTTPService and displays Google News headlines to the user. When you run the portlet
it should look like Figure 7-15.

Example 7-38. GoogleNews DataGrid

<?xml version="1.0" encoding="utf-8"?>
<!-- GoogleNews.mxml -->
<mx:DataGrid xmlns:mx="http://www.adobe.com/2006/mxml"
creationComplete="news.send()"
 dataProvider="{news.lastResult.channel.item}"
 variableRowHeight="true">
 <mx:columns>
 <mx:DataGridColumn headerText="Date" dataField="pubDate" />
 <mx:DataGridColumn headerText="Title" dataField="title" wordWrap="true" />
 </mx:columns>

 <mx:HTTPService id="news" useProxy="true" destination="GoogleNews"
resultFormat="e4x" fault="onFault(event)" />
<mx:Script>
<![CDATA[
 import mx.rpc.events.*;
 private function onFault(event:FaultEvent):void {
 mx.controls.Alert.show("Destination:" + event.currentTarget.destination +
 "\n" + "Fault code:" + event.fault.faultCode + "\n" +
 "Detail:" + event.fault.faultDetail, "News feed failure"
);
 }
]]>
</mx:Script>
</mx:DataGrid>

Figure 7-14. Applications from RemoteSite will be accessed via domain 127.0.0.1

368 | Chapter 7: Modules, Libraries, Applications, and Portals

Figure 7-15. Sample portlet of RegularApplication

Figure 7-16. ApplicationLoaders project

Sibling Domains and Multiversioning | 369

Finally, consider the sample portal, SameSandboxChildDomainDemo.mxml, in Exam-
ple 7-39. We suggest you create a separate combined Flex/Java/WTP Eclipse project,
as shown in Figure 7-16. To illustrate the cross-domain specifics, you can run the portal
from http://localhost while loading the portlet from the different domain, http://
127.0.0.1.

Example 7-39. SameSandboxChildDomainDemo application

<?xml version="1.0"?>
<!-- SameSandboxChildDomainDemo.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns:local="*" >
<mx:Script>
<![CDATA[
 import events.RemoteEvent;
 import mx.managers.SystemManager;

 private const APP_URL:String =
"http://127.0.0.1:8080/RemoteSite/RegularApplication.swf";

 public function modifyValue():void {
 // Casting to SystemManager and IGreeting is possible
 var systemManager:SystemManager = SystemManager(swfLoader.content);
 var loadedApplication:IGreeting = systemManager.application as IGreeting;
 loadedApplication.setGreeting(" accessed from outside");
 }

 private function loadApplication():void {
 swfLoader.addEventListener("complete", onLoadComplete);
 swfLoader.source = APP_URL;
 }

 [Bindable] private var applicationLoaded:Boolean;
 private var sharedEventDispatcher:IEventDispatcher;

 private function onLoadComplete(event:Event):void {
 applicationLoaded = true;
 sharedEventDispatcher = swfLoader.content.loaderInfo.sharedEvents;
 sharedEventDispatcher.addEventListener(
 "creationComplete", onLoadedApplicationCreated
);
 }

 [Bindable] private var reply:String="";
 // Casting to RemoteEvent is possible
 private function onLoadedApplicationCreated(event: RemoteEvent):void
 reply = event.data as String;
 var remoteEvent:RemoteEvent = new RemoteEvent("command");
 remoteEvent.data = ". Two-way communication works!";
 sharedEventDispatcher.dispatchEvent(remoteEvent);
 }
]]>
 </mx:Script>
 <mx:HBox>
 <mx:Button label="Load Application" click="loadApplication()" />

370 | Chapter 7: Modules, Libraries, Applications, and Portals

 <mx:Button label="Modify Value" click="modifyValue();"
 enabled="{applicationLoaded}"/>
 </mx:HBox>

 <mx:Panel title="Yahoo News{reply}" width="100%" height="50%"
 id="panel">
 <local:YahooNews width="100%" height="100%"/>
 </mx:Panel>
 <mx:SWFLoader id="swfLoader" width="100%" height="50%"
 trustContent="true"/>
</mx:Application>

Notice the setting trustContent="true" of the swfLoader. This guarantees that despite
different web domains of the portal and portlet, class loading happens into the same
sandbox and, by default, to the child application domain.

That said, you should stick to the golden Flash security rule that the .swf (of the portal)
can access a resource (portlet) on the different web domain only when such domain
holds a cross-domain policy file that expresses trust to the domain of the .swf. So make
sure your root web application contains the file shown in Example 7-40.

Example 7-40. Policy file cross-domain.xml

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="*"/>
</cross-domain-policy>

Make sure that you do not use this indiscriminating policy file in production. For more
information on secure cross-domain communication in Flash Player, see http://www
.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html.

SameSandboxChildDomainDemo.mxml has its own news grid—it displays Yahoo!
News. (The code of YahooNews is identical to GoogleNews from Example 7-37, except
that it uses the different destination, as presented in Example 7-41. You should add
this destination to ApplicationLoaders/WebContent/WEB-INF/flex/proxy-config.xml.)

Example 7-41. Proxy destination for Yahoo! News

<destination id="YahooNews">
 <properties>
 <url>http://rss.news.yahoo.com/rss/topstories</url>
 </properties>
</destination>

When you run the application and click OK on the pop up called “Loaded application
talks back,” it will look like Figure 7-17.

Sibling Domains and Multiversioning | 371

http://www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html
http://www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html

Loading Portlets for Multiversioning
What about the scenarios that support multiversioning? The default loading scenario
from different web domains is Different Sandbox Different Domain. Example 7-42’s
sample portal, DifferentSandboxDifferentDomainDemo, not only illustrates this sce-
nario, it will also help you to understand the Same Sandbox Different Domain scenario.

When you examine the code, notice the seemingly redundant reference to the class
PopUpManager. It’s not accidental. You always have to link the PopUpManager class to your
portal to allow pop-up controls in the portlets. That’s how Adobe implemented it, and
this requirement does not seem like too much to ask for.

Next, note that casting across sibling domains is out of reach. Look at the body of the
modifyValue() method. You can’t cast the loadedApplication either to IGreeting or to
mx.core.Application. Instead, the example declares it as flash.dis
play.DisplayObject. For similar reasons, the declaration of the onLoadedApplication
Created() method downcasts the type of object to flash.events.Event. If you instead
try to declare loadedApplication as Application, you will receive this runtime error:

Figure 7-17. SameSandboxChildDomainDemo

372 | Chapter 7: Modules, Libraries, Applications, and Portals

TypeError: Error #1034: Type Coercion failed: cannot convert
TrustfulApplication@c8f20a1 to mx.core.Application.

Now, examine the function onLoadComplete(). To obtain the reference to the
sharedEventDispatcher, the function uses the expression swfLoader.swfBridge instead
of swfLoader.content.loaderInfo.sharedEvents.

Example 7-42. DifferentSandboxDifferentDomainDemo

<?xml version="1.0"?>
<!-- DifferentSandboxDifferentDomainDemo.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns:local="*" >
<mx:Script>
<![CDATA[
 import events.RemoteEvent;
 import mx.managers.PopUpManager; PopUpManager;
 import mx.managers.SystemManager;

 private const APP_URL:String =
 "http://127.0.0.1:8080/RemoteSite/TrustfulApplication.swf";

 public function modifyValue():void {
 var loadedApplication:DisplayObject = swfLoader.content["application"];
loadedApplication["setGreeting"]("loaded from outside");
 }

 private function loadApplication():void {
 swfLoader.addEventListener("complete", onLoadComplete);
 swfLoader.source=APP_URL;
 }

 [Bindable] private var applicationLoaded:Boolean;
 private var sharedEventDispatcher:IEventDispatcher;
 private function onLoadComplete(event:Event):void {
 swfLoader.removeEventListener("complete", onLoadComplete);
 applicationLoaded = true;
 // Since swfLoader.content.loaderInfo.sharedEvents=null,
 // use swfLoader.swfBridge
 sharedEventDispatcher = swfLoader.swfBridge;
 sharedEventDispatcher.addEventListener("creationComplete",
 onLoadedApplicationCreated);
 }

 [Bindable] private var reply:String="";
 // We cannot cast RemoteEvent across Application Domains
 private function onLoadedApplicationCreated(event:/*RemoteEvent*/ Event):void {
 if (event.hasOwnProperty("data")) {
 reply = event["data"];
 }
 var remoteEvent:RemoteEvent = new RemoteEvent("command");
 remoteEvent.data = ". Two-way communication works!";
 sharedEventDispatcher.dispatchEvent(remoteEvent);
 }

]]>

Sibling Domains and Multiversioning | 373

 </mx:Script>
 <mx:HBox>
 <mx:Button label="Load Application" click="loadApplication()" />
 <mx:Button label="Modify Value" click="modifyValue();"
 enabled="{applicationLoaded}"/>
 </mx:HBox>

 <mx:Panel title="Yahoo News{reply}" width="100%" height="50%" id="panel">
 <local:YahooNews width="100%" height="100%"/>
 </mx:Panel>
 <mx:SWFLoader id="swfLoader" width="100%" height="50%"/>
</mx:Application>

The same concepts hold true for the Same Sandbox Different Domain scenario as well.
Specific to the cross-domain scenario, however, is that DifferentSandBoxDifferentDo-
mainDemo loads TrustfulApplication.swf (Example 7-43), which extends the
RegularApplication merely to express cross-scripting trust to the web domain of the
portal via Security.allowDomain("*").

Example 7-43. TrustfulApplication

<?xml version="1.0"?>
<!-- TrustfulApplication.mxml-->
<RegularApplication xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*"
preinitialize="onPreinitialize(event)">
 <mx:Script>
 <![CDATA[
 // Try to use without allowDomain and see the r.t. SecurityError
 private function onPreinitialize(event:Event):void {
 Security.allowDomain("*"); //localhost, wwww.adobe.com, etc.
 }
]]>
 </mx:Script>
</RegularApplication>

The body of the function modifyValue() takes advantage of these cross-scripting per-
missions, referring to swfLoader.content. Had you loaded the untrusted
RemoteApplication.swf, you would have received the error shown in Example 7-44.

Example 7-44. Example of security error

SecurityError: Error #2121: Security sandbox violation: Loader.content:
http://localhost:8080/ApplicationLoaders/DifferentSandboxCommunicationDemo.swf
cannot access http://127.0.0.1:8080/RemoteSite/RegularApplication.swf.
This may be worked around by calling Security.allowDomain.
 at flash.display::Loader/get content()
 at mx.controls::SWFLoader/get content

This is the only coding specific to the DSDD scenario versus SSDD. Of course, in the
case of SSDD, the loadingForCompatibility property of the swfLoader would be set to
true, and you would specify trustContent="true" to offset the domain difference.

374 | Chapter 7: Modules, Libraries, Applications, and Portals

The successfully running DSDD application was previously presented in Figure 7-16,
and Figure 7-18 illustrates a problem in the SSDD scenario: the Google News panel is
showing up empty. As it turns out, in the case of SSDD, you need to change your
architecture and preload Flex Messaging, RPC, and Data Management Services–related
classes in the application domain that will parent the domain of the portal.

Bootstrap Class Loading
The previous section mentioned that casting is out of reach across sibling domains.
That constraint is not as tight, however, as you might think. Remember how you cast
loaded modules and applications to the IGreeting interface earlier in the chapter? You
did not cast the IGreeting of the child to the IGreeting of the parent, because the
IGreeting of the child did not exist. A child is always reusing classes loaded in the
parental chain. So, two sibling domains can cast classes if they share a common parent
that preloads these classes. In particular, such bootstrap class loading, as Adobe calls
it, is required to maintain a common definition of the following classes from the mx.mes
saging.messages package per security domain:

Figure 7-18. Same Sandbox Different Domain: Flex Messaging does not work without bootstrap
loading of the messaging classes

Sibling Domains and Multiversioning | 375

• ConfigMap

• AcknowledgeMessage

• AcknowledgeMessageExt

• AsyncMessage

• AsyncMessageExt

• CommandMessage

• CommandMessageExt

• ErrorMessage

• HTTPRequestMessage

• MessagePerformanceInfo

• RemotingMessage

• SOAPMessage

In the Different Sandbox Different Domain scenario, the portal and portlet reside in
the different sandboxes, so bootstrap loading of the Flex messaging classes is not an
issue. However, in the Same Sandbox Different Domain scenario, the absence of the
common bootstrap loader results in the first application that happens to load these
classes into its own domain (be that portal or portlet) to block all other siblings from
receiving messages from the MessageBroker.

At Farata Systems, we customized PortalBootstrapLoader, which is a separate Action-
Script project (Figure 7-19).

Figure 7-19. PortalBootstrapLoader project

As you study the code for PortalBootstrapLoader in Example 7-45, notice that in ad-
dition to linking in all classes required by Adobe, we also link in the class
com.farata.portal.Message. Follow this pattern to link in any class that you want to
make available for all portlets in your portal (and the portal itself).

Example 7-45. PortalBootstrapLoader.as

//PortalBootstrapLoader.as
package {

376 | Chapter 7: Modules, Libraries, Applications, and Portals

 import flash.display.Loader;
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.Event;
 import flash.net.URLRequest;
 import flash.system.ApplicationDomain;
 import flash.system.LoaderContext;
 import flash.system.SecurityDomain;

 import utils.QueryString;

 import mx.messaging.config.ConfigMap; ConfigMap;
 import mx.messaging.messages.AcknowledgeMessage; AcknowledgeMessage;
 import mx.messaging.messages.AcknowledgeMessageExt; AcknowledgeMessageExt;
 import mx.messaging.messages.AsyncMessage; AsyncMessage;
 import mx.messaging.messages.AsyncMessageExt; AsyncMessageExt;
 import mx.messaging.messages.CommandMessage; CommandMessage;
 import mx.messaging.messages.CommandMessageExt; CommandMessageExt;
 import mx.messaging.messages.ErrorMessage; ErrorMessage;
 import mx.messaging.messages.HTTPRequestMessage; HTTPRequestMessage;
 import mx.messaging.messages.MessagePerformanceInfo; MessagePerformanceInfo;
 import mx.messaging.messages.RemotingMessage; RemotingMessage;
 import mx.messaging.messages.SOAPMessage; SOAPMessage;

 import com.farata.portal.Message;Message;

 public class PortalBootstrapLoader extends Sprite {

 public function PortalBootstrapLoader() {
 super();

 if (ApplicationDomain.currentDomain.hasDefinition("mx.core::UIComponent"))
 throw new Error("UIComponent should not be in the bootstrap loader.");
 if (ApplicationDomain.currentDomain.hasDefinition("mx.core::Singleton"))
 throw new Error("Singleton should not be in the bootstrap loader.");

 if (stage) {
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;
 } else
 isStageRoot = false;
 root.loaderInfo.addEventListener(Event.INIT, onInit);
 }

 /**
 * The Loader that loads the main application's SWF file.
 */
 private var loader:Loader;

 /**
 * Whether the bootstrap loader is at the stage root or not,
 * it is the stage root only if it was the root
 * of the first SWF file that was loaded by Flash Player.
 * Otherwise, it could be a top-level application but not stage root

Sibling Domains and Multiversioning | 377

 * if it was loaded by some other non-Flex shell or is sandboxed.
 */
 private var isStageRoot:Boolean = true;

 /**
 * Called when the bootstrap loader's SWF file has been loaded.
 * Starts loading the application SWF specified by the applicationURL
 * property.
 */
 private function onInit(event:Event):void {
 loader = new Loader();

 var loaderContext:LoaderContext = new LoaderContext(
 false,
 new ApplicationDomain(ApplicationDomain.currentDomain),
 SecurityDomain.currentDomain
);

 addChild(loader);
 loader.load(new URLRequest(applicationUrl), loaderContext);

 loader.addEventListener(
 "mx.managers.SystemManager.isBootstrapRoot",
 bootstrapRootHandler
);
 loader.addEventListener(
 "mx.managers.SystemManager.isStageRoot",
 stageRootHandler
);

 loader.addEventListener(Event.ADDED, resizeHandler);
 stage.addEventListener(Event.RESIZE, resizeHandler);
 }

 private function get applicationUrl():String{
 var qs:QueryString = new QueryString();
 return qs.root + qs.parameters.app;
 }

 private function bootstrapRootHandler(event:Event):void {
 event.preventDefault();
 }

 private function stageRootHandler(event:Event):void {
 if (!isStageRoot)
 event.preventDefault();
 }

 private function resizeHandler(event:Event=null):void {
 if (loader.content){
 Object(loader.content).setActualSize(stage.stageWidth, stage.stageHeight);
 }
 }
 }
}

378 | Chapter 7: Modules, Libraries, Applications, and Portals

To use the bootstrap loader, we copy PortalBootstrapLoader.html and
PortalBootstrapLoader.swf to the deployment folder of the portal and, in the browser,
type the URL, similar to:

http://localhost:8080/ApplicationLoaders/PortalBootstrapLoader.html?app=Appli-
cationLoaders/SameSandboxDifferentDomain.swf

As you can see from Figure 7-20, now the Google News panel of the portlet is filled by
the data. Flex Messaging works because we made the definitions of the messaging
classes visible to all application domains in the portal.

Figure 7-20. SameSandboxDifferentDomain with bootstrap class loading

Sample Flex Portal
To speed up your portal development, this section describes a sample Flex portal that
you can download from the site accompanying this book. You’ll need to download the
following projects:

PortalLib
Utility library referenced by all other projects

Feeds
Combined Flex/Java dynamic web project with GoogleFinancialNews and Yahoo-
FinancialNews applications

Charts
Combined Flex/Java dynamic web project with Chart1 and Chart2 applications

Portal
Combined Flex/Java dynamic web project with the SamplePortal application

PortalBootstrapLoader
ActionScript project

Sample Flex Portal | 379

Figure 7-21 illustrates running SamplePortal, which you should start via
PortalBootstrapLoader:

http://localhost:8080/Portal/PortalBootstrapLoader.html?app=/Portal/SamplePor-
tal.swf

You can to create instances of portlets of different types by dragging and dropping on
the portal canvas the navigational items located in the lower part of the screen, such as
“Same Sandbox—Child Domain,” “Same Sandbox—Sibling Domain,” and “Different
Sandbox—Different Domain.”

Each portlet is contained by a custom resizable and draggable Panel and carries either
the GoogleFinancialNews or the YahooFinancialNews application, according to the de-
scriptor of the navigation items in SamplePortal, as shown in Example 7-46.

Example 7-46. SamplePortal

<?xml version="1.0" encoding="utf-8"?>
<!-- SamplePortal -->
<mx:Application layout="absolute"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:fx="http://www.faratasystems.com/2009/portal" >

 <mx:Style source="styles.css"/>
 <fx:PortalCanvas width="100%" height="100%">
 <fx:navItems>
 <fx:NavigationItem>
 <fx:PortletConfig title="Same Sandbox - Child Domain"
 preferredHeight="400" preferredWidth="850" >
 <fx:props>
 <mx:Object trusted="true" multiversioned="false"
 url="http://127.0.0.1:8080/Feeds/YahooFinancialNews.swf"/>
 </fx:props>
 </fx:PortletConfig>
 </fx:NavigationItem>
 <fx:NavigationItem>
 <fx:PortletConfig title="Same Sandbox - Sibling Domain"
 preferredHeight="400" preferredWidth="850">
 <fx:props>
 <mx:Object trusted="true" multiversioned="true"
 url="http://127.0.0.1:8080/Feeds/GoogleFinancialNews.swf"/>
 </fx:props>
 </fx:PortletConfig>
 </fx:NavigationItem>
 <fx:NavigationItem>
 <fx:PortletConfig title="DifferentSandbox - Different Domain"
 preferredHeight="400" preferredWidth="850" >
 <fx:props>
 <mx:Object trusted="false" multiversioned="true"
 url="http://127.0.0.1:8080/Feeds/YahooFinancialNews.swf"/>
 </fx:props>
 </fx:PortletConfig>
 </fx:NavigationItem>
 </fx:navItems>

380 | Chapter 7: Modules, Libraries, Applications, and Portals

 </fx:PortalCanvas>

 <mx:Script>
 <![CDATA[
 import mx.managers.PopUpManager;PopUpManager;
 import PortletInfo;PortletInfo;
]]>
 </mx:Script>
</mx:Application>

A click on the Show Chart button loads Chart1 or Chart2 into a sibling domain and
flips the portlet’s content. Each portlet allows you to send messages to the portal, and
from the portal itself you can broadcast a text message to all active portlets, shown in
Figure 7-21.

Figure 7-21. SamplePortal

Integrating Flex into Legacy JEE Portals
If you are an owner of the legacy Web 1.0 portal, you can consider integrating Flex
applications into your portal space in an entirely different way.

Integrating Flex into Legacy JEE Portals | 381

The good news is that any Flex .swf file is valid content for a generic Flex portlet pre-
written by Adobe. Open the resources/wsrp/lib folder from the root of the installed
LiveCycle Data Services; you will find flex-portal.jar with flex.portal.GenericFlexPort-
let inside. Add the .jar to the class path of your web application (WebContent/lib) and
also copy the resources/wsrp/wsrp-jsp folder to the deployment root of your project
(WebContent).

Now take the portlet.xml of your legacy portal, and inject Example 7-47’s code to in-
stantly add the YahooFinancialNews portlet.

Example 7-47. Registering a Flex application as a portlet via flex.portal.GenericFlexPortlet

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app version="1.0"
 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
. . . .
<!-Descriptor of Flex portlet YahooFinancialNews -->
<portlet>
 <portlet-name>YahooFinancialNews</portlet-name>
 <portlet-class>flex.portal.GenericFlexPortlet</portlet-class>
 <init-param><name>wsrp_folder</name><value>/Portal</value></init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info><title>Yahoo Financial News</title></portlet-info>
 <portlet-preferences>
 <preference>
 <name>app_uri</name>
 <value>/Portal/YahooFinancialNews</value>
 </preference>
 <preference>
 <name>norm_width</name>
 <value>400</value>
 </preference>
 <preference>
 <name>norm_height</name>
 <value>400</value>
 </preference>
 </portlet-preferences>
</portlet>
<portlet>
</portlet-app>

The preference app_uri points to the URL of the YahooFinancialNews.swf, stripped of
the “.swf” and the parameter wsrp_folder points to the parent URL of the wsrp-jsp.

That’s all it takes to have your Flex application running inside a Web 1.0 portal! Because
YahooFinancialNews has been compiled to communicate with the MessageBroker of the
Feeds web application, however, you do have to make sure that Feeds is deployed in
the same domain.

382 | Chapter 7: Modules, Libraries, Applications, and Portals

But don’t get carried away. First of all, you can’t flexibly control the real estate dedicated
to your portlet. Look at the rigid layout of Figure 7-22, which illustrates a BEA
WebLogic portal with the mixture of two instances of GenericFlexPortlet (running
YahooFinancialNews and GoogleFinancialNews), SingleVideoPortlet, and ShowTimePor
tet (you can download the second two from Portlet Repository Downloads, at https://
portlet-repository.dev.java.net/public/Download.html). The Flex applications appear
squeezed and cumbersome to use.

Second, and even more important, mixing Web 2.0 portlets based on Flash or AJAX
with Web 1.0 ones (such as ShowTimePortlet in the example) is outright dangerous, if
you consider that Flex applications and Web 2.0 portlets maintain state on the client,
but rerendering of the Web 1.0 ones eliminates the entire HTML page.

All in all, if you have several Flex portlets on a page, it may range from inconvenient to
impossible. As a result, the only way to integrate a Flex application in your legacy portal
may be to run a single application per page.

Figure 7-22. A Flex application’s ad portlets in a WebLogic Portal 10.2

Integrating Flex into Legacy JEE Portals | 383

https://portlet-repository.dev.java.net/public/Download.html
https://portlet-repository.dev.java.net/public/Download.html
zaremba
Comment on Text
efficient design? please clarify

yfain11
Cross-Out

Summary
Understanding of how Flex loaders work, combined with the knowledge of different
ways of linking modules and libraries to your main application, is crucial for creation
of Flex portals. Even if you are not concerned with portals, the chances are high that
your application size will increase, and sooner or later you’ll need to decide how to cut
it into pieces. The sooner you start planning for modularizing your application, the
better.

384 | Chapter 7: Modules, Libraries, Applications, and Portals

CHAPTER 8

Performance Improvement: Selected
Topics

We have to stop optimizing for programmers and start
optimizing for users.

—Jeff Atwood

The greatest performance improvement of all is when a
system goes from not working to working.

—John Ousterhout

People consider your web application fast for one of two reasons: either it’s actually
fast or it gives an impression of being fast. Ideally, you should do your best to create
an RIA that is very responsive, but if you hit the ceiling imposed by a technology you’re
using, at least try to improve the perceived performance of the system. To draw an
analogy with weather reports, the temperature may be cool, but “feels like” freezing.
No matter how slow your RIA is, it should never feel like freezing.

In this chapter, you’ll learn how to use application preloaders to make the first page of
your RIA appear on the display as soon as possible while loading the rest of the appli-
cation in the background.

Once loaded on the user’s machine, your application should use its memory efficiently.
To help you identify trouble spots, we’ll discuss possible drains on performance, such
as memory leaks, garbage collectors, complex containers, event listeners, and closures.
For example, if your application experiences memory leaks, Flash Builder’s profiler
may help. With it, you can monitor the number of object instances to ensure that you
don’t have memory leaks. The monitoring of your application performance must be
done continuously from the start of your project.

In Chapter 7, you learned that cutting a monolithic application into modules, libraries,
and subapplications can substantially minimize the initial download time of an RIA.
In this chapter, we’ll build on that technique. Specifically, you’ll learn how you can use

385

small Flash modules and link application libraries that are made with the same version
of the Flex SDK. You’ll also investigate the advantages of Resource Shared Libraries
(s), including how to use them with modules and how to optimize them.

Planning for Modularization
After deciding to use the module and library approach, carefully review all resources
besides the ActionScript or MXML code, namely images, sound, and movies (.swf files)
to decide whether you really need to embed them. The rule of thumb is that unless the
image must be displayed on the first page, it should not be embedded. It is almost never
worthwhile to embed any sizable sound or .swf in the Flex application, as they can use
streaming and provide much better control of the execution by starting to play when
just enough data is loaded.

Embedded images required in your RIA should be located in a separate
Flash Builder project and loaded as RSLs.

The next part is to separate stylesheets and skins into modules. Doing so offers three
advantages: first, it separates the work of the designers from the application developers.
Second, removing stylesheets and skins from the compilation process significantly re-
duces rebuild time during development, because the cost of resource transcoding (com-
pilation of fonts and styles) is high. Third, keeping skins and stylesheets outside of the
modules simplifies initialization and eliminates unnecessary reloading and reapplying
of CSS, thus making module initialization faster and safer.

Precompile CSS into a SWF file (right-click on the file to see this option) and then load
it from the main application using the StyleManager class.

RSLs do introduce performance issues, however. They are loaded one by one and thus
impose a “round-trip” effect. Breaking a monolithic application into 10 RSLs results in
additional round-trip requests to the server and as a result slightly increases the initial
load time. A solution to this problem is to use smarter loading of multiple RSLs by
modifying the source code of the RSLListLoader class available in the SDK and placing
it in your application (we’ll cover this later in this chapter). Special care has to be taken
in that case to ensure that framework libraries that other elements depend upon are
loaded first.

Another rule of thumb for large applications is to make the first page as light and free
of dependencies as possible. In other words, keep the first page super small. Once all
of the system and CSS RSLs are loaded and the application enters the preinitialize event,
you can start loading the rest of the application code. We recommend that you use the
portal approach discussed in Chapter 7 as a starting point for any large application, as

386 | Chapter 8: Performance Improvement: Selected Topics

it provides a clean break between applications. We’ll cover this topic in the section
“Optimizing RSL Loading” on page 417.

It Takes Two to Perform
Fast applications are your goal, but how do you get there? On one hand, the RIA de-
ployed on the server should consist of a number of relatively small .swf, .swc, and asset
files. On the other, ideally, the end users should use fast and reliable network connec-
tions. First, let’s define how fast your RIA should appear, and then we’ll look at how
quickly the data arrives to the user’s machine.

The major difference between an internal enterprise and a consumer-facing RIA is that
the former runs on fast and reliable networks with predictable speed and the latter runs
in a Wild West with unknown bandwidth. You have to set the proper expectations of
your RIA download speed from the very start. To do that you need an SLA.

SLA stands for Service Level Agreement, and the stakeholders of your project should
agree and sign off on an agreement that states the acceptable delivery speed of your
application and data. If your application will run on, say, a 15 Mbps intranet, the main
page of the application should appear in less than about 7 seconds. If yours is a con-
sumer-facing application, you can reasonably expect that the users have a network
connection with 1 Mbps bandwidth. To put yourself into their shoes, run special tests
emulating such a slow speed; for example, you could use the HTTP proxy and monitor
Charles (see the sidebar “Troubleshooting with Charles” on page 203 in Chapter 4) or
a hardware network emulator. To keep initial response time for the application, you
need to make sure that the initially downloadable portion of your application is smaller
than 1 MB.

After an enterprise application is downloaded, often it starts bringing some serious
amounts of data from the server. The data should arrive quickly, and safe and sound.
RIA applications are extremely susceptible to network problems. Even a small proba-
bility of lost or misdelivered packages becomes significant when multiplied by the sheer
number of the small data packages involved. Lost, duplicate, and reordered packages,
combined with high latency and low bandwidth, cause significant issues for applica-
tions fully tested only on reliable intranets and then released in the wild of unreliable
WAN communications.

The authors of this book use several Linux boxes (both virtual and
physical ones) to simulate WAN problems. The setup of a testing envi-
ronment can be tedious, and you might want to consider using a simple
portable appliance that will turn the simulation of a slow environment
into a trivial task. One of such portable, inexpensive, and easy-to-use
network simulators is called Mini Maxwell.

It Takes Two to Perform | 387

Purposely increasing (with software or hardware) the simulated latency up to a realistic
200 ms and the package loss to an unrealistic 10 percent will quickly expose the prob-
lems in error-handling code. It will also give you quick feel for robustness of the code.
Then you should check to see whether duplicate or out-of-sequence packages affect
your application as described in Chapter 5.

While consulting one of our customers, a foreign exchange trading company, we had
to enhance the endpoints in the RTMP protocols to ensure that out-of-sequence mes-
sages and network congestions were dealt with properly. But the remedies depend on
the communication protocols used by RIA.

Obviously, with SOAP web services and similar high-level protocols, you have very
loosely bound communications, making implementation of a QoS layer impossible. As
the number of simultaneous HTTPRequests per domain is limited by the web browsers,
the latency can cause performance slowdown and timeouts. Missing communication
packages escalate the connection-starving issue even further.

LCDS 3.0 introduced QoS improvements at the protocol level. To learn
more, get familiar with new parameters in the Data Management con-
figuration files.

If you use one of the AMF implementations for data-intensive applications, they will
perform a lot faster (the .swf arrival time remains the same). With AMF, the latency is
less of a problem, as Flex would automatically batch server requests together. Imple-
menting symmetrical checkpoints on both client and server endpoints allows the pro-
cessing of lost and duplicate packages. The lost packages remain a problem, as they
cause request timeouts.

Robustness of an RIA improves if you move from HTTP/SOAP/REST to either RTMP
or BlazeDS long-polling connected protocols. Keeping open connections and two-way
sockets is ideal for high performance and reliable protocols. Comparing these to
HTTPRequests is like comparing a highway with multiple lanes going in each direction
to a single-lane dirt road.

More and more enterprise applications are built using always-connected protocols for
tasks ranging from regular RPC to modules loading implementing streaming (the same
thing as movie streaming). As these protocols evolve, you’ll see more open source
products that provide transparent implementations using a mixture of protocols.
Meanwhile, we can mix protocols using such Flex techniques as configuring the fall-
back channels.

388 | Chapter 8: Performance Improvement: Selected Topics

Application Startup and Preloaders
Perceived performance is as important as actual performance. While a large Flex ap-
plication loads, users may experience unpleasant delays. Rather than frustrate them
with inactivity, give the users something productive to work on. This can be a main
window of your application or just a logon view. The point is that this very first view
should be extremely lightweight and arrive on the user’s machine even before the Flex
frameworks and the rest of the application code starts downloading. Giving users the
ability to start working quickly with partially loaded code gives a perception that your
application loads faster.

In this section, you’ll learn how to create and load a rapidly arriving logon screen to
keep the user occupied immediately. Here are the four challenges you face:

• The logon screen has to be very lightweight. It must be under 50 Kb, so using classes
from the Flex framework is out of the question.

• The application shouldn’t be able to remove the logon window upon load, as the
user must log in first.

• If the user completes logging in before the application finishes its load, the standard
progress bar has to appear.

• The application should be able to reuse the same lightweight logon window if the
user decides to log out at any time during the session.

What Happens in Flash Player Before the Flex Application Is Loaded
The SystemManager is a main manager that controls the application window; creates
and parents the Application instance, pop ups, and cursors; manages the classes in the
ApplicationDomain container (see the Flex language reference at http://livedocs.adobe
.com/flex/gumbo/langref/), and more. The SystemManager is the first class that is instan-
tiated by Flash Player in the first frame of your application (modules and subapplica-
tions have their own SystemManager classes). SystemManger is responsible for loading all
RSL libraries, which will be discussed later in this chapter.

Hanging off of a stage object, SystemManger stores the size and position of the main
application window, and keeps track of its children, such as floating pop ups and modal
windows. Using the SystemManager, you can access embedded fonts, styles, and the
document object. SystemManager also controls application domains, which are used to
partition classes by security domains.

If you’re developing custom visual components (descendants of the UIComponent class),
keep in mind that initially such components are not connected to any display list and
the SystemManager=null. Only after the first call of addChild() is SystemManager assigned
to them. You should not access SystemManager from the constructor of your component,
because at this point in time it can still be null.

In general, when the Application object is created, the process is:

Application Startup and Preloaders | 389

http://livedocs.adobe.com/flex/gumbo/langref/
http://livedocs.adobe.com/flex/gumbo/langref/

1. The Application object instantiates.

2. Its property Application.systemManager initializes.

3. The Application dispatches the FlexEvent.PREINITIALIZE event at the beginning
of the initialization process.

4. Flash Player calls the method createChildren() on the Application. At this point,
each of the application’s components is constructed, and each component’s
createChildren() is also called.

5. The Application dispatches the FlexEvent.INITIALIZE event, which indicates that
all of the application’s components have been initialized.

6. Flash Player dispatches FlexEvent.CREATION_COMPLETE.

7. Flash Player adds the Application object to the display list, and the Preloader
object gets removed.

8. Flash Player dispatches the FlexEvent.APPLICATION_COMPLETE event.

In most cases, you should use the MXML tag <mx:Application> to create the
Application object, but if you need to write it in ActionScript, do not create components
in the constructor. Instead, override createChildren(), which is a bit more efficient.

As opposed to Flash movies that consist of multiple frames being displayed over a
timeline, Flex .swf files utilize only two frames. The SystemManager, Preloader,
DownloadProgressBar, and a handful of other helper classes live in the first frame. The
rest of the Flex framework, your application code, and embedded assets like fonts and
images reside in the second frame.

When Flash Player initially starts downloading your .swf, as soon as enough bytes come
for the first frame, it instantiates a SystemManager, which creates an instance of the
Preloader, which is monitoring the process of the application download and initiali-
zation and in turn creates a DownloadProgressBar.

When all bytes for the first frame are in, SystemManager sends the
FlexEvent.ENTER_FRAME for the second frame, and then renders other events.

Dissecting LightweightPreloader.swf
The sample application that will demonstrate how these challenges are resolved is lo-
cated in the Eclipse Dynamic Web Project and is called lightweight-preloader. This
application is deployed under the server. Note that the interactive login window (Fig-
ure 8-1) arrives from the server very fast, even though the large application .swf file
continues downloading, and this process may or may not be complete by the time the
user enters her credentials and clicks the Login button.

This view was created in Photoshop and then saved as an image. Figure 8-2 depicts the
directory structure of the Flash Builder project lightweight-preloader. In particular, the
assets directory has the image file logon.psd created in Photoshop and saved as a lighter
logon.png. At this point, any Flash developer can open this file in Flash Professional

390 | Chapter 8: Performance Improvement: Selected Topics

IDE and add a couple of text fields and a button, saving it as a Flash movie. This window
can be saved in binary formats (.fla and .swf), but we’ve exported this file into a program
written in ActionScript.

This generated ActionScript code may not be pretty, and you might want to manually
edit it, which we did. The final version of this code (class LightweightPreloader) is
shown in Example 8-2.

The text elements shown in Figure 8-1 are not Flex components. Example 8-1 shows
the ActionScript class that uses the logon.png file.

Example 8-1. The background of the login view

package com.farata.preloading{
 import flash.display.Bitmap;

 [Embed(source="assets/logon.png")]
 public class PanelBackground extends Bitmap
 {
 public function PanelBackground ()
 {
 smoothing = true;
 }
 }
}

The logon.png image is 21 Kb, and you can reduce this size further by lowering the
resolution of the image. The ActionScript class LightweightPreloader that uses the
PanelBackground class adds another 6 Kb, bringing the total size of the precompiled
LightweightPreloader.swf to a mere 27 Kb. This file will be loaded by the Flex
Preloader in parallel with the larger MainApplication.swf file.

The fragment of the code of LightweightPreloader is shown in Example 8-2. The total
size of this class is 326 lines of code. Most of this code was exported from Flash Pro,
but some additional coding was needed. Even though it’s tempting to use Flex and

Figure 8-1. Login view of lightweight preloader

Application Startup and Preloaders | 391

create such a simple view in a dozen of lines of code, you need to understand that
keeping down the size of the very first preloaded .swf file is a lot more important than
minimizing the amount of manual coding. This is the only case where we are advocating
manual coding versus the automation offered by Flex.

Using Flash Catalyst for generation of the code of LightweightPreloader from a Pho-
toshop image is also not advisable in this case, because Flash Catalyst uses Flex frame-
work objects, which would substantially increase the size of LightweightPre-
loader.swf. Note that the import section of Example 8-2 doesn’t include any of the
classes from the Flex framework.

Figure 8-2. The Flash Builder project lightweight-preloader

392 | Chapter 8: Performance Improvement: Selected Topics

Example 8-2. LightweightPreloader.as

package{
 import com.farata.preloading.BitmapLoginButton;
 import com.farata.preloading.ILoginWindow;
 import com.farata.preloading.LoginButtonNormal;
 import com.farata.preloading.LoginEvent;
 import com.farata.preloading.PanelBackground;

 import flash.display.DisplayObject;
 import flash.display.InteractiveObject;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.FocusEvent;
 import flash.events.IOErrorEvent;
 import flash.events.KeyboardEvent;
 import flash.events.MouseEvent;
 import flash.events.SecurityErrorEvent;
 import flash.net.URLLoader;
 import flash.net.URLLoaderDataFormat;
 import flash.net.URLRequest;
 import flash.net.URLVariables;
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.text.TextFormat;
 import flash.text.TextFormatAlign;
 import flash.ui.Keyboard;
 import flash.utils.Dictionary;
 import flash.net.SharedObject;

 public class LightweightPreloader extends Sprite
 implements ILoginWindow{
 public static const loginURL:String = "login";
 public static const LOGIN_INCORRECT_MESSAGE:String =
 "Failed. Use your myflex.org credentials";
 public static const HTTP_ERROR_MESSAGE:String =
 "Connection error. Please try again.";

 private var testMode:Boolean = true; //No server data available
 private var loginField:TextField;
 private var passwordField:TextField;
 private var messageField:TextField;
 private var loginButton:DisplayObject;
 public var background:PanelBackground;
 private var focuses:Array = new Array ();
 private var focuseMap:Dictionary = new Dictionary ();
...

 private function doInit ():void{
 background = new PanelBackground ();
 addChild (background);

 loginField = new TextField ();
 addChild (loginField);
 configureTextField (loginField);

Application Startup and Preloaders | 393

 passwordField = new TextField ();
 addChild (passwordField);
 configureTextField (passwordField);
 passwordField.displayAsPassword = true;

 messageField = new TextField ();
 addChild (messageField);
 messageField.type = TextFieldType.DYNAMIC;
 var format:TextFormat = new TextFormat ("_sans", 12, 0xFF0000);
 format.align = TextFormatAlign.CENTER;
 messageField.defaultTextFormat = format;
 messageField.selectable = false;
 messageField.width = 300;
 messageField.height = 20;

 loginButton = new BitmapLoginButton ();
 addChild (loginButton);
 loginButton.addEventListener (KeyboardEvent.KEY_DOWN,
 onButtonKeyboardPress);
 loginButton.addEventListener (MouseEvent.CLICK, onButtonClick);
 loginButton.addEventListener (FocusEvent.KEY_FOCUS_CHANGE,
 onFocusChange);
 loginButton.addEventListener (FocusEvent.FOCUS_OUT, onFocusOut);
 focuses.push (loginButton);
 focuseMap [loginButton] = true;

 var so:SharedObject = SharedObject.getLocal("USER_INFO");
 if (so.size > 0) {
 try {
 var arr:Array = so.data.now;
 loginField.text = arr[0];
 passwordField.text = arr[1];
 }
 catch(error:Error) {
 //Error processing goes here
 }
 }

 if (stage != null) {
 stage.stageFocusRect = false;
 stage.focus = loginField;
 focus = loginField;
 }
 }
...
 private function doLayout ():void{
 loginField.x = 230;
 loginField.y = 110;

 passwordField.x = 232;
 passwordField.y = 163;

 loginButton.y = 200;
 loginButton.x = (background.width - loginButton.width) / 2;

394 | Chapter 8: Performance Improvement: Selected Topics

 messageField.y = 215;
 messageField.x = 65;
 }

 private function onEnterPress (event:KeyboardEvent):void{
 if (event.keyCode == Keyboard.ENTER){
 onLogin ();
 }
 }

 private function onButtonKeyboardPress (event:KeyboardEvent):void{
 if ((event.keyCode == Keyboard.ENTER) ||
 (event.keyCode == Keyboard.SPACE)) {
 onLogin ();
 }
 }

 private function onButtonClick (event:MouseEvent):void {
 onLogin ();
 }

 private function onLogin ():void{
 if (testMode) {
 onLoginResult ();
 }
 else {
 try{
 var request:URLRequest = new URLRequest (loginURL);

 var thisURL:String = loaderInfo.url;
 if (thisURL.indexOf ("file") < 0) {
 var variables:URLVariables = new URLVariables ();
 variables.user = loginField.text;
 variables.password = passwordField.text;
 variables.application = "Client Reports";
 request.data = variables;
 }

 var loader:URLLoader = new URLLoader (request);

 loader.addEventListener (SecurityErrorEvent.SECURITY_ERROR,
 onSecurityError);
 loader.addEventListener (IOErrorEvent.IO_ERROR, onIOError);
 loader.addEventListener (Event.COMPLETE, onLoginResult);
 loader.load (request);
 }
 catch (e:Error) {
 messageField.text = HTTP_ERROR_MESSAGE;
 }
 }
 }

...
 private function onLoginResult (event:Event = null):void{
 if (testMode) {

Application Startup and Preloaders | 395

 dispatchEvent (new LoginEvent (LoginEvent.ON_LOGIN, "test",
 null));
 }
 else {
 var loader:URLLoader = URLLoader(event.target);
 if (loader.dataFormat == URLLoaderDataFormat.TEXT) {
 var response:String = loader.data;
 var responseXML:XML = new XML (response);
 var status:String = responseXML.status [0];
 if (status == "1"){
 var so:SharedObject =
 SharedObject.getLocal("USER_INFO");
 so.data.now = new Array (loginField.text,
 passwordField.text);
 so.flush();
 dispatchEvent (new LoginEvent (LoginEvent.ON_LOGIN,
 "no session available", // no sessionID for now
 responseXML));
 } else
 messageField.text = LOGIN_INCORRECT_MESSAGE;
 }
 else{
 messageField.text = HTTP_ERROR_MESSAGE;
 }
 }
 }
 }
}

This class extends flash.display.Sprite, a very light display node that can have chil-
dren and display graphics. It adds the image displayed in Figure 8-1 as a background
(see the method doInit() in Example 8-2):

background = new PanelBackground ();
addChild (background);

On top of this background, doInit() adds a couple of flash.text.TextField controls
and a subclass of the flash.display.SimpleButton, as shown in Example 8-3.

Example 8-3. BitmapLoginButton.as

package com.farata.preloading{
 import flash.display.DisplayObject;
 import flash.display.SimpleButton;

 public class BitmapLoginButton extends SimpleButton{

 public function BitmapLoginButton (){
 super(new LoginButtonNormal (),
 new LoginButtonOver (),
 new LoginButtonPress (),
 new LoginButtonNormal ());
 useHandCursor = false;
 }

396 | Chapter 8: Performance Improvement: Selected Topics

 }
}

The constructor of SimpleButton takes tiny wrapper classes with images representing
different states of the button, as shown in Example 8-4.

Example 8-4. LoginButtonOver.as

package com.farata.preloading{
 import flash.display.Bitmap;

 [Embed(source="assets/login_button_over.png")]
 public class LoginButtonOver extends Bitmap{

 public function LoginButtonOver (){
 smoothing = true;
 }
 }
}

This is pretty much it; the graphic portion is taken care of.

The login functionality in a typical Flex application should be initiated from inside the
Flex code and not from the HTML wrapper. This will allow you to minimize the vul-
nerability of the application as you eliminate the step in which the user’s credentials
have to be passed from JavaScript to the embedded .swf file.

The LightweightPreloader from Example 8-2 contains Example 8-5’s code in its
onLogin() method.

Example 8-5. Authenticating the user from ActionScript

var request:URLRequest = new URLRequest (loginURL);

 var thisURL:String = loaderInfo.url;
 if (thisURL.indexOf ("file") < 0) {
 var variables:URLVariables = new URLVariables ();
 variables.user = loginField.text;
 variables.password = passwordField.text;
 variables.application = "Client Reports";
 request.data = variables;
 }

 var loader:URLLoader = new URLLoader (request);

 loader.addEventListener (SecurityErrorEvent.SECURITY_ERROR,
 onSecurityError);
 loader.addEventListener (IOErrorEvent.IO_ERROR, onIOError);
 loader.addEventListener (Event.COMPLETE, onLoginResult);
 loader.load (request);

The code in Example 8-5 creates a URLRequest object, wrapping the values entered in
the Flex view. The URLLoader makes a request to the specified URL that authenticates
the user and returns a piece of XML describing the user’s role and any other

Application Startup and Preloaders | 397

business-specific authorization parameters provided by your web access management
system, such as SiteMinder from CA. No sensitive data exchange between JavaScript
and the .swf file is required.

The function onLoginResult() gets the user’s data from the server, and saves this as an
XML object on the local disk via a SharedObject API, providing functionality similar to
cookies.

The Main SWF Talks to LightweightPreloader.swf
The main application (Example 8-6) was written with the use of the Flex framework,
and it communicates with the external LightweightPreloader.swf via an additional class
called LoginPreloader, shown in Example 8-7. We’ve embedded several images into
the MainApplication.mxml file just to make the .swf file extremely heavy (10 MB) to
illustrate that the login window appears quickly, and the main application may con-
tinue loading even after the user enters login credentials and presses the Login button.

Note the line preloader="com.farata.preloading.LoginPreloader" in the fourth line of
MainApplication.mxml in the example.

Example 8-6. MainApplication.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 preloader="com.farata.preloading.LoginPreloader"
 layout="vertical"
 horizontalAlign="center"
 backgroundColor="white"
 verticalAlign="top">
 <mx:Script>
 <![CDATA[
 import mx.containers.TitleWindow;
 import mx.containers.Panel;
 import com.farata.preloading.ILoginWindow;
 import mx.managers.PopUpManager;
 import mx.core.UIComponent;
 import com.farata.preloading.LoginEvent;

 public function set sessionID (value:String):void{
 // code to store app. specific session id goes here
 trace ("sessionID in Main: " + value);
 }

 public function set loginXML (value:String):void{
 // code to process authotization XML goes here
 trace ("loginXML in Main: " + value);
 }

 private var loginPanel:Panel;
 private var content:Sprite;

398 | Chapter 8: Performance Improvement: Selected Topics

 //Embed several large images just to increase the size
 // of the main SWF to over 10MB.
 // This is done to illustrate fast preloading
 // of the LightweightPreloader login window
 [Embed(source="com/farata/preloading/assets/Pic1.JPG")]
 public var pic1:Class;
 [Embed(source="com/farata/preloading/assets/Pic2.JPG")]
 public var pic2:Class;
 [Embed(source="com/farata/preloading/assets/Pic3.JPG")]
 public var pic3:Class;
 [Embed(source="com/farata/preloading/assets/Pic4.JPG")]
 public var pic4:Class;

 private function onLogout ():void {
 var loader:Loader = new Loader ();
 var url:URLRequest = new URLRequest
 ("LightweightPreloader.swf");
 var context:LoaderContext = new LoaderContext ();
 var applicationDomain:ApplicationDomain =
 ApplicationDomain.currentDomain;
 context.applicationDomain = applicationDomain;
 loader.load (url, context);
 loader.contentLoaderInfo.addEventListener
 (Event.COMPLETE,onLoginLoaded);
 }

 private function onLoginLoaded (event:Event):void {
 content = event.target.content as Sprite;
 var component:UIComponent = new UIComponent ();
 loginPanel = new TitleWindow ();
 loginPanel.title = "Log In";

 component.addChild (content);
 loginPanel.addChild(component);

 PopUpManager.addPopUp(loginPanel, this, true);

 (content as ILoginWindow).activate();

 component.width = content.width;
 component.height = content.height;
 PopUpManager.centerPopUp(loginPanel);

 content.addEventListener (LoginEvent.ON_LOGIN, onLogin);
 }

 private function onLogin (event:LoginEvent):void {
 (content as ILoginWindow).deactivate();
 PopUpManager.removePopUp (loginPanel);
 loginPanel = null;
 content = null;

 passParamsToApp(event);
 focusManager.activate();
 }

Application Startup and Preloaders | 399

 private function passParamsToApp (event:LoginEvent):void {
 for (var i:String in event) {
 try{
 this [i] = event [i];
 }catch (e:Error) {
 trace ("There is no parameter " + i +
 "in " + this + " defined");
 }
 }
 }
]]>
 </mx:Script>
 <mx:ApplicationControlBar width="100%"
 horizontalAlign="right">

 <mx:Button click="onLogout()" label="Log Out" />
 </mx:ApplicationControlBar>
 <mx:VBox
 verticalAlign="middle"
 horizontalAlign="center"
 width="100%"
 height="100%">
 <mx:Panel
 title="Hello"
 paddingLeft="20"
 paddingRight="20"
 paddingTop="10"
 paddingBottom="10">
 <mx:Label text="Application" />
 </mx:Panel>

 </mx:VBox>
</mx:Application>

The class LoginPreloader is a subclass of DownloadProgressBar. It cares about two
things:

• The loading of the main application is finished and it can be displayed.

• The login request is complete.

If the user presses the Login button before the main application (which is 10 MB in this
case) arrives, the LoginPreloader turns itself into a progress bar until the application is
fully downloaded and displayed. The LoginPreloader (Example 8-7) acts as a liaison
between the main application and the LightweightPreloader.

Example 8-7. Classes LoginPreloader and UnprotectedDownloadProgressBar

package com.farata.preloading{
 import flash.display.Loader;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.ProgressEvent;
 import flash.net.URLRequest;

400 | Chapter 8: Performance Improvement: Selected Topics

 import flash.system.ApplicationDomain;
 import flash.system.LoaderContext;
 import flash.utils.getDefinitionByName;

 import mx.events.FlexEvent;
 import mx.managers.FocusManager;
 import mx.managers.IFocusManager;
 import mx.managers.IFocusManagerComponent;
 import mx.managers.IFocusManagerContainer;
 import mx.preloaders.DownloadProgressBar;
 import flash.utils.getTimer;
 import flash.utils.Timer;
 import flash.events.TimerEvent;

 public class LoginPreloader extends DownloadProgressBar {
 private var loginWindow:Sprite;
 private var event:LoginEvent;
 private var loggedIn:Boolean = false;
 private var isLoaded:Boolean = false;
 private var appInited:Boolean = false;
 private var aPreloader:Sprite;
 private var progress:UnprotectedDownloadProgressBar;
 private var _displayTime:int;

 public function LoginPreloader(){
 super();
 _displayTime = getTimer();
 MINIMUM_DISPLAY_TIME = 0;
 var loader:Loader = new Loader ();
 var url:URLRequest = new URLRequest ("LightweightPreloader.swf");
 var context:LoaderContext = new LoaderContext ();
 var applicationDomain:ApplicationDomain =
 ApplicationDomain.currentDomain;
 context.applicationDomain = applicationDomain;
 loader.load (url, context);
 loader.contentLoaderInfo.addEventListener (Event.COMPLETE,
 onLoginLoaded);
 }

 private function onLoginLoaded (event:Event):void{
 var content:Sprite = event.target.content as Sprite;
 addChild (content);
 loginWindow = content;
 (loginWindow as ILoginWindow).activate();
 content.x = (stage.stageWidth - content.width) / 2;
 content.y = (stage.stageHeight - content.height) / 2;
 content.addEventListener (LoginEvent.ON_LOGIN, onLogin);
 }

 override public function set preloader(preloader:Sprite):void {
 preloader.addEventListener(FlexEvent.INIT_COMPLETE ,
 initCompleteHandler);
 aPreloader = preloader;
 }

Application Startup and Preloaders | 401

 private function onLogin (event:LoginEvent):void
 {
 this.event = event;
 loggedIn = true;
 (loginWindow as ILoginWindow).deactivate();
 removeChild (loginWindow);
 if (isLoaded) {
 var anApp:Object = getApplication();
 passParamsToApp();
 (anApp as IFocusManagerContainer).focusManager.activate();
 dispatchEvent(new Event(Event.COMPLETE));
 }
 else{
 progress = new UnprotectedDownloadProgressBar ();
 progress.isLoaded = appInited;
 progress.minTime = MINIMUM_DISPLAY_TIME - getTimer() + _displayTime;
 addChild (progress);

 progress.preloader = aPreloader;
 var xOffset:Number = Math.floor((progress.width -
 progress.publicBorderRect.width) / 2);
 var yOffset:Number = Math.floor((progress.height -
 progress.publicBorderRect.height) / 2);
 progress.x = (stage.stageWidth - progress.width) / 2 + xOffset;
 progress.y = (stage.stageHeight - progress.height) / 2 + yOffset;
 progress.addEventListener (Event.COMPLETE, onProgressComplete);
 }
 }

 private function onProgressComplete (event:Event):void{
 progress.removeEventListener (Event.COMPLETE, onProgressComplete);
 dispatchEvent(new Event(Event.COMPLETE));
 }

 private function initCompleteHandler(event:Event):void{
 appInited = true;
 var elapsedTime:int = getTimer() - _displayTime;

 if (elapsedTime < MINIMUM_DISPLAY_TIME) {
 var timer:Timer = new Timer(MINIMUM_DISPLAY_TIME - elapsedTime, 1);
 timer.addEventListener(TimerEvent.TIMER, flexInitComplete);
 timer.start();
 } else{
 flexInitComplete();
 }
 }

 private function flexInitComplete(event:Event = null):void {
 isLoaded = true;
 if (progress) {
 removeChild (progress);
 }
 var anApp:Object = getApplication();
 if (loggedIn) {
 passParamsToApp();

402 | Chapter 8: Performance Improvement: Selected Topics

 dispatchEvent(new Event(Event.COMPLETE));
 }else{
 (anApp as IFocusManagerContainer).focusManager.deactivate();
 }
 }

 private function passParamsToApp ():void{
 var anApp:Object = getApplication();
 for (var i:String in event) {
 try{
 anApp [i] = event [i];
 }
 catch (e:Error) {
 trace ("There is no parameter " + i +
 "in " + anApp + " defined");
 }
 }
 }

 private function getApplication ():Object{
 return getDefinitionByName
 ("mx.core.Application").application;
 }
 }
}

import mx.preloaders.DownloadProgressBar;
import mx.graphics.RoundedRectangle;
import flash.display.Sprite;

class UnprotectedDownloadProgressBar extends DownloadProgressBar{
 public var isLoaded:Boolean = false;

 public function set minTime (value:int):void{
 if (value > 0) {
 MINIMUM_DISPLAY_TIME = value;
 }
 }

 public function get publicBorderRect ():RoundedRectangle{
 this.backgroundColor = 0xffffff;
 return borderRect;
 }

 public override function set preloader(value:Sprite):void{
 super.preloader = value;
 visible = true;
 if (isLoaded) {
 setProgress (100, 100);
 label = downloadingLabel;
 }
 }
}

Application Startup and Preloaders | 403

As soon as the loading of the login window is complete, it centers itself on the screen
and starts listening to the LoginEvent.ON_LOGIN, which is dispatched by Lightweight
Preloader when the XML with the user’s credentials arrives from the server. This XML
is nicely packaged inside the LoginEvent and saved on the local disk cache under the
name USER_INFO (see the method onLoginResult() in Example 8-2).

Because the LightweightPreloader was added as a child of LoginPreloader (see
onLoginLoaded() in Example 8-8), the latter object will receive all events dispatched by
the former.

Example 8-8. The method onLoginLoaded() of LoginPreloader

private function onLoginLoaded (event:Event):void
{
 var content:Sprite = event.target.content as Sprite;
 addChild (content);
 loginWindow = content;
 (loginWindow as ILoginWindow).activate();
 content.x = (stage.stageWidth - content.width) / 2;
 content.y = (stage.stageHeight - content.height) / 2;
 content.addEventListener (LoginEvent.ON_LOGIN, onLogin);
}

This code also stores in loginWindow the reference to the login window, which is a
subclass of Sprite, for further reuse in case the user decides to log out, which should
bring the login window back on the screen. The function activate just puts the focus
there.

When the ON_LOGIN event arrives, the event handler onLogin() shown in Example 8-8
has to figure out whether the download of the main application has completed and
whether it’s ready for use. If it is ready, the application gets activated; otherwise, the
instance of the regular progress bar UnprotectedDownloadProgressBar is created and
displayed until the application is ready.

The Timer object checks for the downloading progress, and dispatches
Event.COMPLETE to the application from the flexInitComplete() handler.

Supporting Logout Functionality
Besides supporting our custom preloader, the main application (Example 8-6) knows
how to reuse the login component when the user decides to log out and relogin at any
time during the session.

After successful login, the user will see a screen like Figure 8-3.

Even though LightweightPreloader (the login component) was intended to be used as
the very first visible component of our application, we want to be able reuse its func-
tionality later on too.

404 | Chapter 8: Performance Improvement: Selected Topics

zaremba
Comment on Text
the window?

yes, the window

Hence LightweightPreloader is used either by the preloader or by a PopupManager. The
following fragment from the main application does this job when the user clicks the
Log Out button:

private function onLogout ():void{
 var loader:Loader = new Loader ();
 var url:URLRequest = new URLRequest ("LightweightPreloader.swf");
 var context:LoaderContext = new LoaderContext ();
 var applicationDomain:ApplicationDomain =
 ApplicationDomain.currentDomain;
 context.applicationDomain = applicationDomain;
 loader.load (url, context);
 loader.contentLoaderInfo.addEventListener (Event.COMPLETE,
 onLoginLoaded);
}

private function onLoginLoaded (event:Event):void{
 content = event.target.content as Sprite;
 var component:UIComponent = new UIComponent ();
 loginPanel = new TitleWindow ();
 loginPanel.title = "Log In";

 component.addChild (content);
 loginPanel.addChild(component);

 PopUpManager.addPopUp(loginPanel, this, true);

 (content as ILoginWindow).activate();

 component.width = content.width;
 component.height = content.height;
 PopUpManager.centerPopUp(loginPanel);

Figure 8-3. After the user is logged in

Application Startup and Preloaders | 405

 content.addEventListener (LoginEvent.ON_LOGIN, onLogin);
}

The call to PopupManager.addPopup() from the fragment is an example
of how a Flex application can work with a Flash component.

If you have Flash programmers in your team, you can use Flash for cre-
ating lightweight components when appropriate. Not only can you cre-
ate lightweight login windows in Flash, but the entire main application
view can be coded in this way. As a matter of fact, all static views from
your application that mostly contain the artwork and don’t pull the data
from the server can be made a lot slimmer if programmed as Flash
components.

All communications between LightweightPreloader, LoginPreloader, and MainAppli-
cation.mxml are handled by dispatching and listening to the custom event
LoginEvent, shown in Example 8-9.

Example 8-9. LoginEvent

package com.farata.preloading{
 import flash.events.Event;

 public dynamic class LoginEvent extends Event{
 public static const ON_LOGIN:String = "onLogin";

 public function LoginEvent(type:String, sessionID:String, xml:XML){
 super(type);
 this.sessionID = sessionID;
 this.loginXML = xml;
 }
 }
}

LoginEvent encapsulates the user’s session ID (an application-specific session ID that’s
usually created upon application startup and is used for maintaining state on the client)
and the data received from the authentication server represented as XML. Note that
this is the somewhat nontraditional dynamic event described in the final section of
Chapter 4.

The class LoginPreloader has a function that extracts the values of the parameters from
the custom event and assigns them to the corresponding properties of the application
object. If the application didn’t have such setters as sessionID and loginXML, the code
in Example 8-10 would throw an exception. If you use the dynamic Application object
described in Chapter 2, on the other hand, such application properties aren’t required.
This is a typical situation for dynamically typed languages: don’t rely on the compiler,
and do better testing of your application.

406 | Chapter 8: Performance Improvement: Selected Topics

zaremba
Comment on Text
correct xref? chapter 2?

yfain11
Cross-Out

yfain11
Replacement Text
section Minimizing the Number of Custom Events in Chapter 3.

Example 8-10. Non-object-oriented way of data exchange between components

private function passParamsToApp (event:LoginEvent):void{
 var anApp:Object = getApplication();
 for (var i:String in event) {
 try{
 anApp [i] = event [i];
 }
 catch (e:Error) {
 trace ("There is no parameter " + i +
 "in " + anApp + " defined");
 }
 }
 }

Examples 8-9 and 8-10 use dynamic typing because of a special situation: when a
Flash .swf file may have a bunch of properties in the event, it dispatches. The
Application object, however, may not need all these properties. The for in loop shown
assigns only those dynamic properties that exist in the Application object.

Note that objects that use strongly typed properties perform better than
dynamic ones. For a typical Flex way of exchanging data between com-
ponents, implement the Mediator design pattern described in
Chapter 2.

The sample application with Preloader not only demonstrates how to use pure Flash
components in a Flex application for improving perceived performance, but also illus-
trates techniques for mixing and matching Flex and native Flash components.

Just to recap: the main application is written in Flex; the LightweightPreloader is a
Flash component created in Flash Professional IDE with some manual modifications
of the generated ActionScript code; and the LoginPreloader is a manually written re-
usable ActionScript class that loads the .swf file with the Flash login component and
removes it when the functionality of this .swf is no longer needed.

Using Resource Shared Libraries
Tricks with a tiny preloader .swf can give users the feeling that your application loads
quickly, but you should also endeavor to make the main application load as quickly as
possible. A typical enterprise Flex RIA consists of several .swf files (the main applica-
tion, fonts and styles, and modules) as well as several .swc libraries (both yours and the
Flex framework’s). Your goal with these remains the same: ensure that only a minimum
portion of the code travels over the network to the end user’s machine.

Using Resource Shared Libraries | 407

zaremba
Comment on Text
the event? please clarify

How to Link Flex Libraries
Right-click on a project name in Flash Builder, select the Flex Build Path option, and
you’ll see a “Library path” panel similar to the one in Figure 8-4. This panel lists only
the libraries from the Flex framework (AIR applications have some additional libraries).
Both the framework and the necessary libraries must be linked to your project. You set
the linkage method for the Flex framework via the “Framework linkage” drop-down
menu (more on this in the next section). For now, however, just concentrate on linking
the Flex libraries that your project needs for successful compilation and execution. To
do this, click on the plus sign by the library name (see Figure 8-4) and double-click on
the link method. You can choose one of three methods:

• RSLs

• Merged into code

• External

Figure 8-4. The library path of a simple Flex project

A typical enterprise application is the product of several Flash Builder projects. The
main application must link the libraries that are absolutely necessary to support the
first screen. Optionally, it also can include some common libraries for multiple modules
that might be downloaded as a result of a user’s interactions with your RIA. Loading
common RSL libraries during the application startup is not such a good idea, however,

408 | Chapter 8: Performance Improvement: Selected Topics

if you load modules in the application security domain and not their own subdomains
(see Chapter 7). You need to manage RSLs and ensure that the RSL is loaded only once,
and this can be done by the singleton ModuleManager. You’ll learn how to do this a bit
later, in the section “Optimizing RSL Loading” on page 417.

Selecting merge-in linkage for an application or a module increases the .swf size only
by the size of the classes from the library that were actually mentioned in the .swf file.
This requirement has a negative side effect for dynamically created (and, therefore, not
referenced in advance) objects. To have all objects available, you must declare a number
of variables of each type that exists in the .swc file to ensure that all the classes that are
needed (even for code that’s loaded later) are included in the .swf file.

Chapter 7’s section “Bootstrapping Libraries as Applica-
tions” on page 357 described the process that happens once libraries are
loaded. If the linker does not find explicit references to some classes
from the linkage tree originated by the Application or Module class, it
might omit both necessary supporting classes and not perform some
parts of the necessary initialization process. If you are developing large
data-driven dynamic applications, using bootstrapping libraries instead
of modules is the safer and more reusable solution.

For example, if the code in your application never uses SomeGreatClass from a library
xyz.swc, its code will not be included in the .swf file during compilation. Hence if your
business code “weighs” 300 Kb and the xyz.swc is 100 Kb, the compiled .swf file’s size
won’t reach 400 Kb unless each and every class from xyz.swc has been used. Merge-in
linkage is justifiable only for small applications, which are not going to use most of the
framework classes anyway.

Consider a RIA that consists of two Flash Builder projects: the main application
(proj1 at 250 Kb) and a Flex module (proj2 at 50 Kb). Both of these projects use classes
from the library xyz.swc. The chances are good that proj1 and proj2 need some of the
same and some different classes from xyz.swc. What are your options here?

Of course, you can link xyz.swc using the merge-in option, in which case each project
will include into its .swf file only those classes that are needed from xyz.swc. As you
can guess, some amount of code duplication is unavoidable here. Classes that are
needed in both projects will be traveling to the user’s machine twice.

But in an enterprise application with multiple .swf files, you should consider a different
approach. In proj1, specify that xyz.swc should be linked as an RSL; hence none of its
classes will be included into the .swf, but the entire library (100 Kb) will be downloaded
even before the applicationComplete event is triggered. In this case, you can safely
specify in the proj2 “external” as a linkage type for xyz.swc, which means that by the
time this project’s .swf file is downloaded, xyz.swf will already be there. Even though
the library is created as a file with a .swc extension, its content will be deployed as
a .swf file (in our case xyz.swf).

Using Resource Shared Libraries | 409

Now assume that the module from proj2 is not immediately needed at application
startup. In the RSL approach, the total size of the compiled code that has to exist on
the user’s machine is 250 Kb +100 Kb + the size of the Flex framework (500 Kb or
more). If the user initiates an action that requires the module from proj2, yet another
50 Kb will be downloaded. (In the next section, you’ll learn a way to avoid repeatedly
downloading the 500 Kb of the Flex framework.)

Both RSL and external linkage imply that libraries will be available in
the browser by the time an application or module needs them. The dif-
ference between the methods is that when you link a library as an RSL,
the compiled .swf file contains a list of these libraries and Flash Player
loads them. When you use external linkage, the compiled .swf doesn’t
contain a mention of external .swf library files, because it expects that
another .swf has already loaded them. For more details, refer to the sec-
tion “Bootstrapping Libraries as Applications” on page 357 in Chap-
ter 7 or search for “IFlexModuleFactory interface” online.

As soon as a project is created, you should remove the default libraries that it doesn’t
need. For example, all libraries with the Automation API in general and qtp.swc (sup-
port of the QTP testing tool from HP) are not needed unless you are planning to run
automated functional tests that record and replay user interactions with your RIA. Even
if you are using the automation libraries during development, don’t forget to remove
them from the production build. Don’t be tempted to rely on the libraries’ merge-in
linking option to limit the included classes. Although the merge-in option includes only
objects that are used in the code when Flash Builder builds your project, its linker must
still sift through all the libraries just to determine which are needed and which are not.
(The linkage options will be discussed in detail a bit later.)

You can read more about using automation tools in Flex applications
at http://livedocs.adobe.com/flex/3/html/help.html?content=functest
_components2_10.html.

Remove datavisualization.swc from the main application. In general, this library has to
be linked on the module level. Your enterprise application should consist of a small
shell that will be loading modules on an as-needed basis. This shell definitely doesn’t
need to link datavisualization.swc. (Later in this chapter you’ll see an example of the
optimized library loader.) Consider an example when a shell application loads 10 mod-
ules and 3 of them use Flex charting classes located in datavisualization.swc. In this
scenario, you should link datavisualization.swc as an RSL. But you may argue that if
you do so and at some point all three charting modules need to be loaded, the data
visualization RSL will be loaded three times! This would be correct unless you use an

410 | Chapter 8: Performance Improvement: Selected Topics

http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_10.html
http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_10.html

optimized way of loading modules, as described in the section “Optimizing RSL Load-
ing” on page 417.

Flex Framework RSL
Before your application starts, SystemManager downloads (or loads from the local cache)
all required RSL libraries and resource bundles (localization support) required by your
application.

Choosing “Runtime shared library” from the “Library path” panel’s “Framework link-
age” drop-down (see Figure 8-4) is simple and smart at the same time: deploy the Flex
framework separately from the application .swf libraries, and on the user’s first down-
load of the RIA, Flash Player (version 9.0.115 or later) will save the framework library
in its own disk cache. It gets even better: this library is designed to work across different
domains, which means that users might get this library not necessarily from your web-
site, but from any other site that was built in Flex and deployed with the Flex framework
as an RSL.

Starting from Flash Builder 4, Flex Framework RSLs are linked as RSLs
by default. If you want to change this option, use the “Library path”
panel of your project. Adobe will also offer hosting of these RSLs at its
sites, which might be useful for the applications that have limited band-
width and want to minimize the amount of bytes going over the wire
from their servers.

These libraries are signed RSLs; their filenames end with .swz and only Adobe can sign
them. If you open the rsls directory in your Flex or Flash Builder installation directory,
you will find these signed libraries there. For example, the path to the rsls directory
may look like:

C:\Program Files\Adobe\Flex Builder 3 Plug-in\sdks\3.2.0\frameworks\rsls

At the time of this writing, the following RSLs are located there:

• framework_3.2.0.3958.swz

• datavisualization_3.2.0.3958.swz

• rpc_3.2.0.3958.swz

As you see, the filename includes the number of the Flex SDK version (3.2.0) and the
number of the build (3958).

We recommend that you build Flex applications on the assumption that users already
have or will be forced to install Flash Player, a version not older than 9.0.115. If you
can’t do this for any reason, include pairs of libraries (.swz and corresponding .swf) in
the build path, such as rpc_3.2.0.3958.swz and rpc_3.2.0.3958.swf. If the user has the

Using Resource Shared Libraries | 411

player supporting signed libraries, the .swz file will be engaged. Otherwise, the unsigned
fallback .swf library will be downloaded.

For a detailed description of how to use Flex framework RSLs read the
Adobe documentation, available at http://livedocs.adobe.com/flex/3/
html/help.html?content=rsl_09.html

At Farata we were involved with creating a website for an American branch of Mercedes
Benz (http://www.mbusa.com). By examining this site with the web monitoring tool
Charles, you can see which objects are downloaded to the user’s machine.

While measuring performance of a web application, you should use
tools that clearly show you what’s being downloaded by the application
in question. Charles does a great job monitoring AMF, and we also like
the Web Developer toolbar for the Mozilla browser, available at http://
chrispederick.com/work/web-developer/. This excellent toolbar allows
you with a click of a button to enable/disable the browser’s cache,
cookies, and pop-up blockers; validate CSS; inspect the DOM, images,
etc.; and more.

In Figure 8-5 you can see that a number of .swf files are being downloaded to the user’s
machine. We took this Charles screenshot (see Chapter 4) on a PC with a freshly in-
stalled operating system, just to ensure that no Flex applications that might have been
deployed with a signed framework RSL were run from this computer. This website is
a large and well-modularized RIA, and the initial download includes .swf files of ap-
proximately 162 KB, 95 KB, 52 KB, 165 KB, and 250 KB, which is the main window of
this RIA plus the required shareable libraries for the rest of the application. It totals to
around 730 KB, which is an excellent result for such a sophisticated RIA.

But there is one more library that is coming down the pipe: frame-
work_3.0.0.477.swz, which is highlighted in Figure 8-5.

This Flex framework RSL is pretty heavy—525 KB—but the good news is that it’s going
to be downloaded only once, whenever the user of this PC runs into a Flex application
deployed with a signed RSL.

Figure 8-6 depicts the second time we hit http://mbusa.com after clearing the web
browser’s cache. As you can see, the .swf files are still arriving, but the .swz file is not
there any longer, as it was saved in the local Flash Player’s cache on disk.

Clearing the web browser’s cache removes the cached RSLs (.swf files),
but doesn’t affect the signed ones (.swz). This cache is not affected by
clearing the web browser’s cache.

412 | Chapter 8: Performance Improvement: Selected Topics

http://livedocs.adobe.com/flex/3/html/help.html?content=rsl_09.html
http://livedocs.adobe.com/flex/3/html/help.html?content=rsl_09.html
http://www.mbusa.com
http://chrispederick.com/work/web-developer/
http://chrispederick.com/work/web-developer/
http://mbusa.com

Isn’t it a substantial reduction of the initial size of a large RIA: from 1.3 MB down to
730 KB?

For large applications, we recommend that you always use signed framework RSLs. Flex
became a popular platform for development RIA, driving adoption of the latest versions
of Flash Player. The probability is high that cross-domain signed RSLs will exist on
client computers within the first year after release of those libraries.

Starting from Flex 4, Adobe will officially host signed RSLs on their servers, which is
an extra help for websites with limited network bandwidth. If you prefer, don’t even
deploy the .swz files on your server. Unofficially, this feature exists even now: select
and expand any library with the RSL linkage type, go to the edit mode, and select the
button Add (see Figure 8-7). You’ll be able to specify the URL where your .swz libraries
are located.

If the benefits of cached RSLs are so obvious, why not deploy each and every project
with signed libraries? We see three reasons for this:

Figure 8-5. Visiting mbusa.com from a new PC

Using Resource Shared Libraries | 413

• There is a remote chance that the user has a version of Flash Player older than
release 9.0.115, the version where signed RSLs were introduced.

• The initial downloadable size of the Flex application is a bit larger if it’s deployed
with RSLs versus the merge-in option. At the time of this writing, no statistics are
published regarding the penetration of the signed Flex RSLs, and if someone makes
a wrong assumption that no users have cached RSLs, the RIA with a merge-in
option would produce, say, one .swf of 1.1 MB as opposed to two files totaling 1.3
MB for virgin machines. In consumer applications, any reduction of a hundred
kilobytes matters.

• In case of the merge-in option, the client’s web browser wouldn’t need to make
this extra network call to load the .swz; the entire code would be located in one .swf.

To address these valid concerns, you can:

Figure 8-6. Visiting http://mbusa.com after the framework RSL has been cached

414 | Chapter 8: Performance Improvement: Selected Topics

http://mbusa.com

• Force users to upgrade to the later version of the player, if you’re working in a
controlled environment. For users who can’t upgrade the player, provide fall-
back .swf files.

• Repackage RSLs for distribution that would include only the classes your applica-
tion needs. This technique is described in James Ward’s blog at http://www.james
ward.com/blog/2007/02/19/faster-flex-applications-shrink-your-rsls/.

• Intervene in the load process (keep in mind that the Flex framework is open source
and all initialization routines can be studied and modified to your liking).

If you have the luxury of starting a new enterprise RIA from scratch rather than trying
to fit a .swf file here and there in the existing HTML/JavaScript website, we recommend
that you get into a “portal state of mind.” In no time, your RIA will grow and demand
more and more new features, modules, and functionality. Why not expect this from
the get-go?

Assume that the application you are about to develop will grow into a portal in a couple
of years. Create a lightweight, shell-like Flex application that loads the rest of the mod-
ules dynamically. If you start with such a premise, you’ll naturally think of the shared
resources that have to be placed into RSLs, and the rest of the business functionality
will be developed as modules and reusable components.

Figure 8-7. Specifying location of RSL libraries

Using Resource Shared Libraries | 415

http://www.jamesward.com/blog/2007/02/19/faster-flex-applications-shrink-your-rsls/
http://www.jamesward.com/blog/2007/02/19/faster-flex-applications-shrink-your-rsls/

Optimization of Library Linkage with FX2Ant
Deploying a multiproject Flex RIA is yet another step that should be optimized for
performance. Flash Builder’s Export release build option, however, is not applicable
for enterprise applications, which are deployed into production by running a set of
scripts from a command line.

Farata’s FX2Ant utility (see Chapter 4) is known in the Flex community as a tool for
automation of writing Ant build scripts for Flex projects. But there is yet another added
benefit of using FX2Ant compared to manually writing build scripts: it optimizes link-
age parameters of RSL libraries for multiproject applications.

Another section of the generated Ant scripts removes debug and metadata information
from the .swf: FX2Ant optimizes the cases when the modules are using the RSLs. In the
build scripts, the module’s RSL linkage will be replaced with the external type, as the
RSLs are guaranteed to be loaded by the main application, thus reducing the number
of server calls during module load procedure. On average, using Fx2Ant scripts reduces
the size of generated modules by 10–25 percent, even compared with release builds
produced by Flash Builder. For example, the following code snippet generated by
FX2Ant optimizes the size of all resources and removes unnecessary metadata (those
that are not listed in the --keep-as3-metadata option):

<unzip src="${DOCUMENTS}/PortalLib/bin/PortalLib.swc"
dest="${build.dir}">
<patternset>
<include name="library.swf"/>
</patternset>
</unzip>
<java jar="${flex.sdk.dir}/lib/optimizer.jar" fork="true"
failonerror="true">
<jvmarg line="-ea -DAS3 -DAVMPLUS -
Dflexlib='${flex.sdk.dir}/frameworks' -Xms32m -Xmx384m -
Dsun.io.useCanonCaches=false"/>
<arg line="'${build.dir}/library.swf' --output
'${build.dir}/PortalLib.swf' --keep-as3-
metadata='Bindable,Managed,ChangeEvent,NonCommittingChangeEvent,Transient' "/>
</java>
<delete file="${build.dir}/library.swf"/>

Consider an example in which an RIA consists of two Flash Builder projects, and in
each project the developer specified the library xyz.swc with a link type RSL. The script
generated by FX2Ant will keep the RSL as a linkage type for the xyz.swc in the main
project and replace the linkage for this library with “external” in the second one.

You might try shaving off another 10–20 percent of the unused framework code by
repackaging framework .swc files to keep only those used in your application and mod-
ules, but for large applications it is seldom worth the effort.

416 | Chapter 8: Performance Improvement: Selected Topics

Optimizing RSL Loading
Optimizing the loading of the RSLs is an important step in optimizing your project.
Think of an application with 10 modules, 3 of which use datavisualization.swc as an
RSL. To avoid redundant loading, we want to insert a singleton’s behavior in the holy
grail of any Flex application, SystemManager, which gets engaged by the end of the very
first application frame and starts loading RSLs.

The sample application that you’ll be studying in this section is an improved version
of the projects from Chapter 7’s section “Sample Flex Portal” on page 379. This sec-
tion’s source code includes the following Flash Builder projects: OptimizedPortal,
FeedModule, ChartsModule, and PortalLib.

Creating Modules with Test Harness
Once again, here’s our main principle of building enterprise Flex applications: a light-
weight shell application that loads modules when necessary. This approach leads to
the creation of modularized and better-performing RIAs. But when a developer works
on a particular module, to be productive, he needs to be able to quickly perform unit
and functional tests on his modules without depending too much on the modules his
teammates are working on.

The project FeedsModule is an Eclipse Dynamic Web Project with its own “server-side”
WebContent directory. This project also includes a very simple application,
TestHarness.mxml, that includes just two modules: GoogleFinancialNews and
YahooFinancialNews. Mary is responsible for development of these two modules that
later will become part of a larger OptimizedPortal. But if in Chapter 7 the portal was
created for integrating various applications, here we are building it as a shell for hosting
multiple modules.

To avoid having issues caused by merging module and application stylesheets, we rec-
ommend having only one CSS file on the application level. This may also save you some
grief trying to figure out why modules are not being fully unloaded as the description
of the unload() function promises; merged CSS may create strong references that won’t
allow a garbage collector to reclaim the memory upon module unloads.

You also want to avoid linking into the module’s byte code the information from
services-config.xml that comes with BlazeDS/LCDS. If you specify a separate
services-config.xml in the compiler’s option of the module’s project, the content of such
services-config.xml (configured destinations and channels) gets sucked into the com-
piled .swf.

On our team, all developers must submit their modules fully tested and in the minimal
configuration. Example 8-11 lists the application that Mary uses for testing, and
Figure 8-8 shows the results.

Optimizing RSL Loading | 417

Example 8-11. TestHarness.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical" >
 <mx:Label text="google"/>
 <mx:ModuleLoader id="mod1"
 creationComplete="mod1.loadModule('GoogleFinancialNews.swf')"
 width="800" height="300"
 applicationDomain="{ApplicationDomain.currentDomain}"
 ready="mod2.loadModule('YahooFinancialNews.swf')"/>
 <mx:Label text="yahoo"/>
 <mx:ModuleLoader id="mod2" width="800" height="300"
 applicationDomain="{ApplicationDomain.currentDomain}"/>
</mx:Application>

Each of the modules in TestHarness has the ability to load yet another module:
ChartModule. This is done by switching to the view state ChartState and calling the
function loadChartSWF(). Example 8-12 shows the code of the module
YahooFinancialNews.

Figure 8-8. Running TestHarness.mxml

418 | Chapter 8: Performance Improvement: Selected Topics

Example 8-12. The module YahooFinancialNews

<?xml version="1.0" encoding="utf-8"?>
<mx:Module xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
 horizontalGap="0" verticalGap="0" width="100%" height="100%"
 paddingBottom="0" paddingLeft="0" paddingRight="0" paddingTop="0"
 backgroundColor="white"
 >

 <mx:states>
 <mx:State name="ChartState">
 <mx:RemoveChild target="{newsGrid}"/>
 <mx:AddChild relativeTo="{header}" position="after">
 <mx:ModuleLoader id="chart_swf"
 applicationDomain="{ApplicationDomain.currentDomain}"
 creationComplete="loadChartSWF()" width="100%" height="100%"/>
 </mx:AddChild>
 </mx:State>
 </mx:states>

 <mx:HBox id="header"
 width="100%" height="25"
 backgroundColor="#ffffff" backgroundAlpha="0.8"
 verticalAlign="middle" color="black">

 <mx:Label htmlText="Yahoo: Effective copy of PortletInfo class:
 {PortletInfo.INFO}"/>
 <mx:HBox width="100%" horizontalAlign="right" horizontalGap="3"
 verticalGap="0">
 <mx:Label text="Message: "/>
 <mx:TextInput id="textInput" text="{_messageText}" width="100"/>
 <mx:VRule height="20"/>
 <mx:Button label="{currentState == 'ChartState' ? 'Show Feed' :
 'Show Chart'}" click="currentState = (currentState == 'ChartState' ?
 '' : 'ChartState')"/>
 </mx:HBox>
 <mx:filters>
 <mx:DropShadowFilter angle="90" distance="2"/>
 </mx:filters>
 </mx:HBox>

 <mx:DataGrid id="newsGrid" width="100%" height="100%"
 dataProvider="{newsFeed.lastResult.channel.item}"
 variableRowHeight="true"
 dragEnabled="true" creationComplete="onCreationComplete()">
 <mx:columns>
 <mx:Array>
 <mx:DataGridColumn headerText="Date" dataField="pubDate" width="80"/>
 <mx:DataGridColumn headerText="Title" dataField="title" wordWrap="true"
 width="200"/>
 </mx:Array>
 </mx:columns>
 </mx:DataGrid>

 <mx:HTTPService id="newsFeed" useProxy="true"
 destination="YahooFinancialNews" concurrency="last"

Optimizing RSL Loading | 419

 resultFormat="e4x" fault="onFault(event)"/>

 <mx:Script>
 <![CDATA[
 import mx.managers.PopUpManager;
 import com.farata.portal.Message;
 import com.farata.portal.events.BroadcastMessageEvent;
 import mx.controls.Alert;
 import mx.rpc.events.*;

 [Bindable]
 private var _messageText:String;

 private function onCreationComplete():void {
 var bridge:IEventDispatcher = systemManager.loaderInfo.sharedEvents;
 bridge.addEventListener(
 BroadcastMessageEvent.BROADCAST_MESSAGE_TO_PORTLETS, messageBroadcasted);

 newsFeed.send({s:"YAHOO"});
 }

 private function loadChartSWF():void{
 chart_swf.loadModule("/ChartsModule/ChartModule.swf");
 }

 private function messageBroadcasted(event:Event):void{
 var newEvent:BroadcastMessageEvent =
 BroadcastMessageEvent.unmarshal(event);
 var message:Message = newEvent.message;
 _messageText = message.messageBody;
 }

 private function onFault(event:FaultEvent):void {
 Alert.show(event.toString());
 mx.controls.Alert.show(
 "Destination:" + event.currentTarget.destination + "\n" +
 "Fault code:" + event.fault.faultCode + "\n" +
 "Detail:" + event.fault.faultDetail, "News feed failure"
);
 }
]]>
 </mx:Script>
</mx:Module>

Click the application’s Show Chart button to make sure that loading one module from
the other works fine and that they properly pick the destination from the main appli-
cation’s services-config.xml file. Figure 8-9 shows the expected result.

Because you want to have a test harness that will allow you to run and test these modules
outside of the main portal, we’ll do a trick that will link the TestHarness application
with the one and only services-config.xml of the main portal project. Example 8-13 lists
the file named TestHarness-config.xml located in the FeedsModule project.

420 | Chapter 8: Performance Improvement: Selected Topics

Example 8-13. TestHarness-config.xml

<flex-config>
 <compiler>
 <services>
 c:/farata/oreilly/OptimizedPortal/WebContent/WEB-INF/flex/services-config.xml
 </services>
 </compiler>
</flex-config>

The very fact that a project has a file with the same name as the main application but
with the suffix -config will make the Flex compiler use it as configuration file that re-
directs to the real services-config.xml. (Remember, you need to replace c:/farata/
oreilly with the actual location of the workspace of the OptimizedPortal project.)

Open the class TestHarness_FlexInit_generated.as in the generated folder of the Feed-
Module project, and you’ll see a section taken from the portal project. A fragment of
this section is shown here:

ServerConfig.xml =
<services>
 <service id="remoting-service">
 <destination id="AnnualGenerator">
 <channels>
 <channel ref="my-amf"/>

Figure 8-9. Switching to chart view

Optimizing RSL Loading | 421

 </channels>
 </destination>
 <destination id="QuoterDataGenerator">
 <channels>
 <channel ref="my-amf"/>
 </channels>
 </destination>
 </service>
 ...
 <channels>
 <channel id="my-rtmp" type="mx.messaging.channels.RTMPChannel">
 <endpoint uri="rtmp://{server.name}:58010"/>
 <properties>
 </properties>
 </channel>
</services>;

Essentially, here’s what’s happening: while building the FeedsModule project, the Flex
compiler determines that it has two modules and one application and that it, therefore,
must build three .swf files. It checks whether TestHarness, GoogleFinancialNews, and
YahooFinancialNews have their own configuration files. TestHarness has one, so the
compiler uses it in addition to flex-config.xml from the Flex SDK. GoogleFinancial
News and YahooFinancialNews do not have their own configuration files, so for them the
compiler just uses the parameters listed in the flex-config.xml.

What did we achieve? We’ve created a small project that can be used for testing and
debugging the modules without the information from services-config.xml. If any of you
have worked on a large modularized Flex application, chances are that once in a while
you ran into conflicts caused by destinations having the same names but pointing to
different classes—they were created by different programmers and are located in mul-
tiple modules’ services-config.xml files. With our approach, you won’t run into such a
situation.

In the next section, you’ll learn how to make your modules go easy on network
bandwidth.

Creating a Shell Application with a Custom RSL Loader
Mary, the application developer, knows how to test her modules, and she’d really ap-
preciate it if she didn’t have to coordinate with other developers who might link the
same RSLs to their modules. Is it possible to have a slightly smarter application that
won’t load a particular RSL with the second module if it already downloaded it with
the first one?

To avoid duplication in modules, the Flex framework offers a singleton class,
ModuleManager (see Chapter 7), but it falls short when it comes to RSLs. Luckily, the
Flex framework is open sourced, and we’ll show you how to fix this shortcoming. Take
a closer look at the problem first.

422 | Chapter 8: Performance Improvement: Selected Topics

As you remember, the singleton SystemManager is the starting class that controls loading
of the rest of the application’s objects. Our sample application is a portal located in the
Flash Builder project OptimizedPortal. Adding the compiler’s –keep option allows you
to see the generated ActionScript code for the project. The main point of interest is the
class declaration in the file _OptimizedPortal_mx_managers_SystemMan-
ager-generated.as, located in the generated folder (Example 8-14).

Example 8-14. Generated SystemManager for OptimizedPortal

package{

import flash.text.Font;
import flash.text.TextFormat;
import flash.system.ApplicationDomain;
import flash.utils.getDefinitionByName;
import mx.core.IFlexModule;
import mx.core.IFlexModuleFactory;

import mx.managers.SystemManager;

[ResourceBundle("collections")]
[ResourceBundle("containers")]
[ResourceBundle("controls")]
[ResourceBundle("core")]
[ResourceBundle("effects")]
[ResourceBundle("logging")]
[ResourceBundle("messaging")]
[ResourceBundle("skins")]
[ResourceBundle("styles")]
public class _OptimizedPortal_mx_managers_SystemManager
 extends mx.managers.SystemManager
 implements IFlexModuleFactory{
 // Cause the CrossDomainRSLItem class to be linked into this application.
 import mx.core.CrossDomainRSLItem; CrossDomainRSLItem;

 public function _OptimizedPortal_mx_managers_SystemManager(){
 super();
 }

 override public function create(... params):Object{
 if (params.length > 0 && !(params[0] is String))
 return super.create.apply(this, params);

 var mainClassName:String = params.length == 0 ?
 "OptimizedPortal" : String(params[0]);
 var mainClass:Class = Class(getDefinitionByName(mainClassName));
 if (!mainClass)
 return null;

 var instance:Object = new mainClass();
 if (instance is IFlexModule)
 (IFlexModule(instance)).moduleFactory = this;
 return instance;
 }

Optimizing RSL Loading | 423

 override public function info():Object{
 return {
 cdRsls: [{"rsls":["datavisualization_3.3.0.4852.swz"],
"policyFiles":[""]
,"digests":["6557145de8b1b668bc50fd0350f191ac33e0c33d9402db900159c51a02c62ed6"],
"types":["SHA-256"],
"isSigned":[true]
},
{"rsls":["framework_3.2.0.3958.swz","framework_3.2.0.3958.swf"],
"policyFiles":["",""]
,"digests":["1c04c61346a1fa3139a37d860ed92632aa13decf4c17903367141677aac966f4","1c04
c61346a1fa3139a37d860ed92632aa13decf4c17903367141677aac966f4"],
"types":["SHA-256","SHA-256"],
"isSigned":[true,false]
},
{"rsls":["rpc_3.3.0.4852.swz"],
"policyFiles":[""]
,"digests":["f7536ef0d78a77b889eebe98bf96ba5321a1fde00fa0fd8cd6ee099befb1b159"],
"types":["SHA-256"],
"isSigned":[true]
}]
,
 compiledLocales: ["en_US"],
 compiledResourceBundleNames: ["collections", "containers", "controls",
"core", "effects", "logging", "messaging", "skins", "styles"],
 currentDomain: ApplicationDomain.currentDomain,
 layout: "vertical",
 mainClassName: "OptimizedPortal",
 mixins: ["_OptimizedPortal_FlexInit",
"_richTextEditorTextAreaStyleStyle", "_ControlBarStyle", "_alertButtonStyleStyle",
"_SWFLoaderStyle", "_textAreaVScrollBarStyleStyle", "_headerDateTextStyle",
"_globalStyle", "_ListBaseStyle", "_HorizontalListStyle", "_todayStyleStyle",
"_windowStylesStyle", "_ApplicationStyle", "_ToolTipStyle", "_CursorManagerStyle",
"_opaquePanelStyle", "_TextInputStyle", "_errorTipStyle", "_dateFieldPopupStyle",
"_dataGridStylesStyle", "_popUpMenuStyle", "_headerDragProxyStyleStyle",
"_activeTabStyleStyle", "_PanelStyle", "_DragManagerStyle", "_ContainerStyle",
"_windowStatusStyle", "_ScrollBarStyle", "_swatchPanelTextFieldStyle",
"_textAreaHScrollBarStyleStyle", "_plainStyle", "_activeButtonStyleStyle",
"_advancedDataGridStylesStyle", "_comboDropdownStyle", "_ButtonStyle",
"_weekDayStyleStyle", "_linkButtonStyleStyle",
"_com_farata_portal_PortalCanvasWatcherSetupUtil",
"_com_farata_portal_controls_SendMessageWatcherSetupUtil"],
 rsls: [{url: "flex.swf", size: -1}, {url: "utilities.swf", size: -1},
{url: "fds.swf", size: -1}, {url: "PortalLib.swf", size: -1}]

 }
 }
}

}

Skim through the code in Example 8-14, and you’ll see that all the information required
by the linker is there. The Flex code generator created a system manager for the
OptimizedPortal application that’s directly inherited from mx.managers.SystemMan

424 | Chapter 8: Performance Improvement: Selected Topics

ager, which doesn’t give us any hooks for injecting the new functionality in a kosher
way. Whatever you put in the class above will be removed by code generators during
the next compilation. The good news is that the Flex SDK is open sourced and you are
allowed to do any surgeries to its code and even submit the changes to be considered
for inclusion in upcoming releases of Flex.

The goal is to change the behavior of the SystemManager so that it won’t load duplicate
instances of the same RSL if more than one module links them. (Remember the
datavisualization.swc used in 3 out of 10 modules?)

Scalpel, please!

The flex_src directory of the project OptimizedPortal includes a package mx.core, which
includes two classes: RSLItem and RSLListLoader. These are the classes from Adobe Flex
SDK that underwent the surgery. The class RSLListLoader sequentially loads all re-
quired libraries. The relevant fragment of this class is shown in Example 8-15.

Example 8-15. Modified Flex SDK class RSLListLoader

//
// //
// ADOBE SYSTEMS INCORPORATED //
// Copyright 2007 Adobe Systems Incorporated //
// All Rights Reserved. //
// //
// NOTICE: Adobe permits you to use, modify, and distribute this file //
// in accordance with the terms of the license agreement accompanying it. //
// //
//

package mx.core{

import flash.events.IEventDispatcher;
import flash.events.Event;
import flash.utils.Dictionary;

[ExcludeClass]

/**
 * @private
 * Utility class for loading a list of RSLs.
 *
 * A list of cross-domain RSLs and a list of regular RSLs
 * can be loaded using this utility.
 */

public class RSLListLoader{
/**
 * Constructor.
 *
 * @param rslList Array of RSLs to load.
 * Each entry in the array is of type RSLItem or CdRSLItem.
 * The RSLs will be loaded from index 0 to the end of the array.
 */

Optimizing RSL Loading | 425

 public function RSLListLoader(rslList:Array)
 {
 super();
 this.rslList = rslList;
 }

 /**
 * @private
 * The index of the RSL being loaded.
 */
 private var currentIndex:int = 0;

 public static var loadedRSLs:Dictionary = new Dictionary();
 /**
 * @private
 * The list of RSLs to load.
 * Each entry is of type RSLNode or CdRSLNode.
 */
 private var rslList:Array = [];

 ...
 /**
 * Increments the current index and loads the next RSL.
 */
 private function loadNext():void{
 if (!isDone()){
 currentIndex++;

 // Load the current RSL.
 if (currentIndex < rslList.length){
 // Load RSL and have the RSL loader chain the
 // events our internal events handler or the chained
 // events handler if we don't care about them.
 if (loadedRSLs[(rslList[currentIndex] as RSLItem).url] == null){
 rslList[currentIndex].load(chainedProgressHandler,
 listCompleteHandler, listIOErrorHandler,
 listSecurityErrorHandler, chainedRSLErrorHandler);
 loadedRSLs[(rslList[currentIndex] as RSLItem).url] = true;
 } else {
 loadNext();// skip already loaded rsls
 }
 }
 }
 }
 ...
 }
}

Example 8-15 adds only a few lines to the class:

public static var loadedRSLs:Dictionary = new Dictionary();
...
if (loadedRSLs[(rslList[currentIndex] as RSLItem).url] == null){
...
loadedRSLs[(rslList[currentIndex] as RSLItem).url] = true;

426 | Chapter 8: Performance Improvement: Selected Topics

...
loadNext();// skip already loaded rsls

but these had a dramatic effect on the RSL loading process.

The static dictionary loadedRSL keeps track of already loaded RSLs (the url property
of the RSLItem), and if a particular RSL that’s about to be loaded already exists there,
it doesn’t bother loading it. This will prevent the loading of duplicate RSLs and will
substantially reduce the download time of some enterprise Flex applications.

In the class RSLItem, we’ve changed the access level of the property url from protected to
public:

public var url:String;//PATCHED - was protected

Because the source code of our versions of RSLItem and RSLListLoader
is included in the project, these classes will be merged into the .swf file
and have precedence over the original classes with the same names pro-
vided in Flex SDK libraries.

As a side note, we recommend not using the keyword protected. For
more details, read the following blog post: http://tinyurl.com/m6sp32.

“Flex open sourcing in action!” would have made a nice subtitle for this section. The
very fact that the Flex SDK was open sourced gives us a chance to improve its func-
tionality in any enterprise application and possibly even submit some of the changes
to Adobe.

Now let’s run the OptimizedPortal application, which uses modified RSLLoader. Ex-
ample 8-16 depicts the code of this application, but we aren’t going to give a detailed
explanation of this code, because in the context of this chapter, it’s more important to
understand what’s happening under the hood when the modules are being loaded.

Example 8-16. OptimizedPortal.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application layout="vertical"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:fx="http://www.faratasystems.com/2009/portal" >

 <mx:Style source="styles.css"/>
 <mx:Button id="b" label="Add module" click="addModule()"/>
 <mx:Script>
 <![CDATA[
 import mx.core.UIComponent;
 import mx.modules.Module;
 import mx.events.ModuleEvent;
 import mx.modules.ModuleManager;
 import mx.modules.IModuleInfo;

 private var _moduleInfo:IModuleInfo;

Optimizing RSL Loading | 427

http://tinyurl.com/m6sp32

 private function addModule() : void {
 // create the module - note, we're not loading it yet
 moduleInfo =
 ModuleManager.getModule("/FeedsModule/YahooFinancialNews.swf");
 // add some listeners
 _moduleInfo.addEventListener(ModuleEvent.READY, onModuleReady, false, 0, true);
 _moduleInfo.addEventListener(ModuleEvent.SETUP, onModuleSetup, false, 0, true);
 _moduleInfo.addEventListener(ModuleEvent.UNLOAD,onModuleUnload,false, 0, true);
 _moduleInfo.addEventListener(ModuleEvent.PROGRESS,onModuleProgress,false,0,
 true);
 // load the module
 _moduleInfo.load();
 }

/**
* The handlers for the module loading events
**/
 private function onModuleProgress (e:ModuleEvent) : void {
 trace("ModuleEvent.PROGRESS received: " + e.bytesLoaded + " of " +
 e.bytesTotal + " loaded.");
 }

 private function onModuleSetup (e:ModuleEvent) : void {
 trace("ModuleEvent.SETUP received");
 // cast the currentTarget
 var moduleInfo:IModuleInfo = e.currentTarget as IModuleInfo;
 trace("Calling IModuleInfo.factory.info ()");
 // grab the info and display information about it
 var info:Object = moduleInfo.factory.info();
 for (var each:String in info) {
 trace(" " + each + " = " + info[each]);
 }
 }

 private function onModuleReady (e:ModuleEvent):void {
 trace("ModuleEvent.READY received");
 // cast the currentTarget
 var moduleInfo:IModuleInfo = e.currentTarget as IModuleInfo;
 // Add an instance of the module's class to the
 // display list.
 trace("Calling IModuleInfo.factory.create ()");
 this.addChild(moduleInfo.factory.create () as UIComponent);
 trace("module instance created and added to Display List");
 }
 private function onModuleUnload (e:ModuleEvent) : void {
 trace("ModuleEvent.UNLOAD received");
 }
]]>

</mx:Script>
 <fx:PortalCanvas width="100%" height="100%">
 <fx:navItems>
 <fx:NavigationItem>
 <fx:PortletConfig title="Complete Application" isModule="true"
 preferredHeight="400" preferredWidth="850">

428 | Chapter 8: Performance Improvement: Selected Topics

 <fx:props>
 <mx:Object
 url="/FeedsModule/GoogleFinancialNews.swf"/>
 </fx:props>
 </fx:PortletConfig>
 </fx:NavigationItem>
 <fx:NavigationItem>
 <fx:PortletConfig title="Just a Module" isModule="true"
 preferredHeight="400" preferredWidth="850">
 <fx:props>
 <mx:Object
 url="/FeedsModule/YahooFinancialNews.swf"/>
 </fx:props>
 </fx:PortletConfig>
 </fx:NavigationItem>
 </fx:navItems>
 </fx:PortalCanvas>
 </mx:Application>

Example 8-16 uses a number of tags from our library PortalLib, which is linked to the
OptimizedPortal project; its source code comes with the sample code for this chapter
(see the Preface). Following are very brief descriptions of these components:

PortletConfig
A bunch of public variables: portletId, title, preferredWidth, showMaximized,
isSingleton, props, and content, which is a DisplayObject

NavItem
A component with a getter and setter for a label, a tooltip, an icon, and an associ-
ated portlet of type PortletConfig

PortletConfig
Describes the future portlet window

NavigationItem
Describes an icon on the portal desktop that can be clicked to create an instance
of that window

For the next experiment, we’ll clear the browser’s cache and start Charles to monitor
the loading process.

Flash Builder has a known issue: it sorts the libraries in the project’s
build path in alphabetical order, which may produce hard-to-explain
runtime errors in some cases. In particular, before running the
OptimizedPortal application, Flash Builder opens its project build path.
Ensure that datavisualization.swc is listed after utilities.swc; otherwise,
you may see an error about TweenEffect.

Running the OptimizedPortal application displays the main view shown in Figure 8-10
really quickly, which is one of the most important goals of any RIA.

Optimizing RSL Loading | 429

In Figure 8-11, Charles shows what .swf files have been loaded so far: OptimizedPor-
tal.swf, flex.swf, utilities.swf, fds.swf, and PortalLib.swf.

Figure 8-11. Charles shows initial downloads

Dragging the “Just a Module” icon from the bottom bar to the empty area of the ap-
plication loads the module and populates it with the data, as you can see in Figure 8-12.

In Figure 8-13, Charles shows that two more .swf files were loaded: the modules
YahooFinancialNews.swf and datavisualization_3.3.0.4852.swf.

Figure 8-10. The main view of the application OptimizedPortal

430 | Chapter 8: Performance Improvement: Selected Topics

For this experiment, we didn’t use a signed datavisualization.swz, be-
cause the goal here is to demonstrate the fact that even though the
datavisualization library is linked as RSL to more than one module, it’ll
get loaded only once.

After clicking the Show Chart (Figure 8-9) button, yet another module, ChartModule,
will be loaded, which also has the datavisualization RSL in its build path. The Optimi-
zedPortal view looks like Figure 8-14.

Figure 8-12. Loading the YahooFinancialNews module

Figure 8-13. YahooFinancialNews came with datavisualization.swf

Optimizing RSL Loading | 431

Charles then shows the results in Figure 8-15.

Figure 8-15. ChartModule came without datavisualization

As you can see, ChartModule.swf has been downloaded, but its datavisualization RSL
has not, because it was already downloaded by the module YahooFinancialNews—proof
that you can do a smarter RSL loading to improve your portal’s performance.

In this experiment, we’ve been using datavisualization.swc as a guinea pig RSL, but you
can and should apply the same technique for any business-specific RSL that your ap-
plication might use.

Figure 8-14. ChartModule is loaded

432 | Chapter 8: Performance Improvement: Selected Topics

A Grab Bag of Useful Habits
This section discusses three areas that may seriously affect performance of your appli-
cation: memory leaks, Flash Builder’s Profiler, and the just-in-time compiler. At the
end of this section, you’ll find a checklist of items that can help you in planning
performance-tuning tasks.

Dealing with Memory Leaks
Wikipedia defines a memory leak as “a particular type of unintentional memory con-
sumption by a computer program where the program fails to release memory when no
longer needed. This condition is normally the result of a bug in a program that prevents
it from freeing up memory that it no longer needs” (http://en.wikipedia.org/wiki/Mem
ory_leak).

Flash Player offers help in dealing with memory leaks. A special process called Garbage
Collector (GC) periodically runs and removes objects from memory that the Flex ap-
plication no longer uses. It counts all references to each object in memory, and when
it gets down to zero, the object is removed from memory.

In some cases, two objects have references to each other, but neither of them is referred
to anywhere else. In this case, the reference count never becomes zero, but Flash Player
tries to identify such situations by running a slower method called mark and sweep.

Sure enough, you need to write code that nullifies reference variables that point to
objects that are not needed (myGreatObj=null;): if you call addChild(), don’t forget
about removeChild(); if you call addEventListener(), keep in mind
removeEventListener().

The function addEventListener() has three more optional arguments, and if the last
one is set to true, it’ll use so-called weak references with this listener, meaning that if
this object has only weak references pointing to it, GC can remove it from memory.

Of course, if you ignore these recommendations, that’ll lead to littering RAM with
unneeded objects, but your main target in optimization of memory consumption
should be the unloading of unneeded data.

Closures

In some cases, there is not much you can do about memory leaks, and some instances
of the objects get stuck in memory, gradually degrading the performance of your
application.

A closure—or rather, an object representing an anonymous function—will never be
garbage-collected. Here’s an example:

myButton.addEventListener("click",
 function (evt:MouseEvent){//do something});

A Grab Bag of Useful Habits | 433

http://en.wikipedia.org/wiki/Memory_leak
http://en.wikipedia.org/wiki/Memory_leak

With such syntax, the object that represents the handler function gets attached to the
stage as a global object. You can’t use syntax like removeEventListener("click",
myHandlerFunction) here, because the closure used as an event handler didn’t have a
name. Things get even worse, because all objects created inside this closure won’t be
garbage-collected either.

Be careful with closures. Don’t use them just because it’s faster to create
an anonymous in-place function than declaring a named one. Unless
you need to have an independent function that remembers some varia-
bles’ values from its surrounding context, don’t use closures, as they
may result in memory leaks.

You can’t use weak references with the listeners that use closures, as they won’t have
references to the function object and will be garbage-collected.

If you add a listener to the Timer object, use a weak reference; otherwise,
Flash Player will keep the reference to it as long as the timer is running.

Opportunistic garbage collector

The GC will work differently depending on the web browser your Flex application runs
in. The mechanism of allocating and deallocating the memory by Flash Player can be
browser-specific.

How do you determine that you have memory leaks? If you can measure available heap
memory before and after GC runs, you can make a conclusion about the memory leaks.
But this brings the next question: “How can you force GC?”

There is a trick with the LocalConnection object that can be used to request immediate
garbage collection. If your program creates two instances of the LocalConnection object
using the same name in the connect() call, Flash Player will initiate the process of GC.

var conn1:LocalConnection = new localConnection();
var conn2:LocalConnection = new localConnection();
conn1.connect("MyConnection");
conn2.connect("MyConnection");

It’s not typical, but you can use the LocalConnection object to send and
receive data in a single .swf, for example to communicate between mod-
ules of the same Flex application.

Some web browsers force GC on their own. For example, in Internet Explorer mini-
mizing the browser’s window causes garbage collection.

434 | Chapter 8: Performance Improvement: Selected Topics

If you can force all your users to use Flash Player version 9.0.115 or later, you may use
the following API to cause GC: flash.system.System.gc().

JIT Benefits and Implications
Flex compiler is actually a set of subcompilers converting your ActionScript and MXML
code into different formats. For example, besides mxmlc and compc, there is a pre-
compiler that extracts the information from the precompiled ABC (ActionScript Byte
Code). You can read more about compilers at http://opensource.adobe.com/wiki/display/
flexsdk/Flex+3+Compiler+Design. The ABC is the format that Flash Player runs. But
the story doesn’t end here.

Most of the performance advances in the current version of AS3 as compared to AS2
are based on its just-in-time (JIT) compiler, which is built into Flash Player. During
the .swf load process, a special byte code verifier performs a lot of code analysis to ensure
that code is valid for execution: validation of code branches, type verification/linkage,
early binding, constants validation.

The results of the analysis are used to produce machine-independent representation
(MIR) of the code that can be used by the JIT compiler to efficiently produce machine-
dependent code optimized for performance. Unlike Flash VM code, which is a classic
stack machine, MIR is more like a parsed execution path prepared for easy register
optimization. The MIR compiler does not process the entire class, though; it rather
takes an opportunistic approach and optimizes one function at a time, which is a much
simpler and faster task. For example, this is how the source code of an ActionScript
function is transformed into the assembly code of the x86 Intel processor:

In ActionScript 3:

function (x:int):int {
return x+10
}

In ABC:

getlocal 1
pushint 10
add
returnvalue

In MIR:

@1 arg +8// argv
@2 load [@1+4]
@3 imm 10
@4 add (@2,@3)
@5 ret @4 // @4:eax

In x86:

mov eax,(eap+8)
mov eax,(eax+4)

A Grab Bag of Useful Habits | 435

http://opensource.adobe.com/wiki/display/flexsdk/Flex+3+Compiler+Design
http://opensource.adobe.com/wiki/display/flexsdk/Flex+3+Compiler+Design

add eax,10
ret

The difference in time for execution of the ABC code and x86 can be on the order of
10 to 100 times and easily justifies having an extra step such as the JIT process. In
addition, the JIT process does dead code elimination, common expressions optimiza-
tion, and constants folding. On the machine-code generation side, it adds optimized
use of registers for local variables and instruction selection.

You need to help realize these benefits by carefully coding critical (as opposed to over-
optimized) loops. For example, consider the following loop:

for (var i:int =0; I < array.length; i++) {
 if(array[i] == SomeClass.SOMECONSTANT)...

It can be optimized to produce very efficient machine code by removing calculations
and references to other classes, thus keeping all references local and optimized:

var someConstant:String = SomeClass.SOMECONSTANT;
var len:int = array.length;

for (var i :int = 0; I < len; i++) {
 if (array[i] == someConstant)

JIT is great at providing machine code performance for heavy calculations, but it has
to work with data types that the CPU is handling natively. At the very least, in order to
make JIT effective, you should typecast to strong data types whenever possible. The
cost of typecasting and fixed property access is lower than the cost of lookup, even for
a single property.

JIT works only on class methods. As a result, all other class constructs—variable ini-
tialization on the class level and constructors—are processed in interpreter mode. You
have to make a conscious effort to defer initialization from constructors to a later time
so that JIT has a chance to perform.

Using the Flash Builder Profiler
The Flash Builder Profiler monitors memory consumption and the execution time.
However, it monitors very specific execution aspects based on information available
inside the virtual machine and currently is incomplete. For example, memory reported
by the Profiler and memory reported by the OS will differ greatly, because the Profiler
fails to account for the following:

• Flash Player’s memory for code and system areas; hidden areas of properties as-
sociated with display objects

• Memory used by JIT

• The unfilled area of the 4 KB memory pages as a result of deallocated objects

More importantly, when showing memory used by object instances the Profiler will
report the size used by object itself and not by subobjects. For example, if you are

436 | Chapter 8: Performance Improvement: Selected Topics

looking at 1,000 employee records, the Profiler will report the records to be of the same
size, regardless of the sizes of last and first names. Only the size of the property pointing
to the string values is going to be reported within the object. Actual memory used by
strings will be reported separately and it’s impossible to quantify it as belonging to
employee records.

The second problem is that with deferred garbage collection there are a lot of issues
with comparing memory snapshots of any sizable application. Finding holding refer-
ences as opposed to circular ones is a tedious task and hopefully will be simplified in
the next version of the tool.

As a result, it is usually impractical to check for memory leaks on the large application
level. Most applications incorporate memory usage statistics like System.totalMemory
into their logging facility to give developers an idea of possible memory issues during
the development process. A much more interesting approach is to use the Profiler as a
monitoring tool while developing individual modules. You also need to invoke
System.gc() prior to taking memory snapshots so that irrelevant objects won’t sneak
into your performance analysis.

As far as using the Profiler for performance analysis, it offers a lot more information. It
will reveal the execution times of every function and cumulative times. Most impor-
tantly, it will provide insights into the true cost of excessive binding, initialization and
rendering costs, and computational times. You would not be able to see the time spent
in handling communications, loading code, and doing JIT and data parsing, but at least
you can measure direct costs not related to the design issues but to the coding
techniques.

Read about new Flash Builder 4 profiler features in the following article
by Jun Heider: http://www.adobe.com/devnet/flex/articles/flashbuilder4
_debugging_profiling.html?devcon=f7.

Performance Checklist
While planning for performance improvement of your RIA, consider the following five
categories.

Startup time

To reduce startup time:

• Use preloaders to quickly display either functional elements (logon, etc.) or some
business-related news.

• Design with modularization and optimization of .swf files (remove debug and
metadata information).

• Use RSLs, signed framework libraries.

A Grab Bag of Useful Habits | 437

http://www.adobe.com/devnet/flex/articles/flashbuilder4_debugging_profiling.html?devcon=f7
http://www.adobe.com/devnet/flex/articles/flashbuilder4_debugging_profiling.html?devcon=f7

• Minimize initially displayed UI.

• Externalize (don’t embed) large images and unnecessary resources.

• Process large images to make them smaller for the Web.

UI performance

To improve user interface performance at startup:

• Minimize usage of containers within containers (especially inside data grids). Most
of the UI performance issues are derived from container measurement and layout
code.

• Defer object creation and initialization (don’t do it in constructors). If you post-
pone creation of UI controls up to the moment they become visible, you’ll have
better performance. If you do not update the UI every time one of the properties
changes but instead process them together (commitProperties()), you are most
likely to execute common code sections responsible for rendering once instead of
multiple times.

• For some containers, use creationPolicy in queues for perceived initialization
performance.

• Provide adaptive user-controlled duration of effects. Although nice cinemato-
graphic effects are fine during application introduction, their timing and enable-
ment should be controlled by users.

• Minimize update of CSS during runtime. If you need to set a style based on data,
do it early, preferably in the initialization stage of the control and not in the
creationComplete event, as this minimizes the number of lookups.

• Validate performance of data-bound controls (such as List-based controls) for
scrolling and manipulation (sorting, filtering, etc.) early in development and with
maximum data sets. Do not use the Flex Repeater component with sizable data sets.

• Use the cacheAsBitmap property for fixed-size objects, but not on resizable and
changeable objects.

I/O performance

To speed up I/O operations:

• Use AMF rather than web services and XML-based protocols, especially for large
(over 1 KB) result sets.

• Use strong data types with AMF on both sides for the best performance and mem-
ory usage.

• Use streaming for real-time information. If you have a choice, select the protocols
in the following order: RTMP, AMF streaming, long polling.

• Use lazy loading of data, especially with hierarchical data sets.

438 | Chapter 8: Performance Improvement: Selected Topics

• Try to optimize a legacy data feed; compress it on a proxy server at least, and
provide an AMF wrapper at best.

Memory utilization

To use memory more efficiently:

• Use strongly typed variables whenever possible, especially when you have a large
number of instances.

• Avoid using the XML format.

• Provide usage-based classes for nonembedded resources. For example, when you
build a photo album application, you do want to cache more than a screenful of
images, so that scrolling becomes faster without reloading already scrolled images.
The amount of utilized memory and common sense, however, should prevent you
from keeping all images loaded.

• Avoid unnecessary bindings (like binding used for initialization), as they produce
tons of generated code and live objects. Provide initialization through your code
when it is needed and has minimal performance impact.

• Identify and minimize memory leaks using the Flash Builder Profiler.

Code execution performance

For better performance, you can make your code JIT-compliant by:

• Minimizing references to other classes

• Using strong data types

• Using local variables to optimize data access

• Keeping code out of initialization routines and constructors

Additional code performance tips are:

• For applications working with a large amount of data, consider using the Vector
data type (Flash Player 10 and later) over Array.

• Bindings slow startup, as they require initialization of supporting classes; keep it
minimal.

Summary
In this chapter, you learned how to create a small no-Flex logon (or any other) window
that gets downloaded very quickly to the user’s computer, while the rest of the Flex
code is still in transit.

You know how to create any application as a miniportal with a light main application
that loads light modules that:

Summary | 439

• Don’t have the information from services-config.xml engraved into their bodies

• Can be tested by a developer with no dependency on the work of other members
of the team

You won’t think twice when it comes to modifying the code of even such a sacred cow
as SystemManager to feed your needs. Well, you should think twice, but don’t get too
scared if the source code of the Flex framework requires some surgery. If your version
of the modified Flex SDK looks better than the original, submit it as a patch to be
considered for inclusion in the future Flex build; the website is http://opensource.adobe
.com/wiki/display/flexsdk/Submitting+a+Patch

While developing your enterprise RIA, keep a copy of the “Performance Check-
list” on page 437 handy and refer to it from the very beginning of the project.

If you’ve tried all the techniques that you know to minimize the size of a particu-
lar .swf file and you are still not satisfied with its size, as a last resort, create an Action-
Script project in Flash Builder and rewrite this module without using MXML. This
might help.

440 | Chapter 8: Performance Improvement: Selected Topics

http://opensource.adobe.com/wiki/display/flexsdk/Submitting+a+Patch
http://opensource.adobe.com/wiki/display/flexsdk/Submitting+a+Patch

CHAPTER 9

Working with Adobe AIR

First axiom of user interface design: Don’t make the user
look stupid.

—Alan Cooper

In this chapter, you’ll investigate Adobe Integrated Runtime (AIR), which is a valuable
addition to the arsenal of Flex developers for many reasons:

• AIR allows you to perform all I/O operation with the filesystem on the user’s
desktop.

• AIR allows you to sign applications and allows versioning of applications.

• AIR offers an updater that make it easy to ensure proper upgrades of the applica-
tions on the user’s desktop computer.

• AIR comes with a local database, SQLite, which is a great way to arrange a repo-
sitory of the application data (in clear or encrypted mode) right on the user’s
computer.

• AIR applications can easily monitor and report the status of the network
connection.

• The user can start and run an AIR application even when there is no network
connection available.

• AIR has better support for HTML content.

At the time of this writing, AIR 1.5 has been officially released and AIR 2.0 is in beta.
As you can see, AIR 1.5 is a significant step toward providing a platform for desktop
application development. AIR 1.5 was not a full-featured desktop development envi-
ronment because of the following limitations:

• It couldn’t make calls to the user’s native operating system.

• It couldn’t launch non-AIR applications on the desktop (except the default
browser).

• It couldn’t instantiate a DLL.

441

• It couldn’t directly access the ports (i.e., USB or serial) of the user’s computer.

AIR 2.0 introduced significant improvements that received a warm welcome in the
developer community, such as:

• It can launch and communicate with native (non-AIR) applications.

• It lowers CPU and memory consumption.

• It supports the detection of mass storage devices (e.g., when a USB device or a
camera is connected or disconnected).

• It knows how to open files with default programs (e.g., PDF files would be opened
by Acrobat Reader).

• It gives you access to uncompressed microphone data via the Microsoft Access API.

• It introduces multitouch functionality.

• It introduces UDP sockets, which are a great improvement for such real-time ap-
plications as online games or Voice over IP.

• It includes global error handling, which is guaranteed to catch all unhandled errors.

• It supports screen readers (Windows OS only) for visually impaired users.

• The sizes of the runtime installers are smaller than those in AIR 1.5.

• It can create applications for the iPhone.

In addition to the technical improvements of AIR, Adobe has created a central resource
that collects a growing set of AIR applications developed by third parties. It’s called
Adobe AIR Marketplace and is found at http://www.adobe.com/go/marketplace.

If you want to create, publish, and sell your own applications, get familiar with a service
code-named Shibuya, which is a monetization service for AIR developers (it’s currently
in beta; see http://labs.adobe.com/technologies/shibuya/).

Our message is simple: we highly recommend using AIR for development of desktop
applications.

To help you get started with AIR, this chapter provides a fast-paced review of the basics
of the AIR APIs that are not available in Flex. You’ll then move on to the more advanced
topic of data synchronization between the client and a BlazeDS-powered server. As an
alternative to using LCDS and its data management services, this chapter offers a syn-
chronization solution with a subclass of DataCollection (see Chapter 6) and BlazeDS.

Finally, you’ll use AIR to build a small application for a salesperson of a pharmaceutical
firm who visits doctors' offices, offering the company’s latest drug, Xyzin. During these
visits, the salesperson’s laptop is disconnected from the Internet, but the application
allows note-taking about the visit and saving the information in the local SQLite data-
base bundled into the AIR runtime. When the Internet connection becomes available,
the application automatically synchronizes the local data with a central database.

442 | Chapter 9: Working with Adobe AIR

http://www.adobe.com/go/marketplace
http://labs.adobe.com/technologies/shibuya/

All code samples in this chapter were developed in AIR 1.5.

How AIR Is Different from Flex
You can think of AIR as a superset or a shell for the Flex, Flash, and AJAX programs.
First of all, AIR includes the API for working with files on the user’s computer; Flex
has very limited access to the disk (only file uploading and local shared objects via
advanced cookies). The user can run an AIR application installed on his desktop if it
has the AIR runtime. This runtime is installed pretty seamlessly with minimal user
interaction.

On the other hand, the very fact that AIR applications have to be installed on the user’s
computer forces us developers to take care of things that just don’t exist in Flex appli-
cations. For example, to release a new version of a Flex application, you need to update
the SWFs and some other files on a single server location. With AIR, each user has to
install a new version of your application on his computer, which may already have an
old version installed. The installer should take precautions to ensure that versioning of
the application is done properly and that the application being installed is not some
malicious program that may damage the user’s computer.

In the Flex world, if the user’s computer is not connected to the Internet, he can’t work
with your RIA. This is not the case with AIR applications, which can work in discon-
nected mode, too. Although Flex does not have language elements or libraries that can
work with a relational DBMS, AIR comes bundled with a version of SQLite that is
installed on the client and is used to create a local database (a.k.a. local cache) to store
application data in the disconnected mode. If needed, AIR can encrypt the data stored
in this local database. Consider the salesperson visiting customers with a laptop. Al-
though no Internet connection is available, she can still use the AIR application and
save the data in the local database. As soon as the Internet connection becomes avail-
able, the AIR application then synchronizes the local and remote databases.

Rendering of HTML is yet another area where AIR beats Flex hands down. AIR does
it by leveraging the open source web-browsing engine called WebKit (http://webkit
.org). Loading a web page into your AIR application is a simple matter of adding a few
lines of code; you’ll learn how to do it later in this chapter.

The inclusion of WebKit makes AIR an attractive environment not only
for Flex, but also for HTML/AJAX developers as well. If you are an AJAX
developer and your application works with WebKit, it’ll work inside
AIR, which opens a plethora of additional functionalities in any AJAX
program.

How AIR Is Different from Flex | 443

http://webkit.org
http://webkit.org

HelloWorld in AIR
The AIR SDK is free, so if you are willing to write code in Notepad (or your favorite
text editor) and compile and build your applications using command-line tools either
directly or hooked up to an IDE of your choice, you can certainly create AIR applications
without having to purchase any additional software. In particular, AIR comes with the
following tools:

ADL
The AIR Debug Launcher that you can use from a command line

ADT
The AIR Developer Tool with which you create deployable .air files

Most likely, you’ll work in the Flash Builder IDE, which includes AIR project creation
wizard. To get familiar with this method, try developing a HelloWorld application.

1. Create a new Flex project called HelloWorld in Flash Builder.

2. In the same window where you enter the project name, select the radio button
titled “Desktop application (runs in Adobe AIR).” Click the Finish button to see a
window similar to Figure 9-1.

3. Instead of the familiar <mx:Application> tag, the root tag of an AIR application is
<mx:WindowedApplication>. Add a line <mx:Label text="Hello World"> to the code
and run this application. Figure 9-2 shows the results.

Figure 9-1. An empty template of the AIR application

The src folder of your Flash Builder project now contains an application descriptor file
called HelloWorld-app.xml. Example 9-1 shows a fragment of this file. (If you don’t use
Flash Builder, you’ll have to write the file manually.)

444 | Chapter 9: Working with Adobe AIR

Figure 9-2. Running the HelloWorld application

Example 9-1. Partial application descriptor file for HelloWorld

<application xmlns="http://ns.adobe.com/air/application/1.5.1">

<!-- The application identifier string, unique to this application. Required. -->

 <id>HelloWorld</id>

<!-- Used as the filename for the application. Required. -->

 <filename>HelloWorld</filename>

<!-- The name that is displayed in the AIR application installer.
 May have multiple values for each language. See samples or xsd schema file.
 Optional. -->

 <name>HelloWorld</name>

<!-- An application version designator (such as "v1", "2.5", or "Alpha 1").
 Required. -->

 <version>v1</version>

The namespace that ends with 1.5.1 indicates the minimum required version of the
AIR runtime. AIR is forward compatible, however, so an application built in, say, AIR
1.0 can be installed on the machines that have any runtime with a version greater than
1.0.

HelloWorld in AIR | 445

You may run into an issue while trying to run an AIR application from
Flash Builder: it won’t start but doesn’t report any errors either. To fix
this issue, make sure that the namespace ends with 1.5.1 or whatever
the current version of AIR is that you use.

The application ID must be unique for each installed AIR application signed by the
same code-signing certificate. Hence using reverse domain notation, like
com.farata.HelloWorld, is recommended.

To prepare a package for deploying your application:

1. Choose Project→Export Release Build, just as you would for deploying Flex appli-
cations. Flash Builder will offer to create an installer for the application, an AIR
file named HelloWorld.air. There is no need to create an HTML wrapper here as
with Flex applications.

2. Press the Next button. Flash Builder displays a window that asks for you to sign
this application using a precreated digital certificate or to export to an intermediate
file (with the .airi name extension) that you can sign later. This second option is
useful if, for example, your firm enforces a special secure way of signing
applications.

3. If you don’t have a real digital certificate, click on the Create button to create a self-
signed certificate, which is good enough for the development stage of your AIR
application.

4. Fill out the creation form in Figure 9-3 and name the file testCertificate.p12.

You can purchase a digital certificate from ChosenSecurity (http://cho
sensecurity.com), GlobalSign (http://globalsign.com), Thawte (http://
www.thawte.com), or Verisign (http://www.verisign.com).

5. Click OK to save the file.

You’ll now see a window that specifies what to include in the HelloWorld.air file.
This simple example requires only two files: the application descriptor HelloWorld-
app.xml and the application file HelloWorld.swf.

Congratulations—you’ve created your first AIR application. Now what? How do users
run HelloWorld.air if their computers don’t have Flash Builder? They must download
and install the latest version of the AIR runtime (about 15 MB) from http://get.adobe
.com/air/.

When this is complete, they double-click on HelloWorld.air to start the installation of
the HelloWorld application and see the scary message in Figure 9-4.

446 | Chapter 9: Working with Adobe AIR

http://chosensecurity.com
http://chosensecurity.com
http://globalsign.com
http://www.thawte.com
http://www.thawte.com
http://www.verisign.com
http://get.adobe.com/air/
http://get.adobe.com/air/

Figure 9-3. Creating a self-signed certificate

Figure 9-4. Installing the AIR application

HelloWorld in AIR | 447

Because you used a self-signed certificate, the AIR installer warns the user that the
publisher’s identity is unknown. The fact that you’ve entered your name as a publisher
is not good enough; some trustworthy agent has to confirm that you are who you say
you are. Besides identifying the publisher of the application, digital certificates guar-
antee that the binary content of the application has not been modified after signing (the
checksum mechanism is being used there). Using the .air file is one of the ways to install
an AIR application.

You can allow users to install your AIR application from a web page
without saving the .air file. Flex SDK has a badge.swf file that supports
such seamless installation (of both AIR itself and your application). For
details, refer to the Adobe documentation at http://tinyurl.com/akntmc.

The installer extracts the application name from the descriptor, and the installer also
has a mechanism to ensure that you won’t replace an AIR application with its older
version.

Assuming your user knows the publisher of this application (you), and clicks Install,
the installation process continues, and HelloWorld will take its honorable place among
other applications installed on the user’s computer. For example, if no settings are
changed, on Windows a new HelloWorld.exe application will be installed in the folder
C:\Program Files\Hello World, as shown in Figure 9-5. Double-click on the .air file after
this application was installed (the ID and the version were compared), and you’ll see a
screen offering to either uninstall the application or run it.

Figure 9-5. AIR application folders

448 | Chapter 9: Working with Adobe AIR

http://tinyurl.com/akntmc

Native Windows
The root tag of any AIR application is <mx:WindowedApplication>, which is all it takes
to make the application look like a native window of the OS where it runs. For example,
install and run the same HelloWorld.air application on Mac OS, and, instead of looking
like Figure 9-2, the window looks like Figure 9-6.

You can have only one <mx:WindowedApplication> tag per application, however. If you
need to instantiate other windows, you need to use the <mx:Window> component. With
it, you can specify multiple windows that may or may not look like a native window
based on the chrome you specify. The Window class contains an important property called
nativeWindow of type flash.display.NativeWindow, which is the class you would use to
create new windows if you were developing a plain Flash (no Flex) application.

Figure 9-6. HelloWorld on MAC OS

If you need to open a new native window, create a custom component called
HelloWindow with <mx:Window> as the root tag:

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" width="400" height="300">
 <mx:Button label="Close me" click="close()"/>
</mx:Window>

The following application instantiates and opens this native window:

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">
 <mx:Label text="Hello World" />

Native Windows | 449

 <mx:Button label="Open Native Window" click="openMyWindow()" />

 <mx:Script>
 <![CDATA[
 import mx.core.Window;
 private function openMyWindow():void{
 var helloNativeWindow:Window=new HelloWindow();
 helloNativeWindow.open();
 }
]]>
 </mx:Script>
</mx:WindowedApplication>

You can change the chrome and transparency of the <mx:Window> component by using
its properties systemChrome and transparent, respectively.

You can’t set the systemChrome and transparent properties of
<mx:WindowedApplication> programmatically, but you can do it in the
application descriptor file.

Working with Files
The class flash.filesystem.File is a means of getting access to the files and directories
on the user’s computer. This class enables you to create, move, copy, or delete files. It
also comes with generic constants that resolve the path to the user, desktop, or docu-
ment directories and offer a unified cross-platform way to access application resource
files. For read/write operations, use the class FileStream from the package
flash.filesystem.

AIR supports working with files in two modes: synchronous and asynchronous. Syn-
chronous mode forces the application to block (wait) until this I/O operation is com-
plete. In asynchronous mode, the user can continue working with the application while
it works with files, and an event notification mechanism monitors the progress of the
I/O. Those methods that work asynchronously have the suffix Async in their names—
for example, File.copyToAsync() or FileStream.openAsync(). Using the asynchronous
versions of I/O requires a bit more coding, but it should be your first choice when you
need to process files of substantial sizes.

Commonly Used Directories
Because AIR is a cross-platform runtime, it shields the user from knowing specifics of
the structure of the native filesystem by introducing predefined alias names for certain
directories.

The app:/ alias refers to your application’s root read-only directory, where all files (both
code and assets) that you packaged with your application are located. For example, if
your application includes an images directory, which holds the file cafeLogo.jpg, you

450 | Chapter 9: Working with Adobe AIR

would create an instance of a File pointing to this image (regardless of where this
application is installed) as follows:

var cafeLogo: File= new File("app:/images/cafeLogo.jpg");

Similar to Java, in AIR the fact that you’ve created an instance of a
File providing a path to a specific file or directory doesn’t mean that it
exists and is in good health. By instantiating a File object, you are just
preparing a utility object capable of working with a file at a given loca-
tion. Don’t forget to provide error processing while performing I/O op-
erations on this file.

Alternatively, you could use a static property File.applicationDirectory:

var cafeLogo: File=
 File.applicationDirectory.resolvePath("images/cafeLogo.jpg")

The resolvePath() method enables you to write the file access code without worrying
about differences of native file path notation in Windows, Mac OS, and Linux. On the
other hand, you are still allowed to reference a file by its absolute path, as in this code:

 var cafeLogo: File= new File(
"c:\Documents and Settings\mary\MyApplicationDir\images/cafeLogo.jpg");

This notation has an obvious disadvantage: it works only on Windows machines. If
you want to specify the path starting from a root directory of the user’s hard disk but
in a cross-platform fashion, use the alias file:/.

The application shown in Example 9-2 will allow the user to enter the filename and
any text in the left text box. When the user clicks the “Write” button, the entered text
will be asynchronously written into the file with the specified name. When the user
clicks the “Read” button, the content of this file will be read in synchronous mode.

The app-storage:/ alias is used to work with an automatically created directory for
persisting offline data. Each AIR application has its own storage directory, and the
sample application shown in Example 9-2 will save the files there.

Alternatively, you can use the applicationStorageDirectory property of the class File.

The class File has some more static constants for commonly used directories:
desktopDirectory, documentsDirectory, and userDirectory. The following code frag-
ment, for example, creates a directory testDir specifically for the application Working-
WithFiles:

var myDir:File=new File("app-storage:/testDir")
if (!myDir.exists){
 myDir.createDirectory();
}

The actual location of this directory depends on the OS, and in Windows XP you can
find it here (make sure that Windows Explorer is set to show hidden files):

Working with Files | 451

C:\Documents and Settings\Administrator\Application Data\WorkingWithFiles\Local
Store\testDir. In Mac OS X, the same code will create the directory: /Users/yourUserID/
Library/Preferences/WorkingWithFiles/Local Store/testDir.

Reading and Writing to Files
After finding a file, you may want to work with it. Example 9-2, which lists the source
code of the application WorkingWithFiles, illustrates the reading, writing, and deleting
of the file with the hardcoded name MyTextFile.txt. Figure 9-7 shows the results. The
user can type any text in the box on the left, click the button “Write asynchronously,”
and the file myTextFile.txt will be saved in the directory testDir. Clicking the button
“Read synchronously” will read this file into the text box on the right.

If the user clicks the “delete file” button and then clicks “Read synchronously,” the
application will try to read MyTextFile.txt and display the error message shown in
Figure 9-8.

Example 9-2 contains the source code of the WorkingWithFiles application. For illus-
tration purposes, it includes both asynchronous and synchronous modes for file I/O
operations performed by the methods of the class FileStream; the stream is opened
either by openAsync() or open(), respectively. The functions writeFile(), readFile(),
and deleteFile() use try/catch blocks to report I/O errors, if there are any. Don’t forget
to close opened streams as is done in the finally clause.

Figure 9-7. Reading/writing into files

452 | Chapter 9: Working with Adobe AIR

Figure 9-8. I/O Error message

Example 9-2. WorkingWithFiles.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" width="530" fontSize="16">

<mx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import flash.filesystem.File;
 import flash.filesystem.FileStream;

 var myDir:File=new File("app-storage:/testDir")
 var myFile:File = myDir.resolvePath("MyTextFile.txt");
 var myFileStream4Write: FileStream = new FileStream();
 var myFileStream4Read: FileStream = new FileStream();

 private function writeFile():void{
 if (!myDir.exists){
 myDir.createDirectory();
 }
 myFileStream4Write.addEventListener(Event.CLOSE,completeHandler);

 try {
 myFileStream4Write.openAsync(myFile,FileMode.WRITE);

 myFileStream4Write.writeMultiByte(textToWrite.text, "iso-8859-1");

 } catch(error:IOError){

Working with Files | 453

 Alert.show("Writing to file failed:" + error.message);
 } finally {
 myFileStream4Write.close();
 }
 }

 private function completeHandler (event:Event):void{
 Alert.show("File MyFile.txt has been written successfully");
 }

 private function readFile():void{

 try {
 myFileStream4Read.open(myFile,FileMode.READ);

 textRead.text=
 myFileStream4Read.readMultiByte(
 myFileStream4Read.bytesAvailable, "iso-8859-1");

 } catch(error:IOError){
 textRead.text="Can't read MyFile.txt:" + error.message;
 } finally {
 myFileStream4Read.close();
 }
 }

 private function deleteFile():void{
 try{
 myFile.deleteFile();
 } catch(error:IOError){
 textRead.text="Can't delete file MyFile.txt:" + error.message;
 }
 }
]]>
</mx:Script>

 <mx:Text x="10" y="259" text="Enter the text to be written into the file
 MyTextFile.txt on the left box and read it into the right one."
 fontWeight="bold" width="508" height="48" />
 <mx:TextArea id="textToWrite" x="10" y="10" height="201" width="239"
 borderStyle="inset"/>
 <mx:TextArea id="textRead" x="279" y="10" height="201" width="239"
 borderStyle="inset"/>
 <mx:Button x="13" y="223" label="Write asynchronously" click="writeFile()"/>
 <mx:Button x="279" y="223" label="Read synchronously" click="readFile()"/>
 <mx:Button x="209" y="306" label="delete file" click="deleteFile()"/>
</mx:WindowedApplication>

Working with Local Databases
Flex applications can save data on local filesystems using the class SharedObject. This
is a useful feature for storing user preferences or serializing other memory objects on
the disk. The API for working with SharedObject allows the application to write an
instance of the object to disk and re-create the instance afterward, on the next run.

454 | Chapter 9: Working with Adobe AIR

AIR offers a more sophisticated API, as it comes with an embedded relational DBMS
called SQLite. The application can create and work with the data using SQL syntax on
the user’s machine. Such data is often referred as a local cache. The data stored in the
local cache can be encrypted, if needed. You can see it in action in a sample Sales-
builder application at http://tinyurl.com/bbq4dj.

There are three main uses of the local cache:

• Create an independent desktop application with its own local database.

• Allow the AIR application to remain operational even when there is no network
connection. In this case, a local database may have a number of tables (i.e., Cus-
tomers and Orders) that will be synchronized with the central database as soon as
the network connection becomes available.

• Offload large chunks of intermediate application data to lower memory utilization.

A SQLite database is stored in a single file, and an understanding of the basics of the
File API covered in the previous section is helpful.

Creating a database file

To create a new SQLite database, you need to pass an instance of the File object to the
class flash.data.SQLConnection. The latter can open the connection to the given File
instance in either synchronous or asynchronous modes (similar to performing I/O with
files). If the physical file does not exist, it’ll be created; otherwise, the SQLConnection
object will just open the database file.

If you open the connection in synchronous mode, do it inside the try/catch block to
perform error processing if something goes wrong (Example 9-3).

Example 9-3. Connecting to the local database

var connection:SQLConnection = new SQLConnection();
var dbFile:File = File.applicationStorageDirectory.resolvePath("myLocal.db");
try{
 connection.open(dbFile);
 } catch(err:SQLError){
 Alert.show(err.details,
 "Can't connect to the local database");
}

The function open() can be used with a number of arguments, and one of them can
specify an encryption key, which will be used for encrypting data in the specified da-
tabase file.

In the case of an asynchronous connection, you’ll add SQLEvent.OPEN and
SQLEvent.ERROR listeners and write the success and error processing code in separate
event handlers.

Working with Files | 455

http://tinyurl.com/bbq4dj

Although using a synchronous connection prevents the user from working with the UI
until the database operation completes, this mode allows you to program several op-
erations as one transaction that can be either committed or rolled back in its entirety:

try{
 connection.begin();
 // several SQL statements can go here
 connection.commit();
} catch(err:SQLError){
 connection.rollback()
 ...
} finally {
 connection.close()
}

To create a table or execute any other SQL statements, you need to create an instance
of the SQLStatement object, assign a SQL statement to its property text, pass it an in-
stance of an opened SQLConnection, and call the function execute. For instance, Exam-
ple 9-4 creates a table called visit_schedule; for illustration purposes, the code uses an
asynchronous mode with event listeners.

Example 9-4. Creating a table in the local database

var ddl: SQLStatement = new SQLStatement();
 ddl.sqlConnection=connection;
 ddl.text="CREATE TABLE IF NOT EXISTS visit_schedule (" +
 "id INTEGER PRIMARY KEY AUTOINCREMENT,"+
 "salesman_id INTEGER,"+
 "address_id INTEGER,"+
 "scheduled_date DATE) ";
 ddl.addEventListener(SQLEvent.RESULT, onTableCreated);
 ddl.addEventListener(SQLErrorEvent.ERROR, onSQLFault);

 try{
 ddl.execute();
 } catch(err:SQLError){
 Alert.show(err.details,"Can't create table visit_schedule");
 }

 private function onTableCreated(event:SQLEvent):void{
 Alert.show("Table visits created", "Success");
 }

 private function onSQLFault(event:SQLEvent):void{
 Alert.show("SQL failed: ");
 }

Now add a new row to the table visit_schedule (Example 9-5).

Example 9-5. Inserting into a table in the local database

var ddl: SQLStatement = new SQLStatement();
 ddl.sqlConnection=connection;
 ddl.text="INSERT INTO visit_schedule (salesman_id,address_id,scheduled_date)"

456 | Chapter 9: Working with Adobe AIR

+
 "VALUES (401, 2, '2009-01-09')";
 try{
 ddl.execute();
 Alert.show("Table visit_schedule populated", "Success");
 } catch(err:SQLError){
 Alert.show(err.details,"Can't insert into table visit_schedule");
 }

Note that we didn’t include the value for the ID column, as it has been declared with
the attribute AUTOINCREMENT.

It’s a good idea to have some kind of database administrator tool that will allow you
to work with the SQLite objects. Several different tools can give you a view into the
database; we use a simple Mozilla Firefox add-on called SQLite Manager, which you
can download from https://addons.mozilla.org/en-US/firefox/addon/5817. After you in-
stall SQLite Manager, it becomes a menu item under the Tools menu of the Firefox
browser. Figure 9-9 shows what SQLite Manager displays after executing the code in
Example 9-4s and 9-5.

Figure 9-9. Viewing data with SQLite Manager

To finish up this minitutorial on working with local databases from AIR, review Ex-
ample 9-6, which demonstrates how to select the data previously saved in the local
database.

You’ll be using the class SQLStatement as in Example 9-4, but this time for running SQL
SELECT. When the result of your query arrives, it can be extracted from SQLStatement
using the method getResult(), which returns an instance of the SQLResult object. The
latter stores the result as an array of Object instances in the variable data.

Working with Files | 457

https://addons.mozilla.org/en-US/firefox/addon/5817

At this point, you can either write a loop accessing the key/value pairs (table columns)
from the data array, or just wrap the entire array into an ArrayCollection and use it as
a data provider for a UI component such as DataGrid, List, or the like.

Example 9-6. Querying the local database

var sql: SQLStatement = new SQLStatement();
sql.sqlConnection=connection;
sql.text="select salesman_id,address_id,
 scheduled_date from visit_schedule";
try{
 sql.execute();
 var result:SQLResult = sql.getResult();
 var numRows:int = result.data.length;

 for (var i:int = 0; i < numRows; i++) {
 var output:String = "";
 for (var columnName:String in result.data[i]) {
 output += columnName + ": " + result.data[i][columnName] + "; ";
 }
 trace("row[" + i.toString() + "]\t", output);
 }

} catch(err:SQLError){
 Alert.show(err.details,"Can't retrieve data from visit_schedule");
}

Example 9-6 demonstrates data retrieval in synchronous mode. It will output column
names and their values.

To see how all these snippets work together, review Example 9-7, which contains the
code of the application shown in Figure 9-10.

Figure 9-10. Running the WorkingWithDB application

The first button-click creates a table visit_schedule in the local database. Click the sec-
ond button to insert one row in this table, and the third to retrieve the data from
visit_schedule and populate the data grid.

458 | Chapter 9: Working with Adobe AIR

Example 9-7. WorkingWithDB.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="openConnection()">

<mx:Script>
 <![CDATA[
 import mx.collections.ArrayCollection;
 import flash.data.SQLConnection;
 import flash.filesystem.File;
 import mx.controls.Alert;
 import flash.errors.SQLError;

 var connection: SQLConnection;

 [Bindable]
 var theData:ArrayCollection;

 // Open connection to local DB
 private function openConnection():SQLConnection {
 connection = new SQLConnection();
 var dbFile:File =
 File.applicationStorageDirectory.resolvePath("myLocal.db");
 try{
 connection.open(dbFile);
 } catch(err:SQLError){
 Alert.show(err.details,"Can't connect to the local database");
 }
 return connection;
 }

 // populate the table in asynchronous mode
 private function createTable():void{
 var ddl: SQLStatement = new SQLStatement();
 ddl.sqlConnection=connection;
 ddl.text="CREATE TABLE IF NOT EXISTS visit_schedule (" +
 "id INTEGER PRIMARY KEY AUTOINCREMENT," +
 "salesman_id INTEGER,"+
 "address_id INTEGER,"+
 "scheduled_date DATE) ";
 ddl.addEventListener(SQLEvent.RESULT, onTableCreated);
 ddl.addEventListener(SQLErrorEvent.ERROR, onSQLFault);
 ddl.execute();
 }

 private function onTableCreated(event:SQLEvent):void{
 Alert.show("Table visit_schedule created", "Success");
 }

 private function onSQLFault(event:SQLEvent):void{
 Alert.show("SQL failed: ");
 }

 // populate the table in synchronous mode
 private function populateTable():void{

Working with Files | 459

 var ddl: SQLStatement = new SQLStatement();
 ddl.sqlConnection=connection;
 ddl.text="INSERT INTO visit_schedule " +
 " (salesman_id,address_id,scheduled_date)" +
 " VALUES (401, 2, '2009-01-09')";
 try{
 ddl.execute();
 Alert.show("Table visit_schedule populated", "Success");
 } catch(err:SQLError){
 Alert.show(err.details,"Can't insert into table visit_schedule");
 }
 }

 // retrieve the data from the table visit_schedule
 // into an ArrayCollection
 private function retrieveVisitSchedule():void{
 var sql: SQLStatement = new SQLStatement();
 sql.sqlConnection=connection;
 sql.text="select salesman_id, address_id,scheduled_date from " +
 "visit_schedule";
 try{
 sql.execute();
 var result:SQLResult = sql.getResult();
 theData=new ArrayCollection(result.data);
 } catch(err:SQLError){
 Alert.show(err.details,"Can't retrieve data from visit_schedule");
 }
 }
]]>
</mx:Script>
 <mx:Button x="368" y="21" label="Retrieve" click="retrieveVisitSchedule()"/>
 <mx:Button x="20" y="21" label="Create Table visit_schedule"
click="createTable();"/>
 <mx:Button x="234" y="21" label="Insert Data" click="populateTable();"/>
 <mx:DataGrid dataProvider="{theData}" x="20" y="51" width="423" height="140">
 <mx:columns>
 <mx:DataGridColumn dataField="salesman_id" width="100"/>
 <mx:DataGridColumn dataField="scheduled_date" width="200"/>
 </mx:columns>
 </mx:DataGrid>
</mx:WindowedApplication>

This example should give you an idea of how you can work with SQLite from AIR. This
was not a comprehensive tutorial, though, and we encourage you to read the AIR
product documentation to get a better understanding of how to work with a local
database in AIR.

To learn more about the SQL syntax of the SQLite DBMS, refer to its product docu-
mentation at http://www.sqlite.org.

In the next sections, you’ll automate working with a SQLite database to create a data
synchronization solution for an example application called PharmaSales. This appli-
cation will offer you a solution for data synchronization of AIR/BlazeDS and will illus-
trate how to monitor the network status and use the Google Maps API.

460 | Chapter 9: Working with Adobe AIR

http://www.sqlite.org

PharmaSales Application
Adobe AIR offers a data synchronization solution based on Data Management Services
for those who own licenses of LiveCycle Data Service ES 2.6. This solution is described
at the InsideRIA blog at http://tinyurl.com/6fa254.

But application developers who use an open source BlazeDS don’t have any generic
way of setting such data synchronization process. This section offers a smart compo-
nent called OfflineDataCollection that’s based on the DataCollection object described
in Chapter 6. This component will take care of the data synchronization for you.

OfflineDataCollection is part of the Clear Toolkit’s component library clear.swc. You’ll
see how to use it while reviewing a sample PharmaSales application that supports the
sales force of a fictitious pharmaceutical company called Acme Pharm.

This application will have two types of users:

• A salesperson visiting doctors’ offices trying to persuade doctors to use the com-
pany’s latest drug, called Xyzin

• The Acme Pharm dispatcher who schedules daily routes for each salesperson

The corporate database schema supporting PharmaSales will look like Figure 9-11 (for
simplicity, there are no relationships between tables).

Figure 9-11. The PharmaSales database model

Every morning a salesman starts the PharmaSales application, which connects to the
corporate database (MySQL) and automatically loads his visit schedule for the day from
the table visit_schedule. At this point, the data is being loaded into a local database
(SQLite) that exists on salesman’s laptop. The database will be automatically created
on the first run of the application. The salesman’s laptop has to be connected to the
Internet.

PharmaSales Application | 461

http://tinyurl.com/6fa254

While visiting a particular doctor’s office, the salesman uses the PharmaSales applica-
tion to take notes about the visit. In this case, the salesman’s laptop is disconnected
from the Internet and all the records about visitations are saved in the local database
only. As soon as Sal, the salesman, starts this application in connected mode, the local
data with the latest visit information should be automatically synchronized with the
corporate database.

To help the salesman in finding doctors’ offices on the road, the application will be
integrated with Google Maps.

Installing PharmaSales
For testing the PharmaSales application, you’ll need the following software installed:

• Java development kit version 1.5 or higher

• Eclipse JEE 3.3 or higher with the Flash Builder 3 plug-in

• Apache Tomcat Servlet container

• MySQL Server 5 DBMS

In Eclipse, import the PharmaSales application; it comes as two projects:
air.offline.demo, which can be used in connected or disconnected mode by a salesper-
son, and air.offline.demo.web, which is used by the Acme Pharm dispatcher in con-
nected mode only.

If after importing the project you see an Unbound JDK error, go to the
properties of the air.offline.demo.web project, select the option Java
Build Path → Libraries, remove unbound JDK, select Add Library and
point at the directory where your JDK is installed, for example C:\Pro-
gram Files\Java\jdk1.6.0_12.

To simplify the installation, create a C:\workspace soft link pointing at your Eclipse
workspace directory as described in the section “Preparing for Team Work” in Chap-
ter 4. For example, if your workspace is located at D:\myworkspace, the junction utility
command will look like this:

junction c:\workspace d:\myworkspace

The PharmaSales Application for Dispatchers
The air.offline.demo.web project has a folder db that contains the file database.sql,
which is a DDL script for creation of sample pharma database in MySQL Server.
Download the MySQL GUI tools, create the database and the user dba with the pass-
word sql. Run these scripts and grant all the privileges to the dba user.

462 | Chapter 9: Working with Adobe AIR

The easiest way to create this sample database is to open a command window and run
the mysql utility entering the right user ID and password for the user root. The following
line is written for the user root with the password root, assuming that the file data-
base.sql is located in the same directory as MySQL:

mysql -u root -p root < database.sql

The air.offline.demo.web project also has the file pharma.properties in the .settings di-
rectory with the database connectivity parameters. If you created the pharma database
under a different user ID than dba, modify the user and the password there accordingly.

If you didn’t run the Café Townsend (the CDB version) example from Chapter 1, create
a new server in the Eclipse JEE IDE by selecting File → New Server and point it to your
Tomcat installation. Add the project to the Tomcat server in Eclipse IDE and start the
server.

If you are not willing to install and run this application on your com-
puter, you can instead watch a screencast that shows the process of
configuring and running the PharmaSales application, which is available
at http://www.myflex.org/demos/PharmaAir/PharmaAir.html.

The Acme Pharm’s dispatcher is the only user of the application VisitSchedules.mxml
(the Flash Builder’s project air.offline.demo.web). Its main window allows scheduling
new visits and viewing existing visits for each salesperson (Figure 9-12).

Figure 9-12. Viewing visit schedules

PharmaSales Application | 463

http://www.myflex.org/demos/PharmaAir/PharmaAir.html

Click the Add button to open another view and schedule a new visit for any salesperson
(Figure 9-13).

Figure 9-13. Scheduling a new visit

Scheduled visits are saved in the central MySQL Server database in the table
visit_schedule, and each time the salesperson logs on to the system from her laptop,
her visits are automatically downloaded to the local SQLite DBMS.

We won’t review all the code of this application; it was generated by Clear Data Builder
similarly to Café Townsend, as described in Chapter 1. CDB has generated this appli-
cation based on the abstract Java class VisitSchedule shown in Example 9-8.

Example 9-8. VisitSchedule.java

package com.farata.demo.pharmasales;

import java.util.List;

/**
 * @daoflex:webservice
 * pool=jdbc/pharma
 */
public abstract class VisitSchedule {
 /**
 * @daoflex:sql
 * pool=jdbc/pharma
 * sql=:: SELECT
 * visit_schedule.id as id,
 * visit_schedule.salesman_id as salesman_id,
 * visit_schedule.address_id as address_id,
 * visit_schedule.scheduled_date as scheduled_date,
 * CONCAT(salesmen.fname, " ", salesmen.lname) as fullname,
 * CONCAT(addresses.addr_line_1, ", ", addresses.city, ", ",
 addresses.state) as fulladdress,
 * visits.comments as comments

464 | Chapter 9: Working with Adobe AIR

 * FROM (visit_schedule LEFT JOIN visits ON visit_schedule.id =
 visits.visit_schedule_id), salesmen, addresses
 * WHERE
 * visit_schedule.salesman_id = salesmen.id AND
 * visit_schedule.address_id = addresses.id
 *
 * ::
 * transferType=VisitScheduleDTO[]
 * keyColumns=id, salesman_id, address_id, scheduled_date
 * updateTable=visit_schedule
 */
 public abstract List getVisitSchedules();

 /**
 * @daoflex:sql
 * pool=jdbc/pharma
 * sql=:: SELECT
 * visit_schedule.id as id,
 * visit_schedule.salesman_id as salesman_id,
 * visit_schedule.address_id as address_id,
 * visit_schedule.scheduled_date as scheduled_date,
 * CONCAT(salesmen.fname, " ", salesmen.lname) as fullname,
 * CONCAT(addresses.addr_line_1, ", ", addresses.city, ", ",
 addresses.state) as fulladdress,
 * visits.comments as comments
 * FROM (visit_schedule LEFT JOIN visits ON visit_schedule.id =
 visits.visit_schedule_id), salesmen, addresses
 * WHERE
 * visit_schedule.salesman_id = salesmen.id AND
 * visit_schedule.address_id = addresses.id AND
 * CONCAT(salesmen.fname, " ", salesmen.lname)=:fullName
 * ::
 * transferType=VisitScheduleDTO[]
 * keyColumns=salesman_id, address_id, scheduled_date
 * updateTable=visit_schedule
 */
 public abstract List getVisitSchedulesBySalesman(String fullName);

}

The generated Java code that implements the methods declared in the abstract class in
the example is located in the project air.offline.demo.web in the Java file Resources
\Libraries\Web App Libraries\services-generated.jar. You need to open the Eclipse Java
perspective to see this file.

The salesman and address drop-downs were populated using resources described in
Chapter 6. AddressComboResource.mxml (Example 9-9) populates the address
drop-down.

Example 9-9. ComboBoxResource.mxml

<?xml version="1.0" encoding="utf-8"?>
<resources:ComboBoxResource
 xmlns:resources="com.farata.resources.*"

PharmaSales Application | 465

 width="240"
 dropdownWidth="240"
 destination="com.farata.demo.pharmasales.Address"
 keyField="id"
 labelField="fulladdress"
 autoFill="true"
 method="getAddressesCombo"
 >
</resources:ComboBoxResource>

The component SalesmanComboResource.mxml (Example 9-10) takes care of the sales-
man drop-down.

Example 9-10. SalesmanComboBoxResource.mxml

<?xml version="1.0" encoding="utf-8"?>
<resources:ComboBoxResource
 xmlns:resources="com.farata.resources.*"
 width="240"
 dropdownWidth="240"
 destination="com.farata.demo.pharmasales.Salesman"
 keyField="id"
 labelField="fullname"
 autoFill="true"
 method="getSalesmenCombo"
 >
</resources:ComboBoxResource>

Now you’re ready to get into the nitty-gritty details of the project air.offline.demo, which
is used by salespeople and contains the code for monitoring network connectivity, data
synchronization, and integration with Google Maps.

The PharmaSales Application for Salespeople
The PharmaSales application starts with a logon screen (Figure 9-14) that requires the
user to enter a valid full name to retrieve the schedule for that person (the password is
irrelevant here).

Just to double-check that the newly inserted schedule gets downloaded to the client’s
computer, log on as a salesperson who has scheduled visits.

Detecting Network Availability
Note the two round indicators at the bottom of the logon screen that show both the
network and the application server statuses. There are two reasons why an AIR appli-
cation might not be able to connect to its server-side components: either there is no
connection to the network or the application server doesn’t respond. Take a look at
how an AIR application can detect whether the network and a URL resource are
available.

466 | Chapter 9: Working with Adobe AIR

Any AIR application has access to a global object called
flash.desktop.NativeApplication. This object has a number of useful properties and
methods that can give you runtime access to the application descriptor, provide infor-
mation about the number of the opened windows, and also provide other application-
wide information.

You may want to get familiar with yet another useful class called
flash.system.System. For one thing, this class has a method gc() that
forces the garbage collector to kick in to avoid memory leaks in your
AIR application.

To catch a change in the network connectivity, your application should check the
NativeApplication’s property nativeApplication, which points to an object dispatch-
ing events when the network status changes. Your application can almost immediately
detect a change in the connectivity by listening to the Event.NETWORK_CHANGE event as
shown here:

flash.desktop.NativeApplication.nativeApplication.addEventListener(
 Event.NETWORK_CHANGE, onNetworkChange);

Figure 9-14. The PharmaSales logon screen

PharmaSales Application | 467

Unfortunately, this event may be triggered with a 10- to 15-second delay after the net-
work status changes, and it does not bear any specific information about the current
status of the network. This means that after receiving this event, you still need to test
the availability of a specific network resource that your application is interested in.

The PharmaSales application uses Google Maps to help salespeople find
the doctors’ offices they need to visit. Hence if the network is not avail-
able, the application would lose the ability to work with maps.goo-
gle.com and will have to switch to Plan B, discussed later in the section
“Integrating with Google Maps” on page 486.

If you check the library path of a Flash Builder AIR project, you’ll find there a library
servicemonitor.swc, which includes SocketMonitor and URLMonitor classes. These classes
can monitor availability of a specific socket or URL resource.

You can start monitoring the status of a specific HTTP-based resource by calling
URLMonitor.start() and periodically checking the property URLMonitor.available.

Example 9-11 is the complete code of the NetworkStatus.mxml component, which
monitors both the status of the network (http://maps.google.com) and the Pharma-
Sales application server and displays either a red or green light depending on the health
of the corresponding resource.

Example 9-11. Monitoring network status: NetworkStatus.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:ControlBar xmlns:mx="http://www.adobe.com/2006/mxml" horizontalAlign="left"
width="100%" creationComplete="onCreationComplete()" height="55">
 <mx:Canvas width="200" height="55">
 <mx:Label text="Server status:"/>
 <mx:Image id="serverStatusIcon" x="125" source="{serverConnected ?
 'assets/connected.gif' : 'assets/disconnected.gif'}"/>
 <mx:Label text="Google maps status: " y="26"/>
 <mx:Image id="googleMapsStatusIcon" x="125" y="26"
 source="{googleMapsConnected ? 'assets/connected.gif' :
 'assets/disconnected.gif'}"/>
 </mx:Canvas>
 <mx:Script>
 <![CDATA[
 import air.net.URLMonitor;
 import mx.messaging.config.ServerConfig;

 //Monitor connection status every second
 private static const TIMER_INTERVAL:int=1000;
 private static var _googleMapsURLMonitor:URLMonitor;
 private static var _serverURLMonitor:URLMonitor;

 public function get googleMapsConnected():Boolean{
 return _googleMapsURLMonitor && _googleMapsURLMonitor.available;
 }

468 | Chapter 9: Working with Adobe AIR

http://maps.google.com

 public function get serverConnected():Boolean{
 return _serverURLMonitor && _serverURLMonitor.available;
 }

 public function onCreationComplete():void{

 if (_googleMapsURLMonitor == null){
 initGoogleMapsURLMonitor();
 }
 _googleMapsURLMonitor.addEventListener(StatusEvent.STATUS,
 showGoogleMapsStatus);

 if (_serverURLMonitor == null){
 initServerURLMonitor();
 }
 _serverURLMonitor.addEventListener(StatusEvent.STATUS,
 showServerStatus);
 }

 private function initGoogleMapsURLMonitor():void{
 var request:URLRequest=new
 URLRequest("http://maps.google.com/");
 request.method="HEAD";
 _googleMapsURLMonitor=new URLMonitor(request);
 _googleMapsURLMonitor.pollInterval=TIMER_INTERVAL;
 _googleMapsURLMonitor.start();
 }

 private function initServerURLMonitor():void{
 var xml:XML=ServerConfig.serverConfigData;
 var channels:XMLList=xml.channels.channel.(@id == "my-amf");
 var channelConfig:XML=channels[0];
 var uri:String=
 channelConfig.endpoint[0].attribute(ServerConfig.URI_ATTR).toString();
 _serverURLMonitor=new URLMonitor(new URLRequest(uri));
 _serverURLMonitor.pollInterval=TIMER_INTERVAL;
 _serverURLMonitor.start();
 }

 private function showServerStatus(evt:StatusEvent):void{
 serverStatusIcon.source=_serverURLMonitor.available ?
 "assets/connected.gif" : "assets/disconnected.gif"
 }

 private function showGoogleMapsStatus(evt:StatusEvent):void {
 googleMapsStatusIcon.source=_googleMapsURLMonitor.available ?
 "assets/connected.gif" : "assets/disconnected.gif"
 }
]]>
 </mx:Script>
</mx:ControlBar>

In Example 9-11, the network status is being checked as often as specified in the polling
interval:

PharmaSales Application | 469

_googleMapsURLMonitor.pollInterval=TIMER_INTERVAL;

The NetworkStatus component checks the health of an HTTP resource using the
URLMonitor object that listens to StatusEvent in the function initNetwor
kURLMonitor(). Based on our experience, the pollInterval does not guarantee that no-
tifications of connectivity changes will arrive at the intervals specified in the TIMER_INTER
VAL constant.

As an alternative, you can create a Timer object and check the value of
URLMonitor.available in the timer’s event handler function. If you decide to go this
route, keep in mind that it has additional overhead, which comes with any timer object.

Example 9-11 demonstrates yet another useful technique to specify the URI of the
network resource without the need to hardcode it in the program as is done in the
method initNetworkURIMonitor():

new URLRequest('http://maps.google.com/')

The chances that the URL of Google Maps will change are rather slim. But the URL of
the PharmaSales server will definitely be different, say, in development, QA, and pro-
duction environments. The function initServerURIMonitor() extracts the URI of the
server based on the information about the location of the AMF channel in the server-
config.xml of the JEE server that was specified during the creation of the Flex project.

This information is available inside the SWF file, and if your PharmaSales server runs
locally, the value of the uri variable from the method initServerURIMonitor() may look
as follows:

http://localhost:8080/air.offline.demo.web/messagebroker/amf

To test this component, you can emulate the network outage by physically unplugging
the network wire. To test whether the monitoring of the PharmaSales server works
properly, just stop the server where the Java portion of the air.offline.demo.web appli-
cation has been deployed (in our case, we were stopping the Apache Tomcat server
configured in Eclipse IDE).

After the Salesman Logs On
The PharmaSales application is used by salespeople. After a successful logon, the fol-
lowing code is invoked:

private function initCollections():void{

 visitCollection=new OfflineDataCollection("com.farata.demo.pharmasales.Visit",
 "getVisitsBySalesman", VisitDTO);
 visitCollection.addEventListener(PropertyChangeEvent.PROPERTY_CHANGE, showStatus);

 visitDataCollection=new OfflineDataCollection(
 "com.farata.demo.pharmasales.VisitData", "getVisitDataBySalesman",VisitDataDTO);

 fill_onClick();

470 | Chapter 9: Working with Adobe AIR

}

...
private function fill_onClick():void {
 visitDataCollection.fill(username.text);
 visitCollection.fill(username.text);
}

This code populates two collections (visitCollection and visitDataCollection) by
bringing the salesman’s (username.text) data from the server. For example, after logon,
Liz Anthony will see only her schedule of visits.

The visitCollection object will participate in data synchronization with a remote da-
tabase server, as it has to keep the table visits up to date.

The visitDataCollection object brings the data from the visit_schedule data plus the
comments field from the table visits. This collection doesn’t need be synchronized,
as the visit_schedule table is being taken care of by a dispatcher of the corporation
Acme Pharm.

You’ll get familiar with the code of the class OfflineDataCollection later in this chapter,
but for now suffice it to say that its function fill() will retrieve all the data from a Java
class that is configured in the remoting-config.xml file of BlazeDS (or LCDS).

For example, the following code creates an instance of OfflineDataCollection that’s
ready to work with the server-side destination com.faratasystems.demo.pharmasales.
Visit:

visitCollection = new
 OfflineDataCollection("com.farata.demo.pharmasales.Visit",
 "getVisitsBySalesman", VisitDTO)

In general, an application developer needs to decide which DTOs are to be saved in the
local storage and specify them while instantiating one or more
OfflineDataCollection objects.

The function initCollection() assigns an event listener to the visitCollection just to
display the current status of the data on the UI (e.g., the data is saved in the local
database).

The call of the method fill() on OfflineDataCollection gets converted by BlazeDS to
a server-side call to Java’s method getVisitBySalesman(), which returns instances of
the VisitDTO objects with the information about the visits of the salesperson. The first
argument of the OfflineDataCollection constructor is the name of the remote desti-
nation, the second one is the name of the method to call, and the third one is the type
of the ActionScript DTOs arriving to the client.

When the user logs on to the PharmaSales application, his computer doesn’t have any
local databases. The local database is being created during the first call to the method
fill(), described in the section on OfflineDataCollection.

PharmaSales Application | 471

Open your application storage directory after running the application for the very first
time, and you’ll find there a file called local.db (in Windows, it’s C:\Documents and
Settings\Administrator\Application Data\PharmaSales\Local Store). This database is not
a copy of all the tables of the remote database—it stores only the data arrived in the
form of DTOs from the server.

As you continue using the application, you’ll find yet another file in the same directory.
The file local.db.bak is a backup copy of the local.db file created when you modified
the data in a disconnected mode.

You’ll better understand when, how, and why these databases are created after reading
the next section of this chapter, which describes the class OfflineDataCollection. At
this point, just remember that after the method fill() is complete, you have two da-
tabases that store application-specific DTOs on your local computer.

When the user starts working with the application, he needs to be able to save and sync
the data with the remote server, which is done in the PharmaSales application in the
function onSave():

visitCollection.sync();
visitDataCollection.updateLocalDB(); // update visit comments
visitDataCollection.backUp();
visitDataCollection.resetState();

You sync only the data from the visitCollection here, as it represents the data from
the remote table visits.

The visitDataCollection object represents the remote table visit_schedule, which is
not being changed by the salesman and hence doesn’t need to be synchronized. You
call the function backup() here just to make the database tables supporting
visitDataCollection identical in the main and backup database.

Example 9-12 contains the complete code of the file PharmaSales.mxml. This applica-
tion was initially generated by Clear Data Builder, as explained in Chapter 1. In addition
to generating all the code for Flex and Java, it includes such functionality as master/
detail relationships.

When the user clicks on the visit row in the DataGrid, the detail screen where the sales-
man enters visit details opens up. This application uses the DataForm and
DataFormItem components described in Chapter 6.

The UI portion of the PharmaSales application contains a ViewStack component that
wraps the following views:

• Logon

• Grid with visits

• Visit details

• Google Map

472 | Chapter 9: Working with Adobe AIR

zaremba
Comment on Text
correct xref? chapter 3?

please change the ref to Chapter 3

Example 9-12. PharmaSales.mxml

<?xml version="1.0" encoding="UTF-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:fx="http://www.faratasystems.com/2008/components" width="800" height="600"
xmlns:controls="com.farata.controls.*" backgroundColor="white" xmlns:ns1="*">
 <mx:ViewStack id="vs" height="100%" width="100%">

 <!-- Logon view -->
 <mx:Canvas height="100%" width="100%">
 <mx:Panel title="Pharma Sales - Salesman" width="100%"
 verticalAlign="middle" horizontalAlign="center" height="100%"
 backgroundImage="assets/PillHand.png">
 <mx:Form>
 <mx:FormItem label="Username:" required="true">
 <mx:TextInput id="username" text="Liz Anthony" maxChars="16"/>
 </mx:FormItem>
 <mx:FormItem label="Password:" required="true">
 <mx:TextInput id="password" text="p455w0rd" maxChars="16"
 displayAsPassword="true"/>
 </mx:FormItem>
 </mx:Form>
 <mx:ControlBar horizontalAlign="right">
 <ns1:NetworkStatus/>
 <mx:Button id="logon" label="Logon" click="onLogon()"/>
 <mx:Button id="reset" label="Reset" click="onReset()"/>
 </mx:ControlBar>
 </mx:Panel>
 </mx:Canvas>

 <!-- Data grid view with visits -->
 <mx:Canvas height="100%" width="100%">
 <mx:Panel title="Pharma Sales - Salesman" width="100%" height="100%">
 <fx:DataGrid toolTip="Double click for details"
 doubleClick="onDoubleClick()" doubleClickEnabled="true"
 horizontalScrollPolicy="auto" width="100%" id="dg"
 dataProvider="{visitDataCollection}" editable="true" height="100%">
 <fx:columns>
 <fx:DataGridColumn dataField="fullname" editable="false"
 headerText="Salesman"/>
 <fx:DataGridColumn dataField="fulladdress"
 editable="false" headerText="Address" width="150"/>
 <fx:DataGridColumn dataField="scheduled_date" editable="false"
 headerText="Scheduled Date" itemEditor="mx.controls.DateField"
 editorDataField="selectedDate" formatString="shortDate"/>
 <fx:DataGridColumn dataField="comments" editable="false"
 headerText="Comments"/>
 </fx:columns>
 </fx:DataGrid>
 <mx:ControlBar horizontalAlign="right">
 <ns1:NetworkStatus id="network"/>
 <mx:Button enabled="{dg.selectedIndex != -1 &&
 (network.googleMapsConnected || hasMapImage())}"
 click="googleMap_onClick()" label="Google Map"/>
 <mx:Button enabled="{!visitCollection.commitRequired &&
 !visitCollection.syncRequired}"

PharmaSales Application | 473

 click="fill_onClick()" label="Retrieve"/>
 <mx:Button enabled="{ visitCollection.commitRequired ||
 visitCollection.syncRequired}" click="onSave()"
 label="{visitCollection.commitRequired?'Save':'Sync'}"/>
 <mx:Button click="vs.selectedIndex=0;" label="Log out"/>
 </mx:ControlBar>
 </mx:Panel>
 </mx:Canvas>

 <!-- Visit detail view -- >
 <mx:Canvas>
 <mx:Panel width="100%" height="100%" title="Visit Details">
 <fx:DataForm dataProvider="{dg.selectedItem}">
 <fx:DataFormItem dataField="fullname" label="Salesman:"
 enabled="false"/>
 <fx:DataFormItem dataField="fulladdress" label="Address:"
 enabled="false"/>
 <fx:DataFormItem dataField="scheduled_date" label="Scheduled
 Date:" formatString="shortDate" enabled="false"/>
 </fx:DataForm>
 <fx:DataForm dataProvider="{visit}" width="100%">
 <fx:DataFormItem dataField="visit_date" label="Visit Date:"
 formatString="shortDate"/>
 <fx:DataFormItem dataField="contact_name"
 label="Contact Name:" width="100%"/>
 <fx:DataFormItem dataField="comments" label="Comments:"
 width="100%">
 <mx:TextArea width="100%" height="100"/>
 </fx:DataFormItem>
 </fx:DataForm>
 <mx:ControlBar horizontalAlign="right">
 <ns1:NetworkStatus/>
 <mx:Button label="Back" click=
 "vs.selectedIndex=1;updateVisitSchedule(dg.selectedItem)"/>
 </mx:ControlBar>
 </mx:Panel>
 </mx:Canvas>

 <!-- Google Maps integration view-->
 <mx:Canvas>
 <mx:Panel width="100%" height="100%" title="Google Map">
 <maps:Map xmlns:maps="com.google.maps.*" id="map"
 mapevent_mapready="onMapReady(event)" width="100%" height="100%"
 key="ABQIAAAAthGneZS6I6ekX8SgzwL2HxSVN_sXTad_Y..."
 url="http://code.google.com/apis/maps/"/>
 <mx:ControlBar horizontalAlign="right">
 <ns1:NetworkStatus/>
 <mx:Button click="saveMap()" label="Save"/>
 <mx:Button click="vs.selectedIndex=1;" label="Back"/>
 </mx:ControlBar>
 </mx:Panel>
 </mx:Canvas>

 <!-- Saved Google map view-->
 <mx:Canvas>

474 | Chapter 9: Working with Adobe AIR

 <mx:Panel id="map_image" width="100%" height="100%"
 title="Google Map">
 <mx:Image id="saved_map" width="100%" height="100%"
 creationComplete="openMapImage()"/>
 <mx:ControlBar horizontalAlign="right">
 <ns1:NetworkStatus/>
 <mx:Button click="vs.selectedIndex=1;" label="Back"/>
 </mx:ControlBar>
 </mx:Panel>
 </mx:Canvas>
 </mx:ViewStack>

 <mx:Script>
 <![CDATA[
 import com.google.maps.overlays.Marker;
 import com.google.maps.InfoWindowOptions;
 import com.google.maps.LatLng;
 import com.google.maps.services.ClientGeocoder;
 import mx.graphics.codec.PNGEncoder;
 import com.google.maps.controls.ZoomControl;
 import com.farata.demo.pharmasales.dto.VisitDataDTO;
 import com.farata.demo.pharmasales.dto.VisitDTO;
 import com.farata.collections.OfflineDataCollection;
 import com.google.maps.services.GeocodingEvent;
 import mx.events.PropertyChangeEvent;

 [Bindable]
 public var visitDataCollection:OfflineDataCollection;
 [Bindable]
 public var visitCollection:OfflineDataCollection;
 [Bindable]
 public var visit:VisitDTO;

 private function onSave():void {
 visitCollection.sync();
 visitDataCollection.updateLocalDB();
 visitDataCollection.backUp();
 visitDataCollection.resetState();
 }

 private function onDoubleClick():void {
 if (dg.selectedItem){
 vs.selectedIndex=2;
 calculateVisit(dg.selectedItem);
 }
 }

 private function updateVisitSchedule(obj:Object):void {
 var dto:VisitDataDTO=obj as VisitDataDTO;
 dto.comments=visit.comments;
 }

 private function calculateVisit(obj:Object):void {
 var dto:VisitDataDTO=obj as VisitDataDTO;
 for(var i:int=0; i < visitCollection.length; i++){

PharmaSales Application | 475

 var visitDto:VisitDTO=visitCollection[i]as VisitDTO;
 if (dto.id == visitDto.visit_schedule_id) {
 visit=visitDto;
 return ;
 }
 }
 visit=new VisitDTO();
 visit.visit_schedule_id=dto.id;
 visitCollection.addItem(visit);
 }

 private function initCollections():void {
 visitCollection=new OfflineDataCollection(
 "com.farata.demo.pharmasales.Visit",
 "getVisitsBySalesman", VisitDTO);
 visitCollection.addEventListener(
 PropertyChangeEvent.PROPERTY_CHANGE, showStatus);
 visitDataCollection=new OfflineDataCollection(
 "com.farata.demo.pharmasales.VisitData",
 "getVisitDataBySalesman", VisitDataDTO);
 fill_onClick();
 }

 private function showStatus(evt:PropertyChangeEvent):void {
 if (evt.property == "statusMessage"){
 status=evt.newValue as String;
 }
 }

 private function fill_onClick():void {
 visitDataCollection.fill(username.text);
 visitCollection.fill(username.text);
 }

 private function googleMap_onClick():void {
 if (network.googleMapsConnected) {
 cursorManager.setBusyCursor();
 vs.selectedIndex=3;
 showAddress();
 }
 else {
 vs.selectedIndex=4;
 openMapImage();
 }
 }

 private function onLogon():void {
 initCollections();
 vs.selectedIndex=1;
 }

 private function onReset():void {
 username.text="Liz Anthony";
 }

476 | Chapter 9: Working with Adobe AIR

 private function onMapReady(event:Event):void {
 map.setZoom(20);
 showAddress();
 }

 private function deleteMap():void {
 var dto:VisitDataDTO=dg.selectedItem as VisitDataDTO;
 var file:File= File.applicationStorageDirectory.resolvePath(
 dto.fulladdress + ".png");
 if (file.exists){
 file.deleteFile();
 }
 }

 private function saveMap():void {
 deleteMap();
 var bd:BitmapData=new BitmapData(map.width, map.height);
 bd.draw(map);
 var pngEncoder:PNGEncoder=new PNGEncoder();
 var ba:ByteArray=pngEncoder.encode(bd);
 var dto:VisitDataDTO=dg.selectedItem as VisitDataDTO;
 var file:File=
 File.applicationStorageDirectory.resolvePath(
 dto.fulladdress + ".png");
 var fileStream:FileStream=new FileStream();
 fileStream.open(file, FileMode.WRITE);
 fileStream.writeBytes(ba);
 fileStream.close();
 status="Google map image is saved to '" + file.nativePath + "'";
 }

 private function openMapImage():void {
 if (saved_map && saved_map.initialized){
 var dto:VisitDataDTO=dg.selectedItem as VisitDataDTO;
 var file:File=
 File.applicationStorageDirectory.resolvePath(
 dto.fulladdress + ".png");
 saved_map.source=file.nativePath;
 map_image.title="Displaying '" + file.name + "'";
 }
 }

 private function hasMapImage():Boolean
 {
 var dto:VisitDataDTO=dg.selectedItem as VisitDataDTO;
 var file:File= File.applicationStorageDirectory.resolvePath(
 dto.fulladdress + ".png");
 return file.exists;
 }

 private function showAddress():void {
 if (map && map.initialized){
 var cg:ClientGeocoder=new ClientGeocoder();
 cg.addEventListener(
 GeocodingEvent.GEOCODING_SUCCESS, onGeocodeSuccess);

PharmaSales Application | 477

 var dto:VisitDataDTO=dg.selectedItem as VisitDataDTO;
 cg.geocode(dto.fulladdress);
 }
 }

 private function onGeocodeSuccess(event:GeocodingEvent):void{
 cursorManager.removeBusyCursor();
 var point:LatLng=event.response.placemarks[0].point as LatLng;
 var marker:Marker=new Marker(point);
 map.addOverlay(marker);
 map.setCenter(point);
 var dto:VisitDataDTO=dg.selectedItem as VisitDataDTO;
 var opt:InfoWindowOptions=new InfoWindowOptions();
 opt.drawDefaultFrame=true;
 opt.contentHTML=dto.fulladdress;
 marker.openInfoWindow(opt);
 }
]]>
 </mx:Script>
</mx:WindowedApplication>

OfflineDataCollection
The Clear component library includes a class
com.farata.collections.OfflineDataCollection, which is a descendant of DataCollec
tion, described in Chapter 6. The class OfflineDataCollection is responsible for per-
forming data synchronization between the local and remote databases.

If the network connection is available, the method fill() gets the data from the server
and the application creates the backup copy of the existing local database and creates
a fresh one:

public override function fill(... args):AsyncToken {
 var changes:Array=getChangesFromLocalDB();
 syncRequired=changes.length > 0;
 if (!commitRequired && !syncRequired) {
 var act:AsyncToken=invoke(method, args);
 act.method="fill";
 return act;
 }else{
 fillFromLocalDB();
 }
 return null;
}

This function starts with getting the data from the local database. If this is the very first
invocation, the array changes will be empty and no other function calls will be made.

If no modifications were made in the data grid with visit information and no un-
synchronized changes exist in the local database, this function will just retrieve the data
from the remote destination using DataCollection’s invoke() method.

478 | Chapter 9: Working with Adobe AIR

How does OfflineDataCollection know that there are local changes to be
synchronized? Each instance of OfflineDataCollection persists its data in a database
table. When the application calls the function OfflineDataCollection.backup(), it cop-
ies this table to a backup database.

Comparing the content of the corresponding tables in the main and backup databases
allows the application to find out whether the data is different, or in other words,
whether data synchronization is required.

If the network connection is not available, the method fill() will get the visits data
from the local database.

The class OfflineDataCollection uses a helper class
com.farata.collections.LocalDBHelper for all database operations. You can find the
source code of this class in the Clear Toolkit project com.farata.components at the
SourceForge code repository; see http://sourceforge.net/projects/cleartoolkit/.

When the connection is restored, the OfflineDataCollection object can synchronize
the data in both directions: from the local storage to the server and back.

The property commitRequired specifies whether the local data were modified and should
be synchronized with the server.

Example 9-13 contains the complete code of OfflineDataCollection.as. (Note that com-
ments and import statements were removed in the interest of space.)

Example 9-13. OfflineDataCollection.as

package com.farata.collections {

 [Event(name="result", type="mx.rpc.events.ResultEvent")]
 [Event(name="fault", type="mx.rpc.events.FaultEvent")]
 [Event(name="propertyChange", type="mx.events.PropertyChangeEvent")]

 [Bindable(event="propertyChange")]
 public class OfflineDataCollection extends DataCollection
 {
 private var _dtoClass:Class;
 private var _syncRequired:Boolean;

 public function OfflineDataCollection(destination:String=null,
 method:String=null, dtoClass:Class=null){

 this.destination=destination;
 this.method=method;
 this.dtoClass=dtoClass;
 }

 public function get syncRequired():Boolean
 {
 return _syncRequired;
 }

OfflineDataCollection | 479

http://sourceforge.net/projects/cleartoolkit/

 public function set syncRequired(value:Boolean):void{
 var oldValue:Boolean=_syncRequired;
 if (oldValue != value){
 _syncRequired=value;
 dispatchEvent(PropertyChangeEvent.createUpdateEvent(this,
 "syncRequired", oldValue, value));
 }
 }

 public function get dtoClass():Class{
 return _dtoClass;
 }

 public function set dtoClass(dtoClass:Class):void{
 _dtoClass=dtoClass;
 }

 public function set doFill(bFill:Boolean):void{
 if (bFill){
 fill();
 }
 }

 public override function fill(... args):AsyncToken{
 var changes:Array=getChangesFromLocalDB();
 syncRequired=changes.length > 0;

 if (!commitRequired && !syncRequired){
 var act:AsyncToken=invoke(method, args);
 act.method="fill";
 return act;
 }
 else {
 fillFromLocalDB();
 }
 return null;
 }

 public override function sync():AsyncToken {
 updateLocalDB();
 commitRequired = false;
 var act:AsyncToken=syncOfflineChanges();
 return act;
 }

 public function updateLocalDB():void {
 var conn:SQLConnection=LocalDBHelper.openDBConnection();
 try {
 for(var i:int=0; i < deletes.length; i++) {
 LocalDBHelper.deleteDTO(conn, destination, method,
 deletes[i].previousVersion);
 }
 for(i=0; i < inserts.length; i++){
 LocalDBHelper.insertDTO(conn, destination, method,
 inserts[i].newVersion);

480 | Chapter 9: Working with Adobe AIR

 }
 for(i=0; i < updates.length; i++) {
 LocalDBHelper.updateDTO(conn, destination, method,
 updates[i].previousVersion, updates[i].newVersion);
 }
 dispatchEvent(PropertyChangeEvent.createUpdateEvent(this,
 "statusMessage", "", "Local database is updated"));
 }
 finally {
 if (conn != null) {
 conn.close();
 }
 }
 }

 public function fillFromLocalDB():void {
 var conn:SQLConnection=LocalDBHelper.openDBConnection();
 source=LocalDBHelper.readDTOs(conn, destination, method, dtoClass);
 dispatchEvent(PropertyChangeEvent.createUpdateEvent(this,
 "statusMessage", "", "Retrieved from local database"));
 }

 public function backUp():void {
 LocalDBHelper.backUp(destination, method, dtoClass);
 syncRequired=false;
 }

 public override function resetState():void {
 super.resetState();
 commitRequired=false;
 }

 protected override function createRemoteObject():RemoteObject {
 var ro:RemoteObject=super.createRemoteObject();
 ro.addEventListener(ResultEvent.RESULT, onResult);
 return ro;
 }

 private function onResult(evt:ResultEvent):void {
 if (evt.token.method == "fill") {
 var dtos:Array=evt.result.source;
 if (dtos.length > 0) {
 var conn:SQLConnection=LocalDBHelper.openDBConnection();
 try {
 LocalDBHelper.createTable(conn, destination, method,
 dtos[0]);
 LocalDBHelper.clearTable(conn, destination, method,
 dtos[0]);
 for(var i:int=0; i < dtos.length; i++) {
 LocalDBHelper.insertDTO(conn, destination,
 method, dtos[i]);
 }
 }
 finally {
 if (conn != null) {

OfflineDataCollection | 481

 conn.close();
 backUp();
 }
 }
 }
 dispatchEvent(PropertyChangeEvent.createUpdateEvent(this,
 "statusMessage", "", "Retrieved from remote server"));
 }
 }

 protected override function ro_onFault(evt:FaultEvent):void {
 if (evt.token.method == "fill"){
 fillFromLocalDB();
 }
 }

 private function syncOfflineChanges():AsyncToken {
 var changeObjects:Array=getChangesFromLocalDB();
 if (changeObjects.length > 0) {
 var ro:RemoteObject=null;
 if (destination == null || destination.length == 0)
 throw new Error("No destination specified");

 ro=new RemoteObject();
 ro.destination=destination;
 ro.concurrency="last";
 ro.addEventListener(ResultEvent.RESULT,
 syncOfflineChanges_onResult);
 ro.addEventListener(FaultEvent.FAULT,
 syncOfflineChanges_onFault);
 ro.showBusyCursor=true;
 var operation:AbstractOperation=ro.getOperation(syncMethod);
 operation.arguments=[changeObjects];
 if ((operation is IContextOperation) && headers != null){
 var co:IContextOperation=IContextOperation(operation);
 co.context.headers=headers;
 }
 var act:AsyncToken=operation.send();
 return act;
 }
 return null;
 }

 private function syncOfflineChanges_onResult(event:ResultEvent):void{
 backUp();
 resetState();
 dispatchEvent(PropertyChangeEvent.createUpdateEvent(this,
 "statusMessage", "", "Saved on remote server"));
 }

 private function syncOfflineChanges_onFault(event:FaultEvent):void{
 var changes:Array=getChangesFromLocalDB();
 syncRequired=changes.length > 0;
 }

482 | Chapter 9: Working with Adobe AIR

 private function getChangesFromLocalDB():Array{
 var changeObjects:Array=new Array();
 var conn:SQLConnection=LocalDBHelper.openDBConnection();
 var newDtos:Array=LocalDBHelper.readDTOs(conn, destination,
 method, dtoClass);
 conn.close();
 conn=LocalDBHelper.openBackupDBConnection();
 var oldDtos:Array=LocalDBHelper.readDTOs(conn, destination,
 method, dtoClass);
 conn.close();
 var names:Array=null;
 if (oldDtos.length > 0){
 names=LocalDBHelper.getPropertyNames(oldDtos[0]);
 }
 else if (newDtos.length > 0){
 names=LocalDBHelper.getPropertyNames(newDtos[0]);
 }
 else{
 return changeObjects;
 }
 for(var i:int=0; i < oldDtos.length; i++) {
 var found:Boolean=false;
 for(j=0; j < newDtos.length; j++){
 if (oldDtos[i].uid == newDtos[j].uid){
 found=true;
 var changedProperties:Array=new Array();
 for(var k:int=0; k < names.length; k++){
 if (!compareObject(oldDtos[i][names[k]],
 newDtos[j][names[k]])){
 changedProperties.push(names[k]);
 }
 }
 if (changedProperties.length > 0){
 var changeObject:ChangeObject=new
 ChangeObject(ChangeObject.UPDATE, newDtos[j], oldDtos[i]);

 changeObject.changedPropertyNames=changedProperties;
 changeObjects.push(changeObject);
 }
 break;
 }
 }
 if (!found){
 changeObject=new ChangeObject(ChangeObject.DELETE,
 null, oldDtos[i]);
 changeObject.changedPropertyNames=names;
 changeObjects.push(changeObject);
 }
 }

 for(var j:int=0; j < newDtos.length; j++) {
 found=false;
 for(i=0; i < oldDtos.length; i++){
 if (oldDtos[i].uid == newDtos[j].uid){

OfflineDataCollection | 483

 found=true;
 break;
 }
 }
 if (!found){
 changeObject=new ChangeObject(ChangeObject.CREATE,
 newDtos[j], null);
 changeObject.changedPropertyNames=names;
 changeObjects.push(changeObject);
 }
 }
 return changeObjects;
 }

 private static function compareObject(obj1:Object,obj2:Object):Boolean{
 var buffer1:ByteArray=new ByteArray();
 buffer1.writeObject(obj1);
 var buffer2:ByteArray=new ByteArray();
 buffer2.writeObject(obj2);

 var size:uint=buffer1.length;
 if (buffer1.length == buffer2.length){
 buffer1.position=0;
 buffer2.position=0;

 while(buffer1.position < size){
 var v1:int=buffer1.readByte();
 if (v1 != buffer2.readByte()){
 return false;
 }
 }
 return true;
 }
 return false;
 }
 }
}

The function fillFromLocalDB() asks the LocalDBHelper to read the DTOs that were
saved in the local database:

source=LocalDBHelper.readDTOs(conn, destination, method, dtoClass);

The local database stores the DTOs’ data in tables. The names of the tables are formed
automatically by LocalDBHelper. It glues together the name of the destination, the
method, and the DTO. For example, if you look at the content of the local database
using SQLite Manager, you’ll see there the following tables (one table per instance of
OfflineDataCollection), as shown in Figure 9-15:

com_demo_pharmasales__Visit__getVisitBySalesman__VisitDTO

com_demo_pharmasales__VisitData_getVisitDataBSaleseman_VisitDatDTO

The function getChangesFromLocalDB() connects to both main and backup databases
and reads the DTOs that store the data for this OfflineDataCollection (table names

484 | Chapter 9: Working with Adobe AIR

are the same in both databases). Then, it finds the names of the DTOs’ properties and
compares their values. The uid value of DTOs in the main and backup databases never
changes, but the values of regular properties might differ if the user were working with
the application in the disconnected mode. If some property values are not the same,
data synchronization with the remote database is required.

The names of the local databases are hardcoded in the LocalDBHelper:
local.db and local.db.bak. This doesn’t cause any conflicts, as each AIR
application has its own storage directory with a unique name, and these
two databases are stored there.

The function creates a collection of ChangeObject instances, and each of them contains
the old and new values of the modified DTO. Collection of these ChangeObjects will be
sent to the server, and the rest of the processing will be handled in Java code, the same
way as was done in the CDB version of Café Townsend.

If the object exists only in the backup database, this means that the user deleted this
record, and this particular instance of ChangeObject will be marked as deleted and will
contain only the old DTO instance.

If the object exists only in the main database, this means that the user has inserted a
new record, and this particular instance of ChangeObject will be marked as created and
will contain only the new DTO instance.

On return from changesFromLocalDB(), the function fill() checks the values of
commitRequired (this property is derived from DataCollection; it signals that something

Figure 9-15. DTOs in the local cache

OfflineDataCollection | 485

has been changed on the client) and syncRequired (this property is specific to AIR
applications).

If no commit or synchronization is required, the fill() function will get the data from
the remote destination:

var act:AsyncToken=invoke(method, args);
act.method="fill";
return act;

When the data arrives from the server, the function onResult() is invoked. If this is the
very first invocation of the application, the main and the backup databases will be
created, and the table that stores the data for this DTO is populated. Then, the backup
copy of this table is created in the backup database.

If commit or synchronization is required, the function fillFromLocalDB() is invoked,
and the property source of DataCollection will get all the data. The user will see the
data if source is bound to a UI component:

source=LocalDBHelper.readDTOs(conn, destination, method, dtoClass);

The function sync() in OfflineDataCollection updates the local database and calls a
function to synchronize the local changes with the remote server:

updateLocalDB();
commitRequired = false; //we already saved the data locally
var act:AsyncToken=syncOfflineChanges();

The function syncOfflineChanges() creates an array of ChangeObject instances based
on the data from the local.db and sends it to the remote destination using Flex
RemoteObject. If remote data were successfully updated, the function syncOffline
Changes_onResult() will copy the data from local.db to local.db.bak to make them iden-
tical again.

Integrating with Google Maps
The PharmaSales application offers an additional convenience to the salespeople from
Acme Pharm: they can find the address of the medical office to visit without leaving
PharmaSales. The Google Maps API for Flash has proven to be pretty simple to use
with Flex and AIR.

You can find the detailed tutorial to this API at http://tinyurl.com/65ne8j and there’s no
need to repeat it here. But it’s worth highlighting some important concepts required to
understand how such AIR/Maps mashups can be created.

To integrate your application with Google Maps, you have to get a special Maps API
key from Google. Look for the following fragment in the source code of
PharmaSales.mxml to see how we used our key (obtain yours to run the PharmaSales
application):

<maps:Map xmlns:maps="com.google.maps.*" id="map"
mapevent_mapready="onMapReady(event)" width="100%" height="100%" key=

486 | Chapter 9: Working with Adobe AIR

http://tinyurl.com/65ne8j

"ABQIAAAAthGneZS6I6ekX8SgzwL2HxSVN_sXTad_Y81zCJbFz..."
url="http://code.google.com/apis/maps/"/>

The url property here is the one that’s used during the registration at Google for ob-
taining the API key.

Check the library path of the project air.offline.demo; it includes a file
map_flex_1_8c.swc, which supports communication between Flex/AIR applications
and Google Maps.

When the Map component is initialized, it dispatches the mapevent_mapready event, and
the application calls the function showAddress(), which gets the selected address from
the data grid, or to be more specific from its data provider, and asks the ClientGeo
coder to find the map of this address.

cg.geocode(dto.fulladdress);

When the map is found, the ClientGeocoder object receives the event
GeocodingEvent.GEOCODING_SUCCESS, and the function onGeocodeSuccess() displays the
map with a marker at the address location in the center:

private function onGeocodeSuccess(event:GeocodingEvent):void{
 cursorManager.removeBusyCursor();
 var point:LatLng=event.response.placemarks[0].point as LatLng;
 var marker:Marker=new Marker(point);
 map.addOverlay(marker);
 map.setCenter(point);
 var dto:VisitDataDTO=dg.selectedItem as VisitDataDTO;
 var opt:InfoWindowOptions=new InfoWindowOptions();
 opt.drawDefaultFrame=true;
 opt.contentHTML=dto.fulladdress;
 marker.openInfoWindow(opt);
}

The function onGeocodeSuccess() uses a helper class, InfoWindowOptions, from the
Google Maps API to display the address on the marker, as shown in Figure 9-16.

Even though the PharmaSales application may not always be connected to the Internet,
the salespeople need at least a static map of the area. Before hitting the road, a sales-
person can find the required map online, press the Save button, and save the map in a
local file as an image. The code of the function saveMap() is what enables this:

private function saveMap():void {
 deleteMap();
 var bd:BitmapData=new BitmapData(map.width, map.height);
 bd.draw(map);
 var pngEncoder:PNGEncoder=new PNGEncoder();
 var ba:ByteArray=pngEncoder.encode(bd);
 var dto:VisitDataDTO=dg.selectedItem as VisitDataDTO;
 var file:File=
 File.applicationStorageDirectory.resolvePath(
 dto.fulladdress + ".png");
 var fileStream:FileStream=new FileStream();
 fileStream.open(file, FileMode.WRITE);

OfflineDataCollection | 487

 fileStream.writeBytes(ba);
 fileStream.close();
 status="Google map image is saved to '" + file.nativePath + "'";
}

Figure 9-16. Real Google Maps view

If a salesperson selects a row in the visits data grid (dg.selectedItem) and clicks the
Google Maps button in disconnected mode, the openMapImage() function will display
the previously saved image of the map for the selected address (dto.fulladdress):

private function openMapImage():void {
 if (saved_map && saved_map.initialized){
 var dto:VisitDataDTO=dg.selectedItem as VisitDataDTO;
 var file:File=
 File.applicationStorageDirectory.resolvePath(
 dto.fulladdress + ".png");
 saved_map.source=file.nativePath;
 map_image.title="Displaying '" + file.name + "'";
 }
}

The title of the map will prompt the user that she is watching an image, not a live map.
Figure 9-17’s screenshot was taken in disconnected mode (the server status indicator
is green because we ran the Tomcat server on the local computer). The title of the view

488 | Chapter 9: Working with Adobe AIR

now reads “Displaying ‘12 Main St., Manville, NJ.png,’” which is the name of the local
file when the image of the map has been saved.

If the connection is available, the salesperson can enjoy working with the real Google
Maps website without leaving PharmaSales.

Figure 9-17. Saved map image

Summary
The main deliverable of this chapter is a solution for data synchronization of AIR/
BlazeDS applications. To better understand this solution, you reviewed the basics of
AIR 1.5 development. Now you have a reference implementation of the application
that may help you in building AIR-based systems—even if your users are not working
as salespeople for a pharmaceutical company. By the time this book will be printed,
AIR 2.0 will be released and we are sure that you’ll enjoy working with it.

In no way should you treat this chapter as a complete tutorial; your education in the
AIR development field has just begun.

Following is a laundry list of topics that you should get familiar with on your own:

Summary | 489

• <mx:HTML>, which is a component that allows you to build an AIR web browser in
several minutes

• AIR Updater; the class flash.desktop.Updater controls the updating of the appli-
cation installed on the client’s computer

• How to use the system clipboard from AIR applications

• The Text Layout framework, which is an extensible library for working with text
in Flash Player 10 and AIR 1.5: http://labs.adobe.com/technologies/textlayout/

• Local data encryption, which allows you to encrypt sensitive data, such as the user’s
password, and store it in the local SQLite file

• Seamless installation of AIR applications using badges

You can learn about these and other topics from the Adobe AIR 1.5 Cookbook (http://
oreilly.com/catalog/9780596522513) by David Tucker (O’Reilly), or visit the Adobe
AIR Developer Center at http://www.adobe.com/devnet/air/.

490 | Chapter 9: Working with Adobe AIR

http://labs.adobe.com/technologies/textlayout/
http://oreilly.com/catalog/9780596522513
http://oreilly.com/catalog/9780596522513
http://www.adobe.com/devnet/air/

CHAPTER 10

Developing Flex Applications for
LiveCycle ES (Enterprise Suite)

Good design can’t fix a broken business model.

—Jeffrey Veen

Adobe LiveCycle ES (Enterprise Suite) as an enterprise server platform is targeted at
automation of business processes. One example of a business process is a hardware
retail store that sells nails and hammers. The retailer orders the goods online from one
of the known suppliers. Assume that an explicit approval of the supplier is required for
each ordered item. Because the supplier wants to be able to fulfill all the orders, the
supplier attempts to predict the demand.

To that end, the supplier monitors the inventory and, when the level is beyond a certain
threshold, reorders the items from a manufacturer. The supplier’s orders also need to
be approved by the manufacturer. The activities between the companies occur in a
predefined sequence: order-approval-reorder-approval. On a more granular level,
within each company there is a certain business process as well: receiving orders, or-
dering materials and parts, production, quality assurance, invoicing, shipping, and so
forth.

Business process automation assumes software-based modeling of the process as well
as software-based enforcement of the model that ensures that the process activities are
consistently handled by the process participants: retailer, supplier, manufacturer, and
so forth. Often, such software is called workflow or business process management
(BPM) software.

Unlike other workflow products, LiveCycle ES features unparalleled integration with
PDF processing and Adobe Flex. Accordingly, the combination of Flex and LiveCycle
technologies becomes a natural choice for many enterprises that require productive
workflow solutions featuring a rich user experience.

491

This chapter focuses on how to use Flex to support human-centric business processes
in LiveCycle ES and on the most essential enterprise process management topics. After
a brief introduction of LiveCycle ES, the chapter illustrates two scenarios:

• How to build Flex applications that work in concert with a LiveCycle ES frontend
—LiveCycle Workspace. This scenario requires minimal development effort, but
it locks you to capabilities of the Workspace.

• How to embed LiveCycle ES functionality into your own Flex application. This
scenario assumes deeper involvement in the LiveCycle API and more coding, but
it opens unlimited integration opportunities.

By the end of this chapter, you will understand:

• How to extend LiveCycle ES with custom components

• How to support user and group management from the external enterprise
repository

• How to use LiveCycle ES events to synchronize the processes in the publisher/
subscriber style

This chapter was written about LiveCycle ES 8.2, because the version
branded as LiveCycle ES2 was not available at the time of this writing.
LiveCycle ES2 improves the productivity of developers in various work-
flows, substantially reducing the number of steps needed to populate a
form, design a parallel approval process, get attachments from an initial
task, and more. The Eclipse-based Workspace introduces a new con-
cept: the Application Model, which eliminates the need to separately
manage forms, processes, and assets. You now can deploy applications
without the need to leave the Workbench. Please refer to the latest Live-
Cycle ES2 documentation at http://www.adobe.com/products/livecycle.

Business Process Example: Vacation Request
In this simple scenario, a company employee requests a vacation. The manager must
approve or reject the request and the employee must acknowledge the decision, com-
pleting the process. In business process management lingo, the process assigns tasks:
to the manager (to review the incoming vacation request) and to the employee (to review
and acknowledge) the manager’s decision (Figure 10-1).

The diagram of the corresponding SimpleVacationProcess is presented in Fig-
ure 10-1. It has two user activities: Manager’s Review and Employee’s Review, each
requiring a custom UI (user interface) application to communicate the data between
the user and the process management software.

Figure 10-2 illustrates a sample UI that could be used for the manager’s review: name,
email, department, vacation type, and date range, which are all automatically comple-
ted prior to the manager’s review. The manager can append comments to the optional

492 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

http://www.adobe.com/products/livecycle

description field and pick either “approved” or “rejected” as the approval decision.
Finally, the manager clicks the Complete button to send the decision to the system.

The employee review/acknowledgment screen might look almost identical to Fig-
ure 10-2, except that the Approval Decision combo box would be disabled and the title
word “Approve” would yield to the humble “Review”. To communicate acknowledg-
ment, the employee would click Complete, indicating his awareness of the manager’s
decision.

Figure 10-1. Diagram of the SimpleVacationProcess

Figure 10-2. The UI of the vacation request approval

Business Process Example: Vacation Request | 493

But wait: how does the vacation request make it into the system in the first place?
Doesn’t the employee need a UI for that, too? Yes, of course. Figure 10-3 shows the
screen to submit the vacation request. By using the user’s login information, the system
might automatically initialize the employee name, email, and department. The em-
ployee specifies the vacation type and date range.

Figure 10-3. The UI of the vacation request submission

All three use cases are supported by a single Flex application, VacationRequest.swf,
discussed in detail later in this chapter. Make no mistake, however: the initial submis-
sion of the request is not a part of the process diagram. That’s right, from the process
management engine’s point of view, the process instance (for this specific request) starts
only after the request is submitted. Does it sound confusing? Well, think of it this way:
a process is a program with input parameters. If you start the process using an API, you
can pass hardcoded values, read them from the external files, and so forth. Alterna-
tively, the program can pop up a dialog box in front of the employee, forcing him to
enter the values.

Think of a web service with a method startProcess(vacationRequestData). The web
service is oblivious to preparation of the vacationRequestData. Imagine a user-friendly
software program that allows you to fill in a vacation request form and then initiates
the process instance by calling the web service. What might this software be in the case
of the LiveCycle ES? One option is to write a custom program from scratch; another is
to use LiveCycle Workspace ES, as explained in the next section.

Meet LiveCycle Workspace ES
Using the LiveCycle ES API, you can start the process instance, pull all tasks assigned
for a particular user, complete a task, forward it to another user, and so on. But APIs
do not help the end user. That is why almost any workflow product comes with an off-
the-shelf generic frontend that allows participants to use the workflow engine without
paying a dime to an API-savvy geek.

494 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Recognizing the universal need for such software, Adobe created a generic process
management frontend program called LiveCycle Workspace ES. It is written entirely in
Flex and its sources are part of the LiveCycle ES installation (later in the chapter, you
will learn how to rebuild the Workspace from scratch). Figure 10-4 illustrates the de-
fault look of the LiveCycle Workspace.

Figure 10-4. Default screen of the LiveCycle Workspace ES

Importantly, LiveCycle ES allows you, during the process design, to nominate a Flex
subapplication that the Workspace loads and activates whenever a user picks a partic-
ular task from the To Do list (otherwise called a queue), as shown in Figure 10-4.

At Farata Systems, we call these applications Flexlets. Once the Flexlet is loaded,
Workspace initializes it with the relevant process data. When the user is satisfied with
the data entered, she clicks Complete and Workspace transmits the data captured by
the Flexlet back to the process.

Figure 10-5 illustrates the task queue of Alex Pink, one of the example users automat-
ically configured by the turnkey installation of LiveCycle ES. Double-click the task line
to initiate the underlying Flexlet and review the vacation request issued by Rye Wood-
ard, another user, as shown in Figure 10-5.

Meet the Flexlet: Vacation Request
Take a look at Figure 10-6. It illustrates the state of the Workspace screen when Work-
space has loaded the SimpleVacationRequest Flexlet and added it to the Workspace’s
Display List under the Form tab. Notice two buttons added by the Workspace to the

Meet the Flexlet: Vacation Request | 495

control bar of the SimpleVacationRequest panel: a small Save button on the left, and
the Complete button on the right. The Save button preserves the draft of the incomplete
request for further use (accumulating under the user’s To Do list), and the Complete
button passes the request data to the process.

Also, notice the title of the form: Submit Vacation Request. It corresponds to the visual
state of the Workspace when the employee, Rye Woodard, enters the initial request
(to start the process). In particular, date fields appear enabled so that an employee can
enter the vacation period.

Figure 10-5. Task queue of a manager (Alex Pink)

Figure 10-6. Workspace with the activated Flexlet (SimpleVacationRequest.swf, employee’s view)

496 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Compare this screen with the one presenting the manager’s view, Figure 10-7, where
the manager, Alex Pink, makes the approval decision. The date fields are disabled, and
one extra control—the Approval Decision combo box—is on the form. Notice the
similarity between the screens to emphasize the reuse of the single Flexlet for different
users’ activities within the process.

In the earlier releases of LiveCycle, PDF forms were the main mode for capturing data
from the user. Flexlets are a step up from PDF forms, because they offer the user a rich
experience. However, despite the word “form,” a Flexlet may have nothing to do with
the form at all. All that a Flexlet is required to do is to accept an XML document from
the Workspace upon initialization and send it back when a user clicks Complete or
Save.

Again, note the most important difference between the two appearances of the Flexlet.
Figure 10-6 represents the collection of data from the employee that precedes the start
of the process. On the contrary, Figure 10-7 corresponds to the Manager’s Review ac-
tivity of the process (instance), which has already started.

Now that you are acquainted with the Workspace and Flexlets, let’s look at the broader
landscape of LiveCycle ES. After that, we’ll return to discussing the design of the
SimpleVacationRequest process and the matching Flexlet.

LiveCycle ES Architecture in a Nutshell
Architecturally, LiveCycle ES is an extendable service container and a set of tools to
use these services. From the functional point of view, LiveCycle ES services can be
grouped as foundation services and solution services.

Figure 10-7. Workspace with the activated Flexlet (SimpleVacationRequest.swf, manager’s view)

LiveCycle ES Architecture in a Nutshell | 497

Foundation services provide basic functionality such as querying or modifying a data-
base, reading and writing to the filesystem, sending and receiving messages from a JMS
queue, or sending and receiving emails.

Solution services relevant to this chapter are further grouped by LiveCycle ES as two
components:

• Process Management ES

• Data Services ES

Data Services is software that enables messaging between a Flex frontend and a Java
application server. It was known as Flex Data Services in the previous releases of Flex.
The services of the former component, Process Management ES, allow you to pro-
grammatically start an instance of the process, query tasks available for a given user,
complete the tasks, retry the stalled tasks or terminate them, and more. Importantly,
any business process that you design automatically becomes a new service, with a single
operation, invoke().

All current implementations of LiveCycle ES are built on top of JEE server technology
and require an EJB container. For the full list of LiveCycle ES 8.2 services, you can view
online references at http://help.adobe.com/en_US/livecycle/8.2/services.pdf.

The ecosystem of LiveCycle ES service components, tools, and technologies shown in
Figure 10-8 is from LiveCycle ES documentation. Don’t get overwhelmed with the
number of the diagram blocks, such as those for Forms ES, Digital Signatures ES, and
other solution components that deal exclusively with PDF technology; these are beyond
of the scope of this book.

Endpoints
Services hosted by LiveCycle ES get invoked through endpoints. You can call the services
using Java API and SOAP. On top of that, LiveCycle ES facilitates the invocation of
services by sending an email or by dropping a file in a so-called watched folder. The
service can have many different endpoints:

• EJB endpoint (otherwise called the Java endpoint)

• SOAP endpoint

• Email endpoint

• Watched folder endpoint

Notice the unfortunate terminology conflict between Flex and LiveCycle developers.
Flex developers know endpoints as channel-specific artifacts, such as the AMF end-
point or the HTTP endpoint. Meanwhile, LiveCycle ES folks think of the endpoints
per service. From the Flex perspective, LiveCycle ES endpoints look more like a Flex
destination, which in the Flex world is an order of magnitude smaller than an endpoint.

498 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

http://help.adobe.com/en_US/livecycle/8.2/services.pdf

For further convenience, LiveCycle ES supports a universal Flex remoting destination,
so you can invoke the service’s methods via the RemoteObject tag. This destination is
serviced by the MessageBroker of the web application remoting, deployed as a part of
LiveCycle ES installation with the following URL:

//<server>:<port>/remoting/messagebroker/amf

The previously mentioned (LiveCycle ES) endpoints are applicable to any service. As
mentioned already, any LiveCycle ES process is also a service, albeit with a single op-
eration—invoke(). To start a LiveCycle ES process through the LiveCycle Workspace
ES, you must add an additional TaskManager endpoint. Figure 10-9 shows a snapshot of
the LiveCycle administration UI after adding the TaskManager endpoint. The rest of the
endpoints get created for you automatically.

Custom Services
You are not limited to existing LiveCycle ES services. The component model of Live-
Cycle ES is easy to extend with custom services. Custom services are packaged and
deployed as JAR files. These JAR files are also known as data service components, each
carrying one or more services. Using Java you can write your own services, jar them
along with a component descriptor, and deploy them into LiveCycle ES.

For instance, if you need to query the status of the purchase order, you may use the
foundational JDBC service. Alternatively, you can write your own Java class with JDBC

Figure 10-8. LiveCycle ES ecosystem

LiveCycle ES Architecture in a Nutshell | 499

code and expose its public methods as operations of your custom service. Then, while
modeling the business process, you can seamlessly mix the services provided by Live-
Cycle ES with your own. Every business process is a service of itself, so processes can
invoke other processes.

Figure 10-10 illustrates the tree of LiveCycle ES components after FarataSam-
pleComponent.jar has been deployed and its services have been activated.

Tools
The important part of the LiveCycle ES ecosystem is its toolset. The Eclipse-based
Workbench gives you features such as visual design, deployment, and debugging of the
business processes as flow chart–type diagrams, in which operations of the LiveCycle
ES services appear as flow-chart building blocks (see Figure 10-11).

Your old pal Adobe Flash Builder, which is also based on Eclipse, is yet another Live-
Cycle ES tool. A custom Flex application can enable a user to start instances of a busi-
ness process; investigate tasks assigned for a particular user; and facilitate task com-
pletion, forwarding to another user, locking, and so on.

Figure 10-9. Endpoints of the SimpleVacationRequest process (service)

500 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

You also get a LiveCycle ES Administration Console (partially shown in Figure 10-2).
The current version of the Console is an upgrade of the previous HTML-based one,
with a few minor patches coded in Flex. This chapter explains relevant parts of the
Administration Console with regards to importing the sample processes, custom com-
ponents, and advanced user management.

Creating Flex Applications Enabled for LiveCycle Workspace ES
This section explains how to develop Flex subapplications compliant with LiveCycle
Workspace ES. As mentioned, we call these applications Flexlets. The Workspace ac-
tivates Flexlets only when required to do so by the human-centric process conditions,
which is why this chapter starts with describing the design of a sample process. For
information about configuring human-centric processes, see the LiveCycle Workbench
Help section at http://www.adobe.com/go/learn_lc_workbench and navigate to Creating
Processes → Designing Human-Centric Processes. Further reading on creating the Flex-
lets is available at http://help.adobe.com/en_US/livecycle/es/createflexapps.pdf.

Figure 10-10. The Components panel of the LiveCycle ES Workbench, with the installed
FarataSampleComponent

Creating Flex Applications Enabled for LiveCycle Workspace ES | 501

http://www.adobe.com/go/learn_lc_workbench
http://help.adobe.com/en_US/livecycle/es/createflexapps.pdf

Form Variable Declaration and Process Instantiation
When a human-centric process requires data entry from the participant, the workflow
software pops up a dialog window. In the case of LiveCycle ES, the dialog is a PDF form
or a Flexlet. From the programmer’s perspective, the outcome of the data entry is a
variable of the XML-based type Form. A Form variable carries the data and can, option-
ally, reference the SWF of the Flexlet that enables end users to pass the form data to
the Workspace. Do not forget that the Workspace passes similar form data to the Flexlet
to initialize it. In other words, the form data travels back and forth between the Flexlet
and the LiveCycle ES process, using the Workspace as a middleman. The Workspace
loads the Flexlet in two use cases:

• As part of interactive process instantiation: when a Form variable pointing to the
SWF file has been declared in the LiveCycle Workbench as the input variable of
the entire process

• As part of the task execution: when a Form variable pointing to the SWF file has
been mapped as input to the user activity (for example, the assignTask() operation
of the UserService service)

Figure 10-11. LiveCycle ES Workbench with the SimpleVacationRequest process diagram

502 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Figure 10-12. Input Form variable requestData gets declared to force Workspace to interact with the
VacationRequest.swf Flexlet

When you assign a SWF URL to the Form variable in the Workbench, the default setting
keeps the SWF file in the LiveCycle resources repository. Figure 10-12 shows the
requestData Form variable declared within the LiveCycle Workbench. The variable is
defined as the input variable of the process, and its URL property points to the
VacationRequest.swf file, located under the Farata folder of the repository. Stepping
ahead, the data that this Form variable carries through the process looks similar to the
following XML document:

<vacationRequest>
 <requestId>8CE28354-E831-11E8-76EB-4DE38A29F087</requestId>
 <decision>approved</decision>
 <duration>7</duration>
 <isEmployee>true</isEmployee>
 <employeeName>Rye Woodard</employeeName>
</vacationRequest>

Once you declare a Flexlet-pointing Form variable as a process input, you should also
add a TaskManager endpoint, using the Administration Console. This enlists the
process for the end users of the Workspace. It also mandates the Workspace to pop up
the Flexlet prior to invoking the actual process instance. In this scenario, the Workspace

Creating Flex Applications Enabled for LiveCycle Workspace ES | 503

will start displaying the SimpleVacationRequest process card. A click on that process
card will bring up the Flexlet initialized for the currently logged-in employee.

Flexlet Mapping for User Activity
An employee needs a Flexlet to start the process, and he, as well as the manager, needs
a Flexlet to review the request along the way. Accordingly, you can declare a Form
variable as input to the entire process, and you also can declare a Form variable as an
input to the particular user activity (the UserService.assignTask() operation).

Two activities in the process, the Manager’s Review and the Employee’s Review, map
a Flexlet-based Form variable as an input form variable. In fact, both map the one and
only Form variable of our process, the requestData variable. Figure 10-13 shows the
input form variable mapping for the Manager’s Review activity. The initial user selected
for this activity is Alex Pink, who has to approve vacation requests (shown in
Figure 10-9).

Similar to how the process input variable of type Form compels the Workspace to acti-
vate the Flexlet when the process instantiates, the mapping of the Form variable as an
input to the particular user activity triggers the loading and activation of the Flexlet
when the user selects the task from the To Do list. In our scenario, Workspace will
bring up the Flexlet referenced by the Form variable requestData. Surprise: it’s the same
Flexlet assigned to start the process.

Controlling the View State of the Reusable Flexlet from the Process
Whether you base your process on many different Flexlets or reuse one .swf file is up
to you. We find the latter to be a convenient approach, because you can develop Flex
applications to accommodate different process participant roles through different view
states.

The process diagram has two SetValue.execute() activities:

• Prepare a Manager’s Review

• Prepare an Employee’s Review

The value of the isEmployee node of requestData is set to a value of false in Prepare
Manager’s Review and to true in Prepare Employee’s Review. Internally, the code of
the Flexlet displays different views based on the value of the node. Figure 10-14 shows
the assignment of the isEmployee node to Prepare Manager’s Review.

Workspace: Flexlet Conversation Basics
The conversation between the Flexlet and the Workspace that loaded it is entirely event-
based. The Workspace dispatches the following events:

504 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

formInitialData
This event is being sent in response to the Flexlet signaling to the Workspace that
it has finished loading (see the formReady event in the next list).

formSaveDataRequest
This event is sent when the user clicks Save.

formSubmitDataRequest
This event is sent when the user clicks Complete.

It is mandatory for the Flexlet to handle these events and dispatch the following ones
back to the Workspace:

Figure 10-13. The variable requestData gets mapped as the input Form variable for the Manager’s
Review

Creating Flex Applications Enabled for LiveCycle Workspace ES | 505

formReady
This event initiates the conversation between the Flexlet and the Workspace. Usu-
ally, it is dispatched as part of the creationComplete handler in the Flexlet.

formSaveData
Using this event, the Flexlet responds to the formSaveDataRequest event and speci-
fies the current state of the form data XML. The Workspace adds the form data to
the user’s To Do list, leaving the Flexlet active.

formSubmitDataInvalid
The Flexlet uses this event to indicate that the data entry is not complete. In return,
the Workspace keeps the Flexlet active.

formSubmitDataValid
This is the final event in the Workspace-Flexlet conversation. Using this event, the
Flexlet responds to formSaveDataRequest and specifies the current state of the form
data XML. The Workspace unloads the Flexlet.

Figure 10-14. Value of isEmployee gets set to false before entering the Manager’s Review

Additionally, a Flexlet may dispatch optional events:

formClean and formDirty
These events specify to the Workspace whether it should prompt the user to save
the form data if the user tries to close the Flexlet.

All of the event types listed are defined in the lc.core.events.FormEvents class, which
is part of the workspace-runtime.swc library. Upon installing LiveCycle ES, you can find

506 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

this class in your LiveCycle8.2 installation directory at …\LiveCycle_ES_SDK\misc
\Process_Management\Workspace.

LiveCycle FormConnector

The conversation between a Flexlet and the Workspace happens through a Flash
sharedEvents object. As a reminder, sharedEvents is an EventDispatcher that is
accessible both by the loading and the loaded SWFs. The loaded application accesses
it as systemManager.loaderInfo.sharedEvents.

The loading application gets access to the very same EventDispatcher object either as
swfLoader.swfBridge if the two .swf files belong to the different security sandboxes, or
as swfLoader.content.loaderInfo.sharedEvents if both SWFs are hosted by the same
security sandbox.

Accordingly, the Workspace dispatches its events, such as formInitialData and
formSubmitDataRequest, to the sharedEvents and listens, on the same object, for the
events formReady and formSubmitData coming from the Flexlet.

Sending and receiving FormEvents is greatly simplified by a helper class,
lc.core.FormConnector. This class, an instance of EventDispatcher, is provided by the
same workspace-runtime.swc library that contains the definition of the Workspace-
Flexlet conversation events. In particular, in the creationComplete() event handler,
FormConnector translates events intercepted on sharedEvents into ones dispatched on
itself (see Example 10-1).

Example 10-1. FormConnector intercepts events on sharedEvents and redispatches them to itself

public function creationComplete(event:Event):void {
 dispatcher = UIComponent(event.target).systemManager.loaderInfo.sharedEvents;
 dispatcher.addEventListener(FormEvents.FORM_INITIAL_DATA, dispatchEvent);
 dispatcher.addEventListener(FormEvents.FORM_SAVE_DATA_REQUEST, dispatchEvent);
 dispatcher.addEventListener(FormEvents.FORM_SUBMIT_DATA_REQUEST, dispatchEvent);
}

As a result, your Flexlet code does not have to listen directly to sharedEvents. As long
as the Flexlet keeps an instance of the FormConnector, it may instead listen to the
FormConnector's events. Example 10-2 shows how you can do it.

Example 10-2. A Flexlet can utilize the FormConnector to listen to events dispatched by the Workspace

 <?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:lc="http://www.adobe.com/2006/livecycle">

 <lc:FormConnector id="formConnector"
 formInitialData="onFormInitialData(event)"
 formSaveDataRequest="onFormSaveDataRequest(event)"
 formSubmitDataRequest="onFormSubmitDataRequest(event)"/>
. . .
</mx:Application>

Creating Flex Applications Enabled for LiveCycle Workspace ES | 507

To facilitate sending events to the Workspace, FormConnector offers methods like
setSubmitData(), which alleviates the need to explicitly dispatch the formSubmitData
event (Example 10-3).

Example 10-3. FormConnector wraps the data-sending event logic into a set of convenient methods

public function setSubmitData(data:XML):void {
 trace("form: " + FormEvents.FORM_SUBMIT_DATA + " event dispatched to Workspace");
 dispatcher.dispatchEvent(
 new DataEvent(FormEvents.FORM_SUBMIT_DATA, false, false, data.toXMLString())
);
}

This allows a Flexlet to use calls like formConnector.setSubmitData(data) or
formConnector.setSubmitDataInvalid() instead of dispatching the corresponding
events to loaderInfo.sharedEvents (Example 10-4).

Example 10-4. A Flexlet can use the FormConnector API to simplify sending data events to the
Workspace

private function onFormSubmitDataRequest(event:Event):void {
 if (isDataValid()) {
 . . .
 formConnector.setSubmitData(xml);
 } else {
 formConnector.setSubmitDataInvalid();
 }
}

Which data should you trust more: Enterprise data or LiveCycle internal data?

All human-centric processes in LiveCycle are created as long-lived processes. From the
persistence point of view, this means that LiveCycle stores all intermediate data that
needs to be passed between the operations of the process in its internal database (see
the documentation LiveCycle Workbench Help, Creating Processes → Process concepts
→ Process execution).

The question is, “How much data really needs to touch the LiveCycle database?” or,
rather, “How much of it should never leave your business database in the first place?”

Let’s look at the SimpleVacationRequest process. Clearly, the start and end dates of the
approved vacation need to be stored in the business database. Example 10-5 presents
the CREATE TABLE statement that describes the structure of the corresponding
vacationrequest table from the farata_livecycle_sampledb database.

Example 10-5. Definition of the vacationrequest table from farata_livecycle_sampledb (MySQL)

CREATE TABLE vacationrequest (
 Request_ID varchar(60) NOT NULL,
 Description varchar(500) NULL,
 Status varchar(30) NOT NULL,
 Start_Date datetime NULL,

508 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 End_Date datetime NULL,
 Employee_ID varchar(100) default NOT NULL,
 Employee_Name varchar(120) default NOT NULL,
 Vacation_Type varchar(30) NOT NULL,
 Decision tinyint(1) default NULL,
 Decision_Made_At datetime default NULL,
 Employee_Email varchar(100) default NULL,
 Department varchar(100) default NULL,
 PRIMARY KEY (Request_ID)
)

Given the requestID, all the table data can be accessed by the Flexlet, through, for
instance, remote calls to Java methods that access the database through a JDBC layer.
Seemingly, the only data that needs to be passed between the process and the Flexlet
is the following:

<vacationRequest>
 <requestId>8CE28354-E831-11E8-76EB-4DE38A29F087</requestId>
 <isEmployee>true</isEmployee>
</vacationRequest>

In this snippet, requestId is the key to the database record and isEmployee is a view
selector the Flexlet uses to present different UIs to the employee and the approving
manager.

The requestData node has extra nodes: decision, employeeName, and duration, because
it’s not only about a Flexlet, it’s also about the process (see Example 10-6).

For instance, while creating the Task Instructions Template of the Manager’s Review
task, it was convenient to use all these nodes in the template expression.

The bottom line is this: although you should avoid carrying business data in your
process variables, exercise your own judgment.

Example 10-6. Form data XML of the requestData form variable

<vacationRequest>
 <requestId>8CE28354-E831-11E8-76EB-4DE38A29F087</requestId>
 <decision>approved</decision>
 <duration>7</duration>
 <isEmployee>true</isEmployee>
 <employeeName>Rye Woodard</employeeName>
</vacationRequest>

Flexlet Code Walkthrough
Let’s examine the Flexlet’s namespaces and variables. After doing so, you will learn
how the Flexlet gets the incoming process data that it uses to read more data from the
enterprise data store. Finally, you will learn how the Flexlet writes the data to the
enterprise data store and follows up with submitting the output data back to the
process.

Creating Flex Applications Enabled for LiveCycle Workspace ES | 509

Namespaces and variables

In addition to the traditional http://www.adobe.com/2006/mxml, the Flexlet application
declares two extra namespaces (Example 10-7):

http://www.adobe.com/2006/livecycle
To allow reference of the FormConnector helper from workspace-runtime.swc.

http://www.faratasystems.com/2008/components
To allow references to controls from the clear.swc component library made by
Farata Systems. Components such as DataCollection, DataForm, and
DataFormItem were described in Chapter 3.

Example 10-7. Namespaces of the SimpleVacationRequest.swf Flexlet

<mx:Application width="100%" height="100%" layout="absolute"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:lc="http://www.adobe.com/2006/livecycle"
 xmlns:fx="http://www.faratasystems.com/2008/components"
 creationComplete="onCreationComplete()"
>

As explained earlier, FormConnector facilitates exchange of the data events with the
Workspace. In addition, our Flexlet conducts independent data exchange with the
farata_livecycle_sampledb database. This is done using the requestsCollection varia-
ble, which is a DataCollection object (see Chapter 3) capable of talking to the database
through its fill() and sync() methods, as shown in Example 10-8.

Example 10-8. DataCollection variable: requestsCollection encapsulates data exchange between the
Flexlet and the database

import com.theriabook.collections.DataCollection;
private var requestsCollection:DataCollection = new DataCollection();
. . .
// Invoke remote method to retrieve the existing vacation request record
var token:AsyncToken = requestsCollection.fill(requestId);

. . .
// Invoke remote method to the database with the current state of
// the vacation request
var token:AsyncToken = requestsCollection.sync();

The Flexlet also declares a bindable variable, vacationRequestDTO, that is used as the
dataProvider for the DataForm (see Chapter 3). As a reminder, DataForm provides the
same convenience in regards to binding as DataGrid. As soon as the user modifies a
property of the vacationRequestDTO, the corresponding input control is updated and
vice versa (Example 10-9).

510 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Example 10-9. Use of DataForm provides automatic two-way binding between the bindable properties
of the vacationRequest DTO and form items

import com.farata.datasource.dto.VacationRequestDTO;
[Bindable] private var vacationRequestDTO:VacationRequestDTO ;
. . .
<fx:DataForm id="left" width="100%" dataProvider="{vacationRequestDTO}">
 <fx:DataFormItem label="Employee Name: " fontWeight="bold"
 dataField="EMPLOYEE_NAME" required="true"
 validators="{[nameValidator]}">
 <mx:TextInput fontWeight="normal" editable="{isEmployee}" />
 </fx:DataFormItem>
. . .
</fx:DataForm>

Finally, the Flexlet declares another bindable variable isEmployee that is used to alter-
nate between the two view states of the form: the Employee’s View and Manager’s
View. This property is managed exclusively by the process. The Flexlet obtains it as
part of the onFormInitialData() event handler, as Example 10-10 demonstrates.

Example 10-10. Boolean variable isEmployee is used to alternate between two “views” of the Flexlet:
Manager’s View and Employee’s View

[Bindable] private var isEmployee:Boolean = false ;
. . .
private function onFormInitialData(event: DataEvent): void {
 if ((event.data != null) || (event.data != " ")) {
 var requestData:XML = new XML(event.data);
 var xmlList:XMLList = requestData.isEmployee;
 isEmployee = (xmlList.toString()!="false");
 . . .
}

Reading data from the process and enterprise data store

The Flexlet has to ask the Workspace to feed it with the process data. It makes sense
to do it in the onCreationComplete() handler, shown in part in Example 10-11. The
formConnector.setReady() serves precisely this purpose. The rest of the
oncreationComplete() handler is initializing requestsCollection to communicate with
the remote destination com.farata.datasource.VacationRequest.

Example 10-11. Snippet of the onCreationComplete() event handler

requestsCollection.destination = "com.farata.datasource.VacationRequest";
requestsCollection.method = "getVacationRequest";
requestsCollection.addEventListener(
 ResultEvent.RESULT,
 function(event:ResultEvent):void {
 if (event.token.method == "fill") {
 onRequestsCollectionFill(event);
 } else {
 onRequestsCollectionSync(event);
 }

Creating Flex Applications Enabled for LiveCycle Workspace ES | 511

 }
);
requestsCollection.addEventListener(FaultEvent.FAULT, onFault);

The Java code for this destination has been generated by the Clear Data Builder (see
Chapter 3) based on the abstract class in Example 10-12.

Example 10-12. Abstract Java class used by ClearDataBuilder to generate all Java artifacts required
to remotely access and modify the VacationRequest table of the farata_livecycle_sampledb database

package com.farata.datasource;

import java.util.List;

/**
 * @daoflex:webservice
 * pool=jdbc/farata
 */
@SuppressWarnings("unchecked")
public abstract class VacationRequest
{
 /**
 * @daoflex:sql
 * sql=:: select * from VacationRequest
 * ::
 * transferType=VacationRequestDTO[]
 * keyColumns=Request_ID
 * updateTable=VacationRequest
 */
 public abstract List getAllRequests();

 /**
 * @daoflex:sql
 * sql=:: select * from VacationRequest where Request_ID=:reqId
 * ::
 * transferType=VacationRequestDTO[]
 * keyColumns=Request_ID
 * updateTable=VacationRequest
 */
 public abstract List getVacationRequest(String reqId);
}

The actual feed of the process data into the Flexlet happens within the onFormInitial
Data() handler. Remember, the Workspace sends formInitialData event in response
to the setReady event. event.data should bring the XML corresponding to the process
variable requestData (in other words, process_data/requestData).

If this XML contains requestId, the Flexlet issues the asynchronous fill() call; oth-
erwise, it creates the brand-new vacation request record. The latter case corresponds
to the use case where the process Form variable and, accordingly, the Flexlet start the
process. Either way, the Flexlet populates the value of vacationRequestDTO with the
vacation request record (Example 10-13).

512 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

zaremba
Comment on Text
correct xref?

Change to (see Chapter 1 and 6)

Example 10-13. For existing requests the Flexlet brings all data from the database

private function onFormInitialData(event: DataEvent): void {
 if ((event.data != null) || (event.data != " ")) {
 var requestData:XML = new XML(event.data);
 var xmlList:XMLList = requestData.isEmployee;
 isEmployee = (xmlList.toString()!="false");

 var requestId:String = requestData.requestId;
 if (requestId && requestId != "") {
 var token:AsyncToken = requestsCollection.fill(requestId);
 token.requestId = requestId;
 } else {
 // create a new request
 vacationRequestDTO = new VacationRequestDTO;
 vacationRequestDTO.REQUEST_ID = UIDUtil.createUID();
 vacationRequestDTO.STATUS = "Created";
 vacationRequestDTO.START_DATE = new Date(
 new Date().time + 1000 * 3600 * 24
);

 var authenticatedUser:User = WorkspaceSession.getSessionManager(
 Application.application.session).authenticatedUser;
 vacationRequestDTO.EMPLOYEE_NAME = authenticatedUser.displayName;
 vacationRequestDTO.EMPLOYEE_EMAIL = authenticatedUser.email;
 vacationRequestDTO.VACATION_TYPE = "L"; //Unpaid leave - default
 requestsCollection.addItem(vacationRequestDTO);

 isEmployee = true;
 }
 formConnector.setClean();
 }
}
private function onRequestsCollectionFill(event:ResultEvent):void {
 var requestId:String = event.token.requestId;
 if (requestsCollection.length > 0){
 vacationRequestDTO = requestsCollection[0];
 } else {
 Alert.show("Vacation Request was not found: " + requestId);
 }
}

Writing data to the enterprise data store and the process

Remember the persistence motto: keep the enterprise data in the enterprise data store.
For the Flexlet, this means: save the data to the enterprise store first and then let the
process know only the bare minimum. Accordingly, the event sending the call formCon
nector.setSubmitData() is not being issued directly from the onFormSubmitDataRe
quest() handler. Instead, the handler just initiates the remote update of the data store
by calling the sync() method of the requestsCollection, as you can see in
Example 10-14.

Creating Flex Applications Enabled for LiveCycle Workspace ES | 513

Example 10-14. Event handler onFormSubmitDataRequest() updates the database instead of sending
the event to the Workspace

private function onFormSubmitDataRequest(event:Event):void {
 if (isDataValid()) {
 applyDecision();
 vacationRequestDTO.DECISION_MADE_AT = new Date();
 var token:AsyncToken = requestsCollection.sync();
 token.submit = true;
 } else {
 formConnector.setSubmitDataInvalid();
 }
}

Once the update of the enterprise data store is complete within the
onRequestsCollectionSync() body, the Flexlet can confidently return to process the
new value of the form data and cease to exist (Example 10-15). Please note that
onFormSaveDataRequest() is organized in a similar way, with one exception: it does not
have token.submit=true, which affects the logic of the onRequestsCollectionSync()
method.

Example 10-15. Flexlet submits the data to the process only after the database has been updated

private function onRequestsCollectionSync(event:ResultEvent):void {
 var duration:Number = 0;
 if ((vacationRequestDTO.START_DATE != null) &&
 (vacationRequestDTO.END_DATE!=null)) {
 duration = Math.ceil((vacationRequestDTO.END_DATE.time -
 vacationRequestDTO.START_DATE.time)/(1000 * 3600 * 24));
 }
 var requestData:XML = <vacationRequest>
 <requestId> {vacationRequestDTO.REQUEST_ID}</requestId>
 <decision>{decision.selectedItem.data}</decision>
 <duration>{duration}</duration>
 <isEmployee>{isEmployee}</isEmployee>
 <employeeName>{vacationRequestDTO.EMPLOYEE_NAME}</employeeName>
 </vacationRequest>;

 if (event.token.submit){
 formConnector.setSubmitData(requestData);
 } else {
 formConnector.setSaveData(requestData);
 formConnector.setClean();
 }
}

Example 10-16 presents the complete code of the Flexlet SimpleVacationRequest.

Example 10-16. Complete code of the SimpleVacationRequest Flexlet

<?xml version="1.0" encoding="utf-8"?>
<mx:Application width="100%" height="100%" layout="absolute"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:lc="http://www.adobe.com/2006/livecycle"

514 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 xmlns:fx="http://www.faratasystems.com/2008/components"
 creationComplete="onCreationComplete()"
 >

 <lc:FormConnector id="formConnector"
 formInitialData="onFormInitialData(event)"
 formSaveDataRequest="onFormSaveDataRequest(event)"
 formSubmitDataRequest="onFormSubmitDataRequest(event)"/>

 <mx:VBox width="100%" height="100%" backgroundColor="white">
 <mx:Label text="{isEmployee ? 'Submit' : 'Approve'} Vacation Request"
 fontWeight="bold"
 fontSize="16"
 fontStyle="italic"
 paddingTop="10"
 paddingBottom="5"
 paddingLeft="10"
 />
 <mx:HBox width="100%" height="100%" >
 <fx:DataForm id="left" width="100%"
 dataProvider="{vacationRequestDTO}">
 <fx:DataFormItem label="Employee Name: " fontWeight="bold"
 dataField="EMPLOYEE_NAME" required="true"
 validators="{[nameValidator]}">
 <mx:TextInput fontWeight="normal" editable="{isEmployee}" />
 </fx:DataFormItem>
 <fx:DataFormItem label="Employee Email: " fontWeight="bold"
 dataField="EMPLOYEE_EMAIL" required="true"
 validators="{[emailValidator]}">
 <mx:TextInput fontWeight="normal" editable="{isEmployee}"/>
 </fx:DataFormItem>
 <fx:DataFormItem label="Department: " fontWeight="bold"
 dataField="DEPARTMENT" required="true"
 validators="{[departmentValidator]}">
 <fx:TextInput fontWeight="normal" editable="{isEmployee}"/>
 </fx:DataFormItem>
 <mx:Spacer height="10"/>
 <fx:DataFormItem label="Description: " fontWeight="bold"
 dataField="DESCRIPTION">
 <mx:TextArea width="200" height="80" fontWeight="normal" />
 </fx:DataFormItem>
 </fx:DataForm>
 <fx:DataForm id="right" width="100%"
 dataProvider="{vacationRequestDTO}">
 <fx:DataFormItem label="Start Date: " fontWeight="bold"
 dataField="START_DATE" valueName="selectedDate" required="true">
 <mx:DateField fontWeight="normal" enabled="{isEmployee}"/>
 </fx:DataFormItem>
 <fx:DataFormItem label="End Date: " fontWeight="bold"
 dataField="END_DATE" valueName="selectedDate" required="true">
 <mx:DateField fontWeight="normal" enabled="{isEmployee}"/>
 <fx:validators>
 <mx:Array>
 <fx:ValidationRule
 rule="{

Creating Flex Applications Enabled for LiveCycle Workspace ES | 515

 function(data:Object):Boolean {
 return data.START_DATE >= data.END_DATE;
 }
 }"
 errorMessage="End Date must be later than Start Date">
 </fx:ValidationRule>
 </mx:Array>
 </fx:validators>
 </fx:DataFormItem>
 <fx:DataFormItem label="Vacation Type: " fontWeight="bold"
 dataField="VACATION_TYPE"
 resource="{com.farata.resources.VacationTypeComboResource}"
 enabled="{isEmployee}" required="true">
 </fx:DataFormItem>
 <fx:DataFormItem label="Request Status: " fontWeight="bold"
 dataField="STATUS">
 <mx:Label fontWeight="normal"/>
 </fx:DataFormItem>
 <mx:FormItem id="approvalDecision" label="Approval Decision: "
 fontWeight="bold" visible="{!isEmployee}">
 <mx:ComboBox id="decision">
 <mx:Array>
 <mx:Object label="Approved" data="approved"/>
 <mx:Object label="Rejected" data="rejected"/>
 </mx:Array>
 </mx:ComboBox>
 </mx:FormItem>
 </fx:DataForm>
 </mx:HBox>
 </mx:VBox>

 <mx:Script>
 <![CDATA[
 import com.farata.datasource.dto.VacationRequestDTO;
 import com.farata.resources.VacationTypeComboResource;
 import com.theriabook.collections.DataCollection;
 import com.farata.datasource.dto.VacationRequestDTO;
 import lc.core.WorkspaceDataService;
 import lc.domain.User;
 import lc.domain.workspace.WorkspaceSession;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.AsyncToken;
 import mx.controls.Alert;
 import mx.rpc.events.ResultEvent;
 import mx.utils.UIDUtil;

 [Bindable] private var vacationRequestDTO:VacationRequestDTO ;
 [Bindable] private var isEmployee:Boolean = false ;

 private var requestsCollection:DataCollection = new DataCollection();

 private function onCreationComplete():void {
 formConnector.setReady();

 requestsCollection.destination = "com.farata.datasource.VacationRequest";

516 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 requestsCollection.method = "getVacationRequest";
 requestsCollection.addEventListener(
 ResultEvent.RESULT,
 function(event:ResultEvent):void {
 if (event.token.method == "fill") {
 onRequestsCollectionFill(event);
 } else {
 onRequestsCollectionSync(event);
 }
 }
);
 requestsCollection.addEventListener(FaultEvent.FAULT, onFault);
 }

 private function onFormInitialData(event: DataEvent): void {
 if ((event.data != null) || (event.data != " ")) {
 var requestData:XML = new XML(event.data);
 var xmlList:XMLList = requestData.isEmployee;
 isEmployee = (xmlList.toString()!="false");

 var requestId:String = requestData.requestId;
 if (requestId && requestId != "") {
 var token:AsyncToken = requestsCollection.fill(requestId);
 token.requestId = requestId;
 } else {
 // create a new request
 vacationRequestDTO = new VacationRequestDTO;
 vacationRequestDTO.REQUEST_ID = UIDUtil.createUID();
 vacationRequestDTO.STATUS = "Created";
 vacationRequestDTO.START_DATE = new Date(
 new Date().time + 1000 * 3600 * 24
);

 var authenticatedUser:User = WorkspaceSession.getSessionManager(
 Application.application.session).authenticatedUser;
 vacationRequestDTO.EMPLOYEE_NAME = authenticatedUser.displayName;
 vacationRequestDTO.EMPLOYEE_EMAIL = authenticatedUser.email;
 vacationRequestDTO.VACATION_TYPE = "L"; //Unpaid leave - default
 requestsCollection.addItem(vacationRequestDTO);

 isEmployee = true;
 }
 formConnector.setClean();
 }
 }

 private function onFormSaveDataRequest (event:Event):void{
 applyDecision();
 var token:AsyncToken = requestsCollection.sync();
 token.submit=false;
 }

 private function onFormSubmitDataRequest(event:Event):void {
 if (isDataValid()) {
 applyDecision();

Creating Flex Applications Enabled for LiveCycle Workspace ES | 517

 vacationRequestDTO.DECISION_MADE_AT = new Date();
 var token:AsyncToken = requestsCollection.sync();
 token.submit = true;
 } else {
 formConnector.setSubmitDataInvalid();
 }
 }

 private function onFault(event:FaultEvent):void {
 Alert.show(event.fault.faultString);
 }

 private function applyDecision():void {
 if (!isEmployee) {
 vacationRequestDTO.DECISION = decision.selectedItem.data ;
 vacationRequestDTO.STATUS = decision.selectedItem.label;
 }
 }

 private function onRequestsCollectionFill(event:ResultEvent):void {
 var requestId:String = event.token.requestId;
 if (requestsCollection.length > 0){
 vacationRequestDTO = requestsCollection[0];
 } else {
 Alert.show("Vacation Request was not found: " + requestId);
 }
 }

 private function onRequestsCollectionSync(event:ResultEvent):void {
 var duration:Number = 0;
 if ((vacationRequestDTO.START_DATE != null) &&
 (vacationRequestDTO.END_DATE!=null)) {
 duration = Math.ceil((vacationRequestDTO.END_DATE.time -
 vacationRequestDTO.START_DATE.time)/(1000 * 3600 * 24));
 }
 var requestData:XML = <vacationRequest>
 <requestId> {vacationRequestDTO.REQUEST_ID}</requestId>
 <decision>{decision.selectedItem.data}</decision>
 <duration>{duration}</duration>
 <isEmployee>{isEmployee}</isEmployee>
 <employeeName>{vacationRequestDTO.EMPLOYEE_NAME}</employeeName>
 </vacationRequest>;

 if (event.token.submit){
 formConnector.setSubmitData(requestData);
 } else {
 formConnector.setSaveData(requestData);
 formConnector.setClean();
 }
 }

 private function isDataValid():Boolean {
 var failedLeft:Array = left.validateAll();
 var failedRight:Array = right.validateAll();

518 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 return ((failedLeft.length == 0)&&(failedRight.length == 0));
 }

]]>
 </mx:Script>

 <mx:StringValidator id="nameValidator" minLength="6"
 requiredFieldError="Provide your name, more than 5 symbols" />
 <mx:EmailValidator id="emailValidator"
 requiredFieldError="Provide correct email" />
 <mx:StringValidator id="departmentValidator"
 requiredFieldError="Provide department" />
</mx:Application>

Running Workspace from Adobe Sources
As we have already mentioned, LiveCycle Workplace is a Flex application. Assuming
that your default install root is at C:\Adobe\LiveCycle8.2, you can find its Flex project
archive, adobe-workspace-src.zip, at the following location:

[root]\LiveCycle_ES_SDK\misc\Process_Management\Workspace

You can benefit greatly from these source files. First, it’s the best way to acquire knowl-
edge of how Flex applications work with the LiveCycle API. Second, you can customize
the look and feel of the Workspace, or you can completely cannibalize it, borrowing
certain pieces for your business application.

In any case, the first step is to rebuild the Workspace from sources and ensure that you
can run and debug it. This is also the best scenario for debugging your Flexlets as well.

To rebuild and run the Workspace from sources, you must first prepare the enterprise
application archive, or EAR (this example uses JBoss). To accomplish this you must
follow these steps:

1. Find adobe-workspace-client.ear under [root]\jboss\server\all\deploy.

2. Expand (unzip) the file adobe-workspace-client.ear as farata-workspace-client.ear
into a working directory on your hard drive.

3. Find the file application.xml inside the adobe-workspace-client.ear folder.

4. Replace the reference to adobe-workspace-client.war with a reference to farata-
workspace-client.war: <web-uri>workspace-client-expanded.war</web-uri>.

5. Replace the context root workspace with farata_workspace <context-
root>farata_workspace </context-root>.

6. Find the farata-workspace-client.war file in the adobe-workspace-client.ear folder.

7. Unzip it into a working directory on your hard drive.

8. Replace the farata-workspace-client.war file with the farata-workspace-client.war
folder (inside adobe-workspace-client.ear).

Running Workspace from Adobe Sources | 519

yfain11
Cross-Out

yfain11
Replacement Text
farata

yfain11
Cross-Out

yfain11
Replacement Text
farata-workspace-client

yfain11
Cross-Out

yfain11
Replacement Text
adobe

yfain11
Cross-Out

yfain11
Replacement Text
farata

yfain11
Cross-Out

yfain11
Replacement Text
Unzip it as a folder farata-workspace-client.war

The remaining steps in the process are:

1. Deploy the EAR: copy the entire farata-workspace-client.ear into [root]\jboss\server
\all\deploy.

2. Import the Flash Builder/Flex Project archive—adobe-workspace-src.zip—into the
Eclipse workspace. It will create the new project, called Workspace.

3. Navigate to the project’s Properties/Flex Build Path and change the Main source
folder to src_workspace (originally, this was src).

4. Add the following three SWC files to the Flex library path. The paths to all three
are relative to C:\Adobe\LiveCycle8.2\LiveCycle_ES_SDK\misc\:

\Process_Management\Workspace\workspace-runtime.swc

\DataServices\Client-Libraries\fds.swc

\DataServices\Client-Libraries\fds-rb.swc

5. Navigate to the project’s Properties/Flex Build Path and change the Main source
folder to src_workspace (this was originally src).

6. Set the Output folder to [root]\jboss\server\all\deploy\farata-workspace-client.ear
\farata-workspace-client.war. By the time you complete this step, your project con-
figuration should resemble Figure 10-15.

The setup is complete.

Business Example: Warehouse Processes
The remaining part of this chapter refers to a more complex business scenario. Instead
of creating Flexlets to complement the design of the Workspace, here you are in charge
of the entire application. This scenario has a much wider applicability scope: in par-
ticular, it illustrates how you can add workflow capabilities to an existing Flex
application.

The participants of the scenario are a Retailer, a Supplier, and a Manufacturer. First
consider the Retailer-Supplier interaction. The Retailer places orders of nails and ham-
mers. The Supplier may approve or reject the Retailer’s order. The Retailer acknowl-
edges the decision. Omitting the complexity of the real world, assume that approval
instantly increases the Retailer’s inventory.

520 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

zaremba
Comment on Text
same as Step 3 above; ok?

Please remove stem5.

yfain11
Cross-Out

yfain11
Replacement Text
5

Figure 10-15. Workspace project configuration

Now look at the Supplier-Manufacturer interaction. The Supplier attempts to fulfill the
order from its own storage and reorders the inventory based on a certain threshold.
These orders have to be approved of or rejected by the Manufacturer. Approval of the
order instantly increases the Supplier’s inventory.

Instead of designing one complex process with three participants, however, you can
design and coordinate two simple processes with two participants each. The first
process is a Retailer-Supplier workflow; the second one is a Supplier-Manufacturer
workflow. In fact, our business scenario supports many different Supplier-
Manufacturer processes, which differ from manufacturer to manufacturer. First,
though, take a look at the UI of all three participants.

User Interface of the Retailer
The Retailer logs in to the system, as shown in Figure 10-16.

Business Example: Warehouse Processes | 521

Figure 10-16. The Retailer’s login screen

The system recognizes the name of the retailer’s employee. The Work Inbox, Fig-
ure 10-17, is initially empty.

Figure 10-17. The Retailer’s Work Inbox screen

The list of the placed orders, Figure 10-18, is initially empty as well.

Figure 10-18. The empty list of the Retailer’s orders

Say that the Retailer enters an order of 25 packs of nails from Andy’s Nails, as shown
in Figure 10-19.

522 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Figure 10-19. Details of the particular Retailer’s order at submission

Once the Retailer submits the order, its list of orders shows an In Progress status, as
shown in Figure 10-20. At this point, the decision passes to the Supplier.

Figure 10-20. The Retailer’s order is pending the Supplier’s reply

If the Supplier approves the order, both the Orders and Work Inbox panels update the
order status as Approved, shown in Figure 10-21.

Figure 10-21. The Retailer’s order shown as approved by a Supplier

The process returns to the Retailer, who must confirm the decision, as shown in
Figure 10-22.

Business Example: Warehouse Processes | 523

Figure 10-22. Details of the Retailer’s order confirmed by the Retailer

Upon confirmation, the Work Inbox is empty; the Orders box shows the complete
order, as displayed in Figure 10-23.

Figure 10-23. The Retailer’s order list showing the completed, confirmed order

This concludes the Retailer’s work cycle.

User Interface of the Supplier
The Supplier logs in to the same system, as shown in Figure 10-24.

Figure 10-24. The Supplier’s login screen

524 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

The Supplier’s Work Inbox shows the list of retailer orders to be approved. Fig-
ure 10-25 shows an earlier order from Jack Jackson.

Figure 10-25. The Supplier’s list of orders

The Supplier approves or rejects the order (Figure 10-26).

Figure 10-26. The Supplier’s approval or rejection of orders

That concludes the Supplier’s work cycle.

User Interface of the Manufacturer
In the manufacturer’s workflow, upon login, the employee of the Manufacturer will
see the Work Inbox, as shown in Figure 10-27.

Figure 10-27. The Manufacturer’s Work Inbox

Business Example: Warehouse Processes | 525

The Manufacturer’s employee will be able to approve or reject the order in a way similar
to that of the Supplier and then, in the case of approval, his Work Inbox will look like
Figure 10-28.

Figure 10-28. The Manufacturer’s Work Inbox after order approval

Introducing Process Orchestration
While looking at the UI, did you realize that the Retailer and the Supplier are engaged
in the “approve-and-confirm” conversation similar to SimpleVacationRequest? The
same is true about the Supplier and the Manufacturer. This simplicity, however, is
achieved by premeditated separation of activities into completely different processes.

Take a first look at the process diagram of the SupplierProcess, Figure 10-29.

Figure 10-29. SupplierProcess describes the workflow between the Retailer and a Supplier

526 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Not only does it not have the reordering logic for the Supplier, but it actually does not
mention a Manufacturer at all. Instead, the Handle Approved Order activity is jump-
starting (see the section “Orchestrating Processes with Asynchronous
Events” on page 550 later in this chapter) a set of entirely different processes between
the Supplier and its Manufacturers, such as AndyNailsProcess, presented in
Figure 10-30.

Figure 10-30. AndyNailsProcess describes the workflow between a Supplier and Andy Nails, our
sample nails manufacturer

As a reminder, the Supplier maintains local storage to fulfill the orders without delays.
For instance, in the case of products made by Andy Nails, the Supplier keeps as much
as has been ordered over the last week (the duration varies from Manufacturer to Man-
ufacturer based on their production cycle). And, in case of the AndyNailsProcess, it is
the activity CheckAndOrder that either starts actual (re)ordering from a Manufacturer
or returns immediately, if the order can be fulfilled from the local storage.

As you can see, the workflow between the three parties gets decomposed into two
separate processes, each of which is relatively simple. This approach scales to an un-
limited number of Suppliers and Manufacturers. Notice that ultimately, we are not
talking about two processes. Each Manufacturer may have a different process with the
Supplier, similar to the AndyNailsProcess only in how it gets started and in the outcome.

The following sections illustrate details of the process orchestration.

Business Example: Warehouse Processes | 527

The Warehouse Processes Under the Hood
Now that you know the business use case, let’s look at the implementation side. We
are going to discuss four topics:

• Using the LiveCycle API from the custom Flex application, which absolves us from
the confines of the prebuilt Adobe Workspace. We will be illustrating snippets of
the WarehouseWorkspace application that accompanies this chapter.

• Orchestrating processes with asynchronous events. You will learn how to build and
publish or subscribe to messaging-like communication between processes. In par-
ticular, as you will see a bit later, our SupplierProcess is dispatching a custom event
—with LineItemChanged acting as a message producer. On the other hand, Andy-
NailsProcess is a process that is listening for this event, acting as a message con-
sumer; this event notifies AndyNailsProcess to consider reordering nails from the
Andy Nails manufacturer.

• Extending LiveCycle ES functionality with business-specific Custom Services. For
instance, the SupplierProcess depends on the operation handleApprovedOrder()
from a custom SupplierService. Importantly, it is used seamlessly, side by side
with standard operations such as UserService.assignTask() and
SetValue.execute(). The handleApprovedOrder() operation dispatched the
LineItemChanged event.

• Plugging in your own repository of users and groups from an enterprise database
through a custom infrastructure service known as Custom Authentication and Di-
rectory Service Providers.

We will start in the reverse order. In the course of the examples, you will be using the
farata_livecycle_sampledb presented in Figure 10-31.

Figure 10-31. Sample database farata_livecycle_sampledb

528 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Extending LiveCycle with Custom Services
You can create your own custom services and add them to the LiveCycle ES repository.
No, we are not talking about processes here. As a reminder, any process is ultimately
a service too, with one and only one method: invoke(). In contrast, this section is about
multifunctional, multimethod services. How do you create those? In a nutshell, you
start with a Java POJO class. Once you have a POJO, you may drop it into the LiveCycle
service container and use the public methods of the class as service operations within
a LiveCycle ES workflow. The simplicity of POJO gets augmented by the packaging:
along with the class, you have to jar the component.xml descriptor file plus the JARs of
the support classes your POJO depends on. The devil, as usual, is in the details; see
Adobe LiveCycle ES SDK Help, under “Developing Components.”

The following sections illustrate two types of custom services: infrastructure services
that make LiveCycle ES read users and groups from an enterprise data store instead of
its own internal repository, and functional services that will be directly embedded in
the Retailer and Supplier processes.

Custom Providers for the User and Group Repository
Imagine that the users of the enterprise are maintained in the database table. How do
you tell LiveCycle ES to recognize the custom user and group repository? This is the
topic of this section.

Out of the box, LiveCycle ES allows you to plug in an enterprise user repository kept
in LDAP. For all other cases, you need to create a customization of the User Manage-
ment ES component that will enable you to create your own enterprise domain. In our
example, this will result in the synchronization of LiveCycle’s repository of users and
groups with the one kept in farata_livecycle_sampledb. Figure 10-32 presents the view
of the LiveCycle ES Administration Console after such a FarataDomain has been con-
figured. Sparing you the configuration steps (see LiveCycle Administration Console
Help, “Configuring Enterprise Domain”), you will jump straight to building the custom
services that enable this functionality.

User Management ES provides authentication, authorization, and user management
for LiveCycle ES services. By default, it supports JAAS and LDAP authentication.
However, the part of the LiveCycle API known as the User Management SPI (SPI stands
for Service Provider Interface) supports creation of custom providers:

• Authentication provider

• User provider

• Group provider

The last two are often jointly referred to as the directory service provider. More infor-
mation is available in the online reference “Programming LiveCycle 8.2: Developing
SPIs for LiveCycle ES (http://tinyurl.com/y92r4p9).”

Extending LiveCycle with Custom Services | 529

http://tinyurl.com/y92r4p9
http://tinyurl.com/y92r4p9
http://tinyurl.com/y92r4p9

Creating custom authentication providers

The authentication provider is being used by LiveCycle ES far beyond authorization and
the interactive logon to the Workspace. In fact, any API-based invocation of a LiveCycle
ES service requires a username and password credentials pair, as shown in Exam-
ple 10-17, which samples the Java code that completes a certain task. Notice the user-
name and password credentials that are required to create the instance of the Service
ClientFactory.

Example 10-17. Snippet of the Java code required to complete a task

import com.adobe.idp.dsc.clientsdk.ServiceClientFactory;
import com.adobe.idp.taskmanager.dsc.client.TaskManagerClientFactory;

final Properties props = new Properties();
props.setProperty("DSC_DEFAULT_EJB_ENDPOINT", "jnp://localhost:1099");
props.setProperty("DSC_TRANSPORT_PROTOCOL","EJB");
props.setProperty("DSC_SERVER_TYPE", "JBoss");
props.setProperty("DSC_CREDENTIAL_USERNAME", username);
props.setProperty("DSC_CREDENTIAL_PASSWORD", password);

ServiceClientFactory factory = ServiceClientFactory.createInstance(props);

Figure 10-32. The LiveCycle Administration Console is seeing users from farata_livecycle_sampledb
after FarataDomain has been configured via a custom authentication provider and custom directory
service

530 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

final TaskManager taskManager = TaskManagerClientFactory.getTaskManager(factory) ;
taskManager.completeTask(taskId) ;

Conversely, User Management ES has to recognize the user with these credentials in
one of the registered domains. To do that, User Management is invoking the
authenticate() method of the domain’s authentication provider. To write the custom
authentication provider, you have to implement com.adobe.idp.um.spi.authentica
tion.AuthProvider with the authenticate() and getConfigName() methods.

Suppose the enterprise users are registered in the user table of farata_livecy-
cle_sampledb (Example 10-18).

Example 10-18. User table from farata_livecycle_sampledb

CREATE TABLE user (
 User_ID varchar(36) NOT NULL,
 Description varchar(255) default NULL,
 Last_Name varchar(100) NOT NULL,
 First_Name varchar(100) NOT NULL,
 Email varchar(100) NOT NULL,
 Phone varchar(30) default NULL,
 Department varchar(100) NOT NULL,
 Locked bit(1) NOT NULL,
 LoginName varchar(60) NOT NULL,
 Pass_Code varchar(32) NOT NULL,
 PRIMARY KEY (User_ID)
)

At the end of the day, you have to confirm that the user/password combination is valid,
so you again resort to the Clear Data Builder approach; the snippet of the
UMRepository class in the Example 10-19 shows how to annotate the method check
Password() to access our database.

Example 10-19. Definition of annotated checkPassword() method; the concrete class
UMRepositoryDAO gets generated by Clear Data Builder as part of the Ant build script

package com.farata.datasource;

import java.util.List;

/**
 * @daoflex:webservice
 * pool=jdbc/farata
 */
@SuppressWarnings("unchecked")
public abstract class UMRepository {
 . . .
 /**
 * @daoflex:sql
 * sql=:: select count(*) matchCount from User where LoginName=:loginName and
 * Pass_Code=:passCode
 * ::
 * transferType=UMPasswordValidationDTO[]

Extending LiveCycle with Custom Services | 531

 */
 public abstract List checkPassword(String loginName, String passCode);
}

As a part of the project build, Clear Data Builder generates two JAR files: one with the
original abstract classes and another with the DAO extensions, called services-
original.jar and services-generated.jar by default. The latter contains the generated
UMRepositoryDAO class, which implements the checkPassword() method.

Example 10-20 shows the complete code of the custom authentication provider. See
how this method is used to validate the loginName/password combination.

Example 10-20. Complete code of the example custom authentication provider

package com.farata.lc.spi;

import java.util.List;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.adobe.idp.um.spi.authentication.AuthProvider;
import com.adobe.idp.um.spi.authentication.AuthResponse;
import com.adobe.idp.um.spi.authentication.AuthResponseImpl;
import com.adobe.idp.um.spi.authentication.AuthScheme;
import com.farata.datasource.UMRepositoryDAO;
import com.farata.datasource.dto.UMPasswordValidationDTO;
import com.farata.lc.spi.impl.UsersProvider;

@SuppressWarnings("unchecked")
public class AuthenticationManager implements AuthProvider {
 public static final Logger logger = Logger.getLogger(
 AuthenticationManager.class.getName()
);

 public AuthResponse authenticate(Map credential, List authConfigs) {

 String authType = (String)credential.get(AuthProvider.AUTH_TYPE);
 if (authType == null || !AuthScheme.AUTHTYPE_USERNAME_PWD.equals(authType)){
 String message = "Farata auth provider does not support " + authType + "
 authentication type";
 logger.severe(message);
 throw new PrincipalProviderException(message) ;
 }

 String userName = (String) credential.get(AuthProvider.USER_NAME);
 String password = (String) credential.get(AuthProvider.PASSWORD);

 AuthResponse response = new AuthResponseImpl();
 response.setAuthStatus(
 checkPassword(userName, password) ?
 AuthResponse.AUTH_SUCCESS :
 AuthResponse.AUTH_FAILED
);
 response.setDomain(UsersProvider.FARATA_DOMAIN);

532 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 response.setAuthType(AuthScheme.AUTHTYPE_USERNAME_PWD);
 response.setUsername(userName);
 return response ;
 }

 private boolean checkPassword(String loginName, String password){
 if (loginName == null || password == null)
 return false;
 try{
 UMRepositoryDAO umRepository = new UMRepositoryDAO();
 List<UMPasswordValidationDTO> checkResult = umRepository.checkPassword(
 loginName, password
);
 return checkResult.size() > 0 && checkResult.get(0).MATCHCOUNT > 0;
 }catch(Exception e){
 logger.log(Level.WARNING, "Error occured during user authentication.", e);
 return false;
 }
 }

 public String getConfigName() {
 return "FarataAuthenticationProvider";
 }
}

Finally, Example 10-21 presents a snippet of the component.xml descriptor relevant to
our custom authentication provider.

Example 10-21. Registration of the custom authentication provider in component.xml

<service name="FarataAuthenticationService">
 <implementation-class>com.farata.lc.spi.AuthenticationManager</implementation-
class>
 <specifications>
 <specification spec-id="com.adobe.idp.um.spi.authentication.AuthProvider"/>
 </specifications>
 <operations>
 <operation name="authenticate" method="authenticate" >
 <input-parameter name="credential" type="java.util.Map" />
 <input-parameter name="authConfigs" type="java.util.List" />
 <output-parameter name="echoed-value"
type="com.adobe.idp.um.spi.authentication.AuthResponse"/>
 </operation>
 <operation name="getConfigName" method="getConfigName" >
 <output-parameter name="echoed-value" type="java.lang.String"/>
 </operation>
 </operations>
</service>

Creating a custom directory service provider

As a reminder, according to User Management SPI, in addition to a custom authenti-
cation provider, we have to implement a user provider and group provider. These two
are jointly called a directory service provider.

Extending LiveCycle with Custom Services | 533

This means that your Java class has to implement two interfaces:
DirectoryUserProvider and DirectoryGroupProvider. Each of these interfaces extends
the DirectoryPrincipalProvider interface with its two methods:

DSPrincipalCollection getPrincipals(DirectoryProviderConfig config, Object state)
boolean testConfiguration(DirectoryProviderConfig config)

The DirectoryUserProvider does not have any other methods. The single remaining
method of the custom directory service provider comes from the
DirectoryGroupProvider interface:

public DSGroupContainmentRecord getGroupMembers (
 DirectoryProviderConfig config,
 DSPrincipalIdRecord principalID
)throws IDPException;

The config parameter of getGroupMembers() allows it to recognize whether
getPrincipals() is called on the DirectoryGroupProvider or the DirectoryUserPro
vider interface. The following snippet illustrates how this can be done by calling one
of the getUserConfig() or getGroupConfig() methods:

if config.getUserConfig() == null)?
 new GroupsProvider():
 new UsersProvider();

The most interesting part is that getPrincipals() is designed to be called many times,
in sequence, to support the piecemeal retrieval of the user and group records in batches
until it returns null, indicating that all records have been retrieved. From the
performance point of view, it would be undesirable to fetch all users’ database records
in one chunk, and to that end, the second parameter—state—enables the developer
to pass some data between the two sequential calls. This provision is obviously of high
value for large enterprises with thousands of users.

The actual implementation of state is entirely open. In particular, you will be using
the partial retrieval from the database based on the LIMIT clause, as supported by
MySQL Server DBMS. Accordingly, our state object will carry the sequential offset to
the number of the record to start the next batch, initially zero.

When getPrincipals() gets called first (in the sequence), state is null. Otherwise,
state is what it was assigned to during the previous invocation. Accordingly, if—like
it is in our case—State’s constructor does not require arguments, the following logic
will apply:

State state = (obj==null)? new State(): (State) obj;

Example 10-22 is the high-level view of our implementation. We will define a custom
DSPrincipalCollectionProvider interface that deals only with state, and not related to
config.

534 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Example 10-22. Definition of the DSPrincipalCollectionProvider interface

package com.farata.lc.spi;

import com.adobe.idp.um.spi.directoryservices.DSPrincipalCollection;
import com.farata.lc.spi.impl.State;

public interface DSPrincipalCollectionProvider {
 DSPrincipalCollection getPrincipalCollection(State state);
}

With both GroupsProvider and UserProvider implementing the
getPrincipalCollection() method, the logic of the getPrincipals() method gets re-
duced to the following snippet:

DSPrincipalCollectionProvider provider =
 (config.getUserConfig() == null)?
 new GroupsProvider():
 new UsersProvider();

State state = (obj==null)? new State(): (State) obj;
return provider.getPrincipalCollection(state);

And, with UserProvider encapsulating the inner workings of the getGroupMembers()
method, the complete code of the corresponding DirectoryManager class looks like
Example 10-23.

Example 10-23. Complete code of DirectoryManager.java

package com.farata.lc.spi;

import java.util.logging.Level;
import java.util.logging.Logger;

import com.adobe.idp.common.errors.exception.IDPException;
import com.adobe.idp.um.spi.directoryservices.DSGroupContainmentRecord;
import com.adobe.idp.um.spi.directoryservices.DSPrincipalCollection;
import com.adobe.idp.um.spi.directoryservices.DSPrincipalIdRecord;
import com.adobe.idp.um.spi.directoryservices.DirectoryGroupProvider;
import com.adobe.idp.um.spi.directoryservices.DirectoryProviderConfig;
import com.adobe.idp.um.spi.directoryservices.DirectoryUserProvider;
import com.farata.lc.spi.impl.GroupsProvider;
import com.farata.lc.spi.impl.State;
import com.farata.lc.spi.impl.UsersProvider;

public class DirectoryManager implements DirectoryUserProvider,
DirectoryGroupProvider
{
 public static final Logger logger = Logger.getLogger(
 DirectoryManager.class.getName()
);

 public DSGroupContainmentRecord getGroupMembers (
 DirectoryProviderConfig config,
 DSPrincipalIdRecord principalID

Extending LiveCycle with Custom Services | 535

)throws IDPException{
 return UsersProvider.getGroupMembers(config, principalID);
 }

 public DSPrincipalCollection getPrincipals (
 DirectoryProviderConfig config,
 Object obj
) throws IDPException{
 try {
 DSPrincipalCollectionProvider provider =
 (config.getUserConfig() == null)?
 new GroupsProvider():
 new UsersProvider();

 State state = (obj==null)? new State(): (State) obj;

 return provider.getPrincipalCollection(state);
 } catch (PrincipalProviderException e) {
 logger.log(Level.SEVERE, e.getMessage(), e);
 throw e;
 } catch(Exception e){
 String message = "Farata principal provider: error occurred during
 principals retrieval.";
 logger.log(Level.SEVERE, message, e);
 throw new PrincipalProviderException(message, e);
 }
 }

 public boolean testConfiguration(DirectoryProviderConfig config){
 if (!UsersProvider.FARATA_DOMAIN.equals(config.getDomain()))
 return false;
 return true;
 }
}

Creating a custom groups provider

Now that the task is delegated to two different classes, you will start with the simplest
—the groups provider. It implements only one method, getPrincipalCollection(),
which returns a partial collection, that is, a batch of groups. Example 10-25 shows the
definition of the tables where these groups are, based on the role table of the
farata_livecycle_sampledb, shown in Example 10-24.

Example 10-24. Role (group) database repository from farata_livecycle_sampledb

CREATE TABLE role (
 Role_ID varchar(36) NOT NULL,
 Role_Name varchar(100) NOT NULL,
 PRIMARY KEY (Role_ID)
)

Piggybacking on the Clear Data Builder methodology, you add one more annotated
method to the abstract class UMRepository—getGroupsBatch(); see Example 10-25.

536 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Please note the use of the limit clause, which allows elegant data pagination in MySQL
(the mechanisms of data pagination are very database-specific and are beyond the scope
of this book).

Here you select only batchSize (or fewer) number of records from the role table starting
at the given offset. The result of the method is an ArrayList of UMGroupDTO records,
each having ROLE_ID and ROLE_NAME properties of type String.

Example 10-25. Annotated method getGroupsBatch

public abstract class UMRepository {
. . .
/**
* @daoflex:sql
* sql=:: select * from Role order by Role_ID limit :offset, :batchSize
* ::
* transferType=UMGroupDTO[]
*/
public abstract List getGroupsBatch(long offset, int batchSize);
}

Finally, Example 10-26 defines the State object. It will carry the offset at which you
should be starting the retrieval of the next record batch plus the completed flag, initially
set to false.

Example 10-26. The State object

package com.farata.lc.spi.impl;

public class State {
 public long offset = 0;
 public boolean completed = false;
}

And now you are ready to outline the code of the getPrincipalCollection(State
state) method. It should start with checking the completed property of state. As a
reminder, the incoming state has been set during the previous invocation of the
method. If the value is true, you should return null:

if (state.completed)
 return null;

Otherwise, you obtain the current batch of groups from the database using the
UMRepositoryDAO class (generated for us by Clear Data Builder). If the batch is empty
we, again, return null:

UMRepositoryDAO umRepository = new UMRepositoryDAO();
List<UMGroupDTO> groups = umRepository.getGroupsBatch(
 state.offset, GROUPS_BATCH_COUNT
);
if (groups.size() == 0)
 return null;

Extending LiveCycle with Custom Services | 537

It is also possible that the size of the retrieved data is simply less than you asked for. In
this case, you have reached the end of the data and should raise the state.completed
flag to true, so that the next invocation of the method will return null. Alternatively,
if you retrieved the full batch, you can increase state.offset one batch more:

if (groups.size() < GROUPS_BATCH_COUNT)
 state.completed = true;
else
 state.offset = state.offset + GROUPS_BATCH_COUNT;

Now you should create the empty DSPrincipalCollection and set its state property to
carry the offset and complete into the next time’s sequential call:

DSPrincipalCollection principalCollection = new DSPrincipalCollection();
principalCollection.setState(state);

The rest is technicality: looping through the list of groups, you will add records to the
principalCollection one at a time:

 for (UMGroupDTO group: groups){
 DSPrincipalRecord principalRecord = new DSPrincipalRecord();
 . . .
 principalRecord.setOid(group.ROLE_ID);
 principalRecord.setOriginalName(group.ROLE_NAME);
 . . .
 principalCollection.addDSPrincipalRecord(principalRecord);
 }
 return principalCollection;
}

The complete code of the GroupsProvider class is presented in Example 10-27.

Example 10-27. Complete code of the GroupsProvider class

package com.farata.lc.spi.impl;

import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.adobe.idp.um.spi.directoryservices.DSPrincipalCollection;
import com.adobe.idp.um.spi.directoryservices.DSPrincipalRecord;
import com.farata.datasource.UMRepositoryDAO;
import com.farata.datasource.dto.UMGroupDTO;
import com.farata.lc.spi.DSPrincipalCollectionProvider;
import com.farata.lc.spi.PrincipalProviderException;

@SuppressWarnings("unchecked")
public class GroupsProvider implements DSPrincipalCollectionProvider{
 public static final Logger logger = Logger.getLogger(
 GroupsProvider.class.getName());

 private static final String CANONICAL_NAME_SEPARATOR = ":";
 private static final String CANONICAL_GROUPNAME_PREFIX = "GROUP" +
 CANONICAL_NAME_SEPARATOR;

538 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 private static final int GROUPS_BATCH_COUNT = 2000;

 public DSPrincipalCollection getPrincipalCollection(State state){
 try{
 if (state.completed)
 return null;
 UMRepositoryDAO umRepository = new UMRepositoryDAO();
 List<UMGroupDTO> groups = umRepository.getGroupsBatch(
 state.offset, GROUPS_BATCH_COUNT
);
 if (groups.size() == 0)
 return null;
 else if (groups.size() < GROUPS_BATCH_COUNT)
 state.completed = true;
 else
 state.offset = state.offset + GROUPS_BATCH_COUNT;

 DSPrincipalCollection principalCollection = new DSPrincipalCollection();
 for (UMGroupDTO group: groups){
 DSPrincipalRecord principalRecord = new DSPrincipalRecord();
 principalRecord.setOid(group.ROLE_ID);
 principalRecord.setCanonicalName(composeGroupCanonicalName(
 group.ROLE_ID, group.ROLE_NAME));
 principalRecord.setDomainName(UsersProvider.FARATA_DOMAIN);
 principalRecord.setCommonName(group.ROLE_NAME);
 principalRecord.setOriginalName(group.ROLE_NAME);
 principalRecord.setFamilyName(group.ROLE_NAME);
 principalRecord.setGivenName(group.ROLE_NAME);
 principalRecord.setDescription(group.ROLE_NAME);
 principalRecord.setIsSystem(false);
 principalRecord.setDisabled(false);
 principalRecord.setPrincipalType(DSPrincipalRecord.PRINCIPALTYPE_GROUP);
 principalCollection.addDSPrincipalRecord(principalRecord);
 }
 principalCollection.setState(state);
 return principalCollection;
 }catch(Exception e){
 String message = "Farata groups provider: error occured during groups retrieval.";
 logger.log(Level.SEVERE, message, e);
 throw new PrincipalProviderException(message, e);
 }
 }

 private static String composeGroupCanonicalName(String userId, String groupName){
 return CANONICAL_GROUPNAME_PREFIX + userId + CANONICAL_NAME_SEPARATOR + groupName;
 }
}

Creating a custom users provider

Implementation of the custom users provider is, to a large degree, very similar to that
of the custom groups provider. After all, both classes implement the DSPrinci
palCollectionProvider interface with the single method getPrincipalCollection(). In
this respect, the difference between groups and users providers is that instead of batches

Extending LiveCycle with Custom Services | 539

of groups, you have to deliver batches of users. To that end, you are relying on the
getUserBatch() method of the generated UMRepositoryDAO class:

/**
* @daoflex:sql
* sql=:: select * from User order by User_ID limit :offset, :batchSize
* ::
* transferType=UMUserDTO[]
*/
public abstract List getUsersBatch(long offset, int batchSize);

Also, properties of each DSPrincipalRecord returned in the collection of users are
slightly different from those of the groups records:

principalRecord.setEmail(user.getEMAIL()) ;
principalRecord.setFamilyName(user.getLAST_NAME()) ;
principalRecord.setGivenName(user.getFIRST_NAME()) ;
principalRecord.setTelephoneNumber(user.getPHONE()) ;
principalRecord.setUserid(user.getLOGINNAME()) ;

Besides implementing getPrincipalCollection(), a custom user provider should im-
plement the static getGroupMembers() method, returning members of the group in the
so-called DSGroupContainmentRecord. The definition of the relevant userroleref table
from farata_livecycle_sampledb is shown in Example 10-28.

Example 10-28. table from farata_livecycle_sampledb

CREATE TABLE userroleref (
 ID varchar(36) NOT NULL,
 Role_ID varchar(36) NOT NULL,
 User_ID varchar(36) NOT NULL,
 PRIMARY KEY (ID)
)

Example 10-29 depicts the implementation of this method from our UsersProvider
class.

Example 10-29. Implementation of the getGroupMembers() method for the custom users provider

 public static DSGroupContainmentRecord getGroupMembers
 (
 DirectoryProviderConfig config,
 DSPrincipalIdRecord principalID
)
 throws IDPException{
 DSGroupContainmentRecord groupRecord = new DSGroupContainmentRecord() ;
 groupRecord.setCanonicalName(principalID.getCanonicalName()) ;
 groupRecord.setDomainName(principalID.getDomainName()) ;

 String groupId = getPrincipalId(principalID.getCanonicalName()) ;
 UMRepositoryDAO dao = new UMRepositoryDAO();
 List<UMRoleUsersDTO> users = dao.getUsersByRole(groupId);
 for (UMRoleUsersDTO user: users){
 DSPrincipalIdRecord member = new DSPrincipalIdRecord();
 member.setDomainName(groupRecord.getDomainName()) ;

540 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 member.setCanonicalName(composeUserCanonicalName(user.getUSER_ID(),
 user.getLOGINNAME())) ;
 groupRecord.addPrincipalMember(member) ;
 }
 return groupRecord;
 }

The example code relies on the getUsersByRole() method of the generated
UMRepositoryDAO class:

/**
* @daoflex:sql
* sql=:: select us.User_ID, us.LoginName from User us inner join UserRoleRef
* ref on us.User_ID=ref.User_ID where ref.Role_ID=:roleId
* ::
* transferType=UMRoleUsersDTO[]
*/
public abstract List getUsersByRole(String roleId);

The complete code of our custom users provider is shown in Example 10-30.

Example 10-30. Complete code of UsersProvider.java

package com.farata.lc.spi.impl;

import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.adobe.idp.common.errors.exception.IDPException;
import com.adobe.idp.um.spi.directoryservices.DSGroupContainmentRecord;
import com.adobe.idp.um.spi.directoryservices.DSPrincipalCollection;
import com.adobe.idp.um.spi.directoryservices.DSPrincipalIdRecord;
import com.adobe.idp.um.spi.directoryservices.DSPrincipalRecord;
import com.adobe.idp.um.spi.directoryservices.DirectoryProviderConfig;
import com.farata.datasource.UMRepositoryDAO;
import com.farata.datasource.dto.UMRoleUsersDTO;
import com.farata.datasource.dto.UMUserDTO;
import com.farata.lc.spi.DSPrincipalCollectionProvider;
import com.farata.lc.spi.PrincipalProviderException;

@SuppressWarnings("unchecked")
public class UsersProvider implements DSPrincipalCollectionProvider{

 public static final Logger logger = Logger.getLogger(UsersProvider.class.getName());

 public static final String FARATA_DOMAIN = "FarataDomain";
 private static final String CANONICAL_NAME_SEPARATOR = ":" ;
 private static final String CANONICAL_USERNAME_PREFIX = "USER" +
 CANONICAL_NAME_SEPARATOR ;
 private static final int USERS_BATCH_COUNT = 2000 ;

 public DSPrincipalCollection getPrincipalCollection(State state){
 try{
 if (state.completed)
 return null;

Extending LiveCycle with Custom Services | 541

 UMRepositoryDAO umRepository = new UMRepositoryDAO();
 List<UMUserDTO> users = umRepository.getUsersBatch(state.offset,
 USERS_BATCH_COUNT);
 if (users.size() < USERS_BATCH_COUNT && users.size() > 0)
 state.completed = true;
 else if (users.size() == 0)
 return null;
 else
 state.offset=state.offset + USERS_BATCH_COUNT;

 DSPrincipalCollection principalCollection = new DSPrincipalCollection() ;
 principalCollection.setState(state);
 for (UMUserDTO user: users){
 DSPrincipalRecord principalRecord = new DSPrincipalRecord() ;
 principalRecord.setOid(user.getUSER_ID()) ;
 principalRecord.setDescription(user.getDESCRIPTION()) ;
 principalRecord.setEmail(user.getEMAIL()) ;
 principalRecord.setFamilyName(user.getLAST_NAME()) ;
 principalRecord.setGivenName(user.getFIRST_NAME()) ;
 principalRecord.setTelephoneNumber(user.getPHONE()) ;
 principalRecord.setUserid(user.getLOGINNAME()) ;

principalRecord.setCanonicalName(composeUserCanonicalName(user.getUSER_ID(),
 user.getLOGINNAME())) ;
 principalRecord.setCommonName(user.getLOGINNAME()) ;
 principalRecord.setDomainName(UsersProvider.FARATA_DOMAIN) ;
 principalRecord.setOrg(user.getDEPARTMENT()) ;
 principalRecord.setPrincipalType(DSPrincipalRecord.PRINCIPALTYPE_USER) ;
 principalRecord.setLocale("en") ;
 principalRecord.setDisabled(user.getLOCKED()) ;
 principalRecord.setIsSystem(false) ;
 principalCollection.addDSPrincipalRecord(principalRecord) ;
 }
 return principalCollection;
 }
 catch(Exception e){
 String message = "Farata users provider: error occured during users retrieval.";
 logger.log(Level.SEVERE, message, e);
 throw new PrincipalProviderException(message, e) ;
 }
 }

 public static DSGroupContainmentRecord getGroupMembers
 (
 DirectoryProviderConfig config,
 DSPrincipalIdRecord principalID
)
 throws IDPException{
 DSGroupContainmentRecord groupRecord = new DSGroupContainmentRecord() ;
 groupRecord.setCanonicalName(principalID.getCanonicalName()) ;
 groupRecord.setDomainName(principalID.getDomainName()) ;

 String groupId = getPrincipalId(principalID.getCanonicalName()) ;
 UMRepositoryDAO dao = new UMRepositoryDAO();

542 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

yfain11
Comment on Text
Move it all the way to the right or align with the previous line - you can put the line break before the first word user.

 List<UMRoleUsersDTO> users = dao.getUsersByRole(groupId);
 for (UMRoleUsersDTO user: users){
 DSPrincipalIdRecord member = new DSPrincipalIdRecord();
 member.setDomainName(groupRecord.getDomainName()) ;
 member.setCanonicalName(composeUserCanonicalName(user.getUSER_ID(),
 user.getLOGINNAME())) ;
 groupRecord.addPrincipalMember(member) ;
 }
 return groupRecord;
 }

 private static String composeUserCanonicalName(String userId, String loginName){
 return CANONICAL_USERNAME_PREFIX + userId + CANONICAL_NAME_SEPARATOR + loginName ;
 }

 private static String getPrincipalId(String canonicalName){
 if (canonicalName != null && canonicalName.length() > 0){
 final int startIndex = canonicalName.indexOf(CANONICAL_NAME_SEPARATOR) ;
 final int endIndex = canonicalName.indexOf(CANONICAL_NAME_SEPARATOR,
 startIndex + 1) ;
 if (startIndex != -1 && endIndex != -1)
 return canonicalName.substring(startIndex + 1, endIndex) ;
 }

 return null ;
 }
}

Custom Solution Components
The custom authentication, users, and groups providers described in the previous
sections illustrate the creation of custom services that extend the infrastructure of Live-
Cycle ES. On top of that, you can create functional custom services that directly par-
ticipate in the logic of the processes that you design. In LiveCycle ES, these services are
referred to as custom solution components. (This name can be quite confusing. The fact
is that for the purposes of deployment, one or more services can get jarred together in
one file along with component.xml. So, strictly speaking, there are custom services de-
ployed through component Jars.)

Custom solution components are direct extensions of the services provided by Live-
Cycle ES and you may use them side by side with each other. For instance, Supplier-
Process from Figure 10-33 is using four operations of the custom SupplierService that
has been deployed into LiveCycle ES as part of the custom component FarataSample-
Component.jar:

• initializeProcess

• handleApprovedOrder

• handleRejectedOrder

• getRetailerOrderStatus

Extending LiveCycle with Custom Services | 543

The complete SupplierService.java application is presented in Example 10-33; next, we
will walk you through two methods: initializeProcessVariables() and handleAppro
vedOrder().

Implementation of initializeProcessVariables()

The method initializeProcessVariables() computes the variables of orderStatus and
supplierUserName given the orderId, where orderId is a key to locate the order in the
farata_livecycle_sampledb database. Figure 10-33 presents the partial diagram of the
process, highlighting the properties of the activity based on this method.

The service that carries the initializeProcessVariables() method—SupplierService
—is listed in the component.xml descriptor of the FarataComponentSample.jar file

Figure 10-33. Initialization of the SupplierProcess’s variables by the custom service method

544 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

along with the JARs required to resolve references to the dependent classes (these
classes are required by the Clear Data Builder methodology), as in Example 10-31.

Example 10-31. Component descriptor for FarataComponentSample.jar

<component xmlns="http://adobe.com/idp/dsc/component/document">
 <component-id>com.farata.livecycle.FarataSampleComponent</component-id>
 <version>4.0</version>
 <class-path>log4j.jar services-generated.jar services-original.jar daofle10-
runtime.jar</class-path>
 <bootstrap-class>com.farata.lc.ComponentBootstrap</bootstrap-class>
 <lifecycle-class>com.farata.lc.ComponentLifeCycle</lifecycle-class>
 <descriptor-
class>com.adobe.idp.dsc.component.impl.DefaultPOJODescriptorImpl</descriptor-class>
 <search-order>PARENT_FIRST</search-order>
 <dynamic-import-packages>
 <package version="1.0" isOptional="true">*</package>
 </dynamic-import-packages>
 <services>
 <service name="SupplierService">
 <implementation-
class>com.farata.lc.warehouse.SupplierService</implementation-class>
 <operations> . . .
. . .
 </service>
 </services>
</component>

All operations of SupplierService are registered in component.xml along with both the
input and output parameters. Please notice the binding-type="Bean" in the definition
of the Supplier and Status parameters. It indicates that particular public properties of
a class returned by the Java method should be interpreted as “independent” output
variables of the service method. In comparison, parameters of handleApprovedOrder()
use the default binding type (Example 10-32).

Example 10-32. Fragment of SupplierService related to registering operations

 <service name="SupplierService">
 <implementation-class>com.farata.lc.warehouse.SupplierService
 </implementation-class>
 <operations>
 <operation name="initializeProcessVariables"
 method="initializeProcessVariables" >
 <input-parameter name="OrderID" type="java.lang.String" />
 <output-parameter name="Supplier" type="java.lang.String" binding-
 type="Bean" property="supplier"/>
 <output-parameter name="Status" type="java.lang.String" binding-
 type="Bean" property="status"/>
 </operation>
 <operation name="handleApprovedOrder" method="handleApprovedOrder" >
 <input-parameter name="OrderID" type="java.lang.String" />
 <output-parameter name="Status" type="java.lang.Integer" />
 </operation>
 . . .

Extending LiveCycle with Custom Services | 545

 </operations>
 </service>

Now it’s time to roll up your sleeves, or put on your glasses—whatever is your choice:
you will now look at the Java code. Again, all database-related functionality is entirely
based on Clear Data Builder, and this time we will spare you the low-level explanations.

The method starts with pulling a list of suppliers via userDao.getSuppliers(). In fact,
it queries the user table for all records that match the role “supplier.” Then it naïvely
picks the first available supplier (the sophistication of the geographical location and
supplier ratings is beyond the point we are trying to make) and prepares to return its
LOGINNAME via the supplier property of the ProcessData object:

public ProcessData initializeProcessVariables(String orderId){

 UserDAO userDao = new UserDAO();
 List<SupplierDTO> suppliers = userDao.getSuppliers();

 if (suppliers.size() == 0){
 throw new RuntimeException("There are no suppliers available.");
 }
 ProcessData data = new ProcessData();
 data.setSupplier(suppliers.get(0).LOGINNAME);

Then, the method writes ORDER_STATUS_INPROCESS into the status field of the
retailer_order table and the matching property of the ProcessData object:

RetailerOrderDAO orderDao = new RetailerOrderDAO();
orderDao.updateOrderStatus(orderId, ORDER_STATUS_INPROCESS);

data.setStatus(ORDER_STATUS_INPROCESS);

Finally, it decreases the inventory, effectively prebooking the order:

 decreaseInventory(orderId);

 return data;
}

Implementation of handleApprovedOrder()

Now let’s look at the handleApprovedOrder() method. It deserves our attention: after
all, this is where the event dispatching is being done. Figure 10-34 illustrates how the
method is plugged into SupplierProcess.

The method takes single argument orderId. It pulls down the list of the order line items
and for each item dispatches a custom event, LineItemChanged (more on defining events,
using them as a process start point, and dispatching them in the following sections of
the chapter):

for (int i = 0; i < orderLineItems.size(); i++){
 OrderLineItemDTO lineItem = orderLineItems.get(i);
 EventsHelper.dispatchLineItemEvent(

546 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 lineItem.LINEITEM_ID, lineItem.MNF_CODE, "quantity");
}

This concludes our limited walkthrough of SupplierService.java. The complete code is
available in Example 10-33.

Figure 10-34. Operation handleApprovedOrder encapsulates dispatching of the LineItemChanged
events

Example 10-33. Complete code of the custom file SupplierService.java

package com.farata.lc.warehouse;

import java.util.*;
import com.farata.datasource.*;
import com.farata.datasource.dto.*;
import com.farata.lc.events.EventsHelper;
import com.theriabook.remoting.ChangeObjectImpl;

@SuppressWarnings("unchecked")
public class SupplierService{

 public static final int ORDER_STATUS_UNDEFINED = -1;
 public static final int ORDER_STATUS_CREATED = 1;
 public static final int ORDER_STATUS_INPROCESS = 2;
 public static final int ORDER_STATUS_APPROVED = 3;
 public static final int ORDER_STATUS_REJECTED = 4;
 public static final int ORDER_STATUS_COMPLETED = 5;
 public static final int ORDER_STATUS_CONFIRMED = 6;

Extending LiveCycle with Custom Services | 547

 public ProcessData initializeProcessVariables(String orderId){

 UserDAO userDao = new UserDAO();
 List<SupplierDTO> suppliers = userDao.getSuppliers();

 if (suppliers.size() == 0){
 throw new RuntimeException("There are no suppliers available.");
 }

 RetailerOrderDAO orderDao = new RetailerOrderDAO();
 orderDao.updateOrderStatus(orderId, ORDER_STATUS_INPROCESS);

 ProcessData data = new ProcessData();
 data.setStatus(ORDER_STATUS_INPROCESS);
 data.setSupplier(suppliers.get(0).LOGINNAME);

 decreaseInventory(orderId);

 return data;
 }

 public long getRetailerOrderStatus(String orderId){
 RetailerOrderDAO retailerDao = new RetailerOrderDAO();
 List<RetailerOrderDTO> orders = retailerDao.getOrder(orderId);
 if (orders.size() > 0){
 RetailerOrderDTO order = orders.get(0);
 return order.STATUS;
 }
 return ORDER_STATUS_UNDEFINED;
 }

 public int handleApprovedOrder(String orderId){
 OrderLineItemDAO orderLineItemDao = new OrderLineItemDAO();
 List<OrderLineItemDTO> orderLineItems = orderLineItemDao.getLineItems(
 orderId
);
 for (int i = 0; i < orderLineItems.size(); i++){
 OrderLineItemDTO lineItem = orderLineItems.get(i);
 EventsHelper.dispatchLineItemEvent(
 lineItem.LINEITEM_ID, lineItem.MNF_CODE);
 }
 return ORDER_STATUS_APPROVED;
 }

 public int handleRejectedOrder(String orderId){
 OrderLineItemDAO orderLineItemDao = new OrderLineItemDAO();
 List<OrderLineItemDTO> orderLineItems = orderLineItemDao.getLineItems(
 orderId
);
 Map<String, OrderLineItemDTO> orderLIMappings =
 new HashMap<String, OrderLineItemDTO>(orderLineItems.size());
 Map params = getOrderLineItemsParam(orderLineItems, orderLIMappings);

 InventoryDAO inventoryDao = new InventoryDAO();

548 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 List<UpdatableInventoryItemDTO> lineItems =
 inventoryDao.getLineItemsByGuids(
 params
);

 List changeObjects = new ArrayList(lineItems.size());
 for (int i = 0; i < lineItems.size(); i++){
 UpdatableInventoryItemDTO lineItem = lineItems.get(i);
 String lineItemId = lineItem.LINEITEM_ID;
 OrderLineItemDTO orderItem = orderLIMappings.get(lineItemId);
 long quantityAvailable = lineItem.QUANTITY;
 long quantityRequired = orderItem.QUANTITY;
 quantityAvailable += quantityRequired;
 ChangeObjectImpl co = new ChangeObjectImpl();
 co.setPreviousVersion(lineItem);
 UpdatableInventoryItemDTO newLineItem = clone(lineItem);
 newLineItem.setQUANTITY(quantityAvailable);
 co.setNewVersion(newLineItem);
 co.setState(2);
 changeObjects.add(co);
 }

 try {
 inventoryDao.getLineItemsByGuids_updateItems(changeObjects);
 } catch(Exception e){
 // TODO: add logging
 throw new RuntimeException(e);
 }
 return ORDER_STATUS_REJECTED;
 }

 private void decreaseInventory (String orderId){
 OrderLineItemDAO orderLineItemDao = new OrderLineItemDAO();
 List<OrderLineItemDTO> orderLineItems = orderLineItemDao.getLineItems(
 orderId
);
 Map<String, OrderLineItemDTO> orderLIMappings =
 new HashMap<String, OrderLineItemDTO>(orderLineItems.size());
 Map params = getOrderLineItemsParam(orderLineItems, orderLIMappings);

 InventoryDAO inventoryDao = new InventoryDAO();
 List<UpdatableInventoryItemDTO> lineItems = inventoryDao.getLineItemsByGuids(
 params
);

 List changeObjects = new ArrayList(lineItems.size());
 for (int i = 0; i < lineItems.size(); i++){
 UpdatableInventoryItemDTO lineItem = lineItems.get(i);
 String lineItemId = lineItem.LINEITEM_ID;
 OrderLineItemDTO orderItem = orderLIMappings.get(lineItemId);
 long quantityAvailable = lineItem.QUANTITY;
 long quantityRequired = orderItem.REQUIRED_QUANTITY;
 quantityAvailable -= quantityRequired;
 quantityAvailable = quantityAvailable < 0 ? 0 : quantityAvailable;

Extending LiveCycle with Custom Services | 549

 ChangeObjectImpl co = new ChangeObjectImpl();
 co.setPreviousVersion(lineItem);
 UpdatableInventoryItemDTO newLineItem = clone(lineItem);
 newLineItem.QUANTITY = quantityAvailable ;
 co.setNewVersion(newLineItem);
 co.setState(2);
 changeObjects.add(co);
 }

 try{
 inventoryDao.getLineItemsByGuids_updateItems(changeObjects);
 } catch(Exception e){
 // TODO: add logging
 throw new RuntimeException(e);
 }
 }

 private Map getOrderLineItemsParam(List<OrderLineItemDTO> orderLineItems,
 Map<String, OrderLineItemDTO> orderLIMappings){
 int lineItemsSize = orderLineItems.size();
 List<String> keys = new ArrayList<String>(lineItemsSize);

 for (int i = 0; i < lineItemsSize; i++){
 OrderLineItemDTO orderLineItem = orderLineItems.get(i);
 keys.add("'" + orderLineItem.LINEITEM_ID + "'");
 orderLIMappings.put(orderLineItem.LINEITEM_ID, orderLineItem);
 }

 String keyString = keys.toString();
 keyString = keyString.substring(1, keyString.length() - 1);
 keyString = "(" + keyString + ")";
 return Collections.singletonMap("values", keyString);
 }

 private UpdatableInventoryItemDTO clone(UpdatableInventoryItemDTO source){
 UpdatableInventoryItemDTO target = new UpdatableInventoryItemDTO();
 target.DESCRIPTION = source.DESCRIPTION;
 target.LINEITEM_CODE = source.LINEITEM_CODE;
 target.LINEITEM_ID = source.LINEITEM_ID;
 target.MANUFACTURER_ID = source.MANUFACTURER_ID;
 target.PRICE = source.PRICE;
 target.QUANTITY = source.QUANTITY;
 target.UNIT = source.UNIT;
 return target;
 }
}

Orchestrating Processes with Asynchronous Events
While describing our business scenario, we mentioned that the handleApprovedOrder
method of the SupplierProcess activity is initiating an entirely different process between
the Supplier and a specific Manufacturer, AndyNailsProcess (see Figures 10-28 and
10-29). In fact, this was both an over- and an understatement at the same time.

550 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

It is an overstatement because SupplierProcess does not directly initiate any other pro-
cesses. It is an understatement because indirectly it may initiate an arbitrary number
of the processes—as many as will be willing to listen to the event.

Meet asynchronous events: SupplierProcess simply broadcasts an event per each line of
the approved retailer order, as shown in Example 10-34.

Example 10-34. Fragment of SupplierProcess related to dispatching events

public int handleApprovedOrder(String orderId){
 OrderLineItemDAO orderLineItemDao = new OrderLineItemDAO();
 List<OrderLineItemDTO> orderLineItems = orderLineItemDao.getLineItems(
 orderId
);
 for (int i = 0; i < orderLineItems.size(); i++){
 OrderLineItemDTO lineItem = orderLineItems.get(i);
 EventsHelper.dispatchLineItemEvent(
 lineItem.LINEITEM_ID, lineItem.MNF_CODE);
 }
 return ORDER_STATUS_APPROVED;
}

How are the processes are being set up to “wake up” based on the broadcast event, and
what does it take to actually dispatch these events? These are the topics of the next
section.

Defining Events
Asynchronous events look and act much like network messages. They have two sections
that you may relate to the headers and payload, in messaging lingo. Example 10-35
represents the schema defining a record with two fields: string LineItemId and string
ManufacturerCode. In Example 10-35, we call this record LineItemEventTemplate to hint
at what we will do with it just a bit later.

Example 10-35. The XML schema used to define our custom LineItemChanged event

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="LineItemEventTemplate">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LineItemId">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="36"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="ManufacturerCode">
 <xs:simpleType>

Orchestrating Processes with Asynchronous Events | 551

 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="100"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The event gets defined in the Workbench (and, of course, you can import it, either
separately or as a part of the LiveCycle archive). Figure 10-35 shows the screenshot of
the Workbench dialog defining the LineItemChanged event. Notice that Event Data
Template contains the XML schema we have just discussed. It corresponds to the
headers if you switch to messaging lingo again. The event is ready to be thrown.

Figure 10-35. The Workbench dialog defining the event

552 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

Dispatching Events
To dispatch this event, you should first obtain an instance of EventServiceClient:

ServiceClientFactory factory = ServiceClientFactory.createInstance(
 UMLocalUtils.getSystemContext()
);

EventServiceClient client = EventServiceClient.getInstance(factory);

Once you have EventServiceClient, you create the event, populate its properties
(headers) and/or data (payload) properties:

CreateAsynchronousEventInfo info = client.newCreateAsynchronousEventInfo(
 "LineItemChanged"
);
Map props = new HashMap(2);
props.put("LineItemId", lineItemId);
props.put("Manufacturer_Code", mnfCode);
info.setEventProperties(props);
client.createEvent(info, null);

Example 10-36 contains the complete code of the EventsHelper class illustrating this
technique.

Example 10-36. The complete code of EventsHelper.java

package com.farata.lc.events;

import java.io.InputStream;
import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.adobe.idp.dsc.clientsdk.ServiceClientFactory;
import com.adobe.idp.event.client.EventServiceClient;
import com.adobe.idp.event.command.CreateAsynchronousEventInfo;
import com.adobe.idp.event.exception.EventTypeDoesNotExistException;
import com.adobe.idp.um.api.UMLocalUtils;

@SuppressWarnings("unchecked")
public class EventsHelper {
 protected static final Logger logger = Logger.getLogger(
 EventsHelper.class.getName()
);

 private static final String LINE_ITEM_CHANGED = "LineItemChanged";

 public static void dispatchLineItemEvent(String lineItemId, String mnfCode){
 try{
 ServiceClientFactory factory = getServiceFactory();
 EventServiceClient client = EventServiceClient.getInstance(factory);
 CreateAsynchronousEventInfo info = client.newCreateAsynchronousEventInfo(
 LINE_ITEM_CHANGED
);

Orchestrating Processes with Asynchronous Events | 553

 Map props = new HashMap(2);
 props.put("LineItemId", lineItemId);
 props.put("ManufacturerCode", mnfCode);
 info.setEventProperties(props);
 client.createEvent(info, null);
 } catch(Exception e){
 String message = "Failed to dispatch line item event";
 logger.log(Level.SEVERE, message, e);
 throw new RuntimeException(message, e);
 }
 }

 private static ServiceClientFactory getServiceFactory(){
 try{
 return ServiceClientFactory.createInstance(
 UMLocalUtils.getSystemContext()
);
 } catch(Exception e){
 String message = "Error occured getting system service factory";
 logger.log(Level.SEVERE, message, e);
 throw new RuntimeException(message, e);
 }
 }
}

Starting the Process on an Asynchronous Event
To start the process on an event you should, well, begin with the process. In our “nails
and hammers” example, there are two manufacturers’ processes awaiting an asynchro-
nous event to start. They are AndyNailsProcess and DanielHammersProcess. Let’s have
a close look at the diagram of the AndyNailsProcess in Figure 10-36.

The circle in the upper-left corner is the event that LiveCycle ES will monitor to in-
stantiate the process: LineItemChanged. Meanwhile, the process-starting activity is
CheckAndOrder (Figure 10-37).

Behind this activity is the Java method checkAndOrder() of the custom class
AndyNailsService. It conditionally orders boxes of nails if the quantity on hand is less
than was ordered by retailers over the last week. As shown in Example 10-37, check
AndOrder() returns the SupplierOrderProcessData (whose code is in Example 10-38)
even when no order is necessary, as in one of the programmers’ jokes—when a pro-
grammer goes to bed, she prepares two glasses: a glass of water, in case she will get
thirsty, and an empty glass, in case she won’t.

Example 10-37. Fragment of checkAndOrder()

public SupplierOrderProcessData checkAndOrder(String lineItemId) throws
LineItemNotFoundException{
. . . .
if (currentQuantity - lastWeekDemand < 0){
 return createSupplierOrder (
 lineItemDTO.LINEITEM_ID,

554 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 (new Double(lastWeekDemand)).longValue()
);
} else {
 SupplierOrderProcessData data = new SupplierOrderProcessData();
 data.setOrderCreated(false);
 return data;
}

Figure 10-36. AndyNailsProcess starts dispatching the LineItemChanged event (if the event filter
condition is met)

Example 10-38. The complete code of SupplierOrderProcessData

package com.farata.lc.warehouse;

public class SupplierOrderProcessData {
 private String _orderId;
 private String _manufacturerLogin;
 private boolean _orderCreated;

 public String getOrderId() {
 return _orderId;
 }

 public void setOrderId(String orderId) {
 _orderId = orderId;
 }

 public String getManufacturerLogin() {
 return _manufacturerLogin;

Orchestrating Processes with Asynchronous Events | 555

 }

 public void setManufacturerLogin(String manufacturerLogin) {
 _manufacturerLogin = manufacturerLogin;
 }

 public boolean isOrderCreated() {
 return _orderCreated;
 }

 public void setOrderCreated(boolean orderCreated) {
 _orderCreated = orderCreated;
 }
}

Figure 10-37. CheckAndOrder: the starting activity of AndyNailsProcess

556 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

The complete code of the AndyNailsService class is presented in Example 10-39. Note
that among the files accompanying this chapter (see the Preface), you will find another
custom service class example—DanielHammerService. Both classes, DanielHam
merService and AnyNailsService, extend AbstractManufactureService; however, in the
case of DanielHammerService, reordering is based on the monthly demand.

Importantly, both AndyNailsProcess and DanielHammersProcess define the asynchro-
nous event LineItemChanged as their start point. In other words, the LiveCycle ES engine
is monitoring the dispatching of the events and delivers these “messages” to “subscrib-
ers” such as AndyNailsProcess and DanielHammersProcess.

Example 10-39. The complete code of custom class AndyNailsService

package com.farata.lc.warehouse;

import java.util.Date;
import java.util.List;

import com.farata.datasource.InventoryDAO;
import com.farata.datasource.OrderLineItemDAO;
import com.farata.datasource.dto.InventoryItemDTO;
import com.farata.datasource.dto.OrderLineItemSumDTO;

@SuppressWarnings("unchecked")
public class AndyNailsService extends AbstractManufacturerService implements
IManufacturerService{

 private static final long MILLISECONDS_IN_WEEK = 1000 * 3600 * 24 * 7;

 public SupplierOrderProcessData checkAndOrder(String lineItemId) throws
 LineItemNotFoundException{
 InventoryDAO dao = new InventoryDAO();
 List<InventoryItemDTO> lineItems = dao.getLineItem(lineItemId);
 if (lineItems.size() > 0){
 InventoryItemDTO lineItemDTO = lineItems.get(0);
 long currentQuantity = lineItemDTO.QUANTITY;
 OrderLineItemDAO orderDao = new OrderLineItemDAO();

 Date startDate = new Date(System.currentTimeMillis() - MILLISECONDS_IN_WEEK);
 Date endDate = new Date();
 List<OrderLineItemSumDTO> result = orderDao.getRetailerOrderSum(
 lineItemId, startDate, endDate);
 OrderLineItemSumDTO sum = result.get(0);
 double lastWeekDemand = sum.QUANTITY;

 if (currentQuantity - lastWeekDemand < 0){
 return createSupplierOrder
 (
 lineItemDTO.LINEITEM_ID,
 (new Double(lastWeekDemand)).longValue()
);
 }else{
 SupplierOrderProcessData data = new SupplierOrderProcessData();
 data.setOrderCreated(false);

Orchestrating Processes with Asynchronous Events | 557

 return data;
 }
 }
 else
 throw new LineItemNotFoundException("Specified line item is not found: " +
 lineItemId);
 }
}

While configuring the event (-based) start point, you can set the filter, similar to the
message selector. Remember the line:

props.put("ManufacturerCode", mnfCode);

from the EventsHelper class from Example 10-36? Now look at Figure 10-38, which
illustrates the start point filter for AndyNailsProcess. The filter is being set to Manufac
turer_Code=nail and, accordingly, events that do not contain "nail" as the value of the
Manufacturer_Code will not start the process instance.

Figure 10-38. Setup of the event filter

Besides specifying a filter, you need to tell the LiveCycle engine how to map the in-
coming event data into variables of the process. Figure 10-39 illustrates how the process
variable LineItemId is prescribed to take, upon the event’s arrival, the value of

558 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

lineItemId, which was set by the props.put("LineItemId", lineItemId) line of Even
tHelper.

And so you have decomposed a complex process into a set of the simple ones:
SupplierProcess, AndyNailsProcess, DanielHammersProcess and, for that matter—any
other process that will react to the LineItemChanged event.

Here is the rest of the AndyNailsProcess logic. Upon return from the
AndyNailsProcess.checkAndOrder() operation, the database might already contain a
new record in the supplier_order table. In this case, the process will expect an approval
by a representative of Andy Nails. For the sake of simplicity, naïvely assume that such
approval is enough for the palettes with boxes of nails to magically appear in a ware-
house. The SupplierService.getSupplierOrderStatus() process might need to increase
values in the inventory table using SupplierService.increaseInventory(). Otherwise
—if the inventory did not need to be replenished or if the manufacturer is not approving
the order—the inventory will not get changed.

Now that you know how to create custom services, plug them into processes, and
coordinate these processes with events, let’s see how to ignite it all with LiveCycle API
calls from inside your Flex application.

Figure 10-39. Mapping the event data to the process variables

Orchestrating Processes with Asynchronous Events | 559

Blending the LiveCycle API with Custom Flex Applications
We have armed ourselves with customer services. We have completed the Supplier-
Process and modeled a manufacturer’s process with AndyNailsProcess. We coordinated
all processes via an asynchronous event. Now, it’s time to tie it all to the end-user UI.

We will limit the explanation to a single use case: how to start the process from the
custom Flex application. Figure 10-40 represents the screen as it is seen by the retailer
when placing an order.

Figure 10-40. Retailer starts the SupplierProcess by clicking Submit

The snippet of the Create Order VBox from this screen is shown in Example 10-40 (see
Example 10-44 for the complete code of the corresponding CreateRequest.mxml).

Example 10-40. The fragment of the CreateOrder VBox

<?xml version="1.0" encoding="UTF-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="onCreationComplete()"
 >. . .

 <mx:HBox id="controlBar" width="100%" height="24" styleName="controlsStyle" >
 <mx:Label text="Create Order" width="100%" color="white" />
 <mx:Button label="Submit" click="submitRequest()"/>
 <mx:Button label="Cancel" click="cancelRequest()"/>
 </mx:HBox>

 <mx:Form width="100%">
 <mx:FormItem label="Order Description: " width="100%" fontWeight="bold">
 <mx:TextInput id="descriptionText" width="90%" fontWeight="normal"/>
 </mx:FormItem>
 <mx:FormItem label="Retailer Name: ">
 <mx:Label text="{retailers.getItemAt(0).RETAILER_NAME}"/>
 </mx:FormItem>
 </mx:Form>

 <mx:DataGrid id="dg_inventory" dataProvider="{inventoryItems}" height="100%"
width="100%" editable="true">
 </mx:columns>

560 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 </mx:DataGrid>
. . . .
</mx:VBox>

Remember now you want LiveCycle to store as little data as possible in its internal
database? Here is the two-step algorithm:

• The function submitRequest() will remote (asynchronously) to the Java method
that persists the order to the business database.

• Upon success, the “result” event handler will remote to yet another Java method
to actually start the LiveCycle process instance, passing orderId as the only
parameter.

Let’s make it happen, unraveling the steps in the reverse order.

Invoking a LiveCycle Process on the Server
Short of DAO methods, we will concentrate all Java methods to remote to in a single
Java facade class, WorkflowAssembler. It will span methods to start the process, get a
list of tasks, complete a task, and so on:

package com.farata.warehouse.wf;

. . .

public class WorkflowAssembler
{
 public String startProcess(String orderId){
 . . .
 }
 public void completeTask (long taskId){
 . . .
 }
}

To remote to this class, create the following destination in remoting-config.xml:

<destination id="WorkflowAssembler">
 <properties>
 <source>com.farata.warehouse.wf.WorkflowAssembler</source>
 </properties>
</destination>

Now look at the implementation of the startProcess() method. All roads lead to Rome.
All Java API calls require an instance of ServiceClientFactory from the
com.adobe.idp.dsc.clientsdk.ServiceClientFactory package. Example 10-41 presents
the helper method getServiceClientFactory(), a part of the WorkflowAssembler that
builds such a factory.

Blending the LiveCycle API with Custom Flex Applications | 561

Example 10-41. A fragment of WorkflowAssember: building the ServiceClientFactory

public static ServiceClientFactory getServiceClientFactory() throws UMException {
 // Obtain user login name from the FlexSession
 . . .
 String loginName = . . .

 // Obtain password via loginName from the user table

 String password = . . .

 final Properties properties = new Properties();
 properties.setProperty("DSC_DEFAULT_EJB_ENDPOINT", "jnp://localhost:1099");
 properties.setProperty("DSC_TRANSPORT_PROTOCOL","EJB");
 properties.setProperty("DSC_SERVER_TYPE", "JBoss");
 properties.setProperty("DSC_CREDENTIAL_USERNAME", loginName);
 properties.setProperty("DSC_CREDENTIAL_PASSWORD", password);
 ServiceClientFactory clientFactory = ServiceClientFactory.createInstance(
 properties
);
 return serviceClientFactory;
}

Now that you have the factory, you can invoke SupplierProcess as shown in Exam-
ple 10-42. (Here, assume that an administrator has granted the authority to invoke()
the process to the user authenticated with LiveCycle via loginName and password. In our
case, that should be a retailer, although during the setup of the samples, we recommend
granting the invoke right to all principals from the Farata enterprise domain.)

Example 10-42. A fragment of WorkflowAssember: starting the SupplierProcess

package com.farata.warehouse.wf;

. . .

public class WorkflowAssembler
{
 public String startProcess(String orderId){
 try {
 final ServiceClientFactory factory = getServiceClientFactory();
 final ServiceClient serviceClient = factory.getServiceClient() ;
 Map<String, String> params = new HashMap<String, String>();
 params.put("orderId", orderId) ;
 InvocationRequest request = factory.createInvocationRequest
 (
 "Supplier Process",
 "invoke",
 params,
 false
) ;
 InvocationResponse response = serviceClient.invoke(request);
 JobId jobId = new JobId(response.getInvocationId());
 return jobId.getId() ;
 }
 catch(Exception e){

562 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 throw new WorkflowAssemblerException("Failed to start SupplierService
 process", e);
 }
 }

 public static ServiceClientFactory getServiceClientFactory() throws UMException
{
 . . .
}
}

Starting a Process Instance from the Flex Application
Once you have the Java code to instantiate the SupplierProcess, the sky’s the limit. The
following snippet shows the remoting destination that you add to the remoting-con-
fig.xml file of our Flex application to reach the WorkflowAssembler class from Action-
Script:

 <destination id="WorkflowAssembler">
 <properties>
 <source>com.farata.warehouse.wf.WorkflowAssembler</source>
 </properties>
</destination>

In Chapter 6, we explained how to update several database tables from ActionScript
in a single database (and JEE) transaction without writing a custom Java code. Piggy-
backing on this technique, you can include one more destination in the remoting-con-
fig.xml file:

 <destination id="batchGateway">
 <properties>
 <source>com.theriabook.remoting.BatchGateway</source>
 </properties>
 </destination>

And now you can send changes to collections of orders and order items (see Exam-
ple 10-45) in a single transaction by calling batchService.sendBatch(). Associating the
ResultEvent.RESULT with the orderSubmitted() method, you can ensure that the actual
start of the process is executed only if the retailer’s order has been saved in the database,
as shown in Example 10-43. The complete code of CreateRequest.mxml is shown in
“Starting a Process Instance from the Flex Application” on page 563.

Example 10-43. The fragment of WorkflowAssember: starting the SupplierProcess

private function submitRequest():void{

 if (! isValid())
 return;
 . . .
 if (selectedItems.length > 0 && order){

Blending the LiveCycle API with Custom Flex Applications | 563

 . . .
 // Update tables supplier_order and order_lineitem tables with
 //in a single JEE transaction, passing changes in
 // orderCollection and orderItemsCollection via Farata BatchService

 var batchService:BatchService = new BatchService();
 batchService.registerCollection(orderItems,1);
 batchService.registerCollection(ordersCollection,0);
 var batch:Array = batchService.batchRegisteredCollections();
 batchService.addEventListener(ResultEvent.RESULT, orderSubmitted);
 var token:AsyncToken = batchService.sendBatch(batch);
 token.orderId = order.ORDER_ID;
 }
}

private function orderSubmitted(event:ResultEvent):void{
 var orderId:String = event.token.orderId;
 const workflowAssembler:RemoteObject = new RemoteObject();
 workflowAssembler.destination = "WorkflowAssembler";
 workflowAssembler.addEventListener(
 FaultEvent.FAULT,
 function error(event:FaultEvent):void{
 Alert.show(event.message.toString());
 }
);
 workflowAssembler.addEventListener(ResultEvent.RESULT, processInvoked);

 const token:AsyncToken = workflowAssembler.startProcess(orderId);
}

Example 10-44. Complete code of CreateRequest.mxml

<?xml version="1.0" encoding="UTF-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="onCreationComplete()"
 >
 <mx:Metadata>
 [Event(name="back", type="mx.events.FlexEvent")]
 </mx:Metadata>

 <mx:HBox id="controlBar" width="100%" height="24" styleName="controlsStyle" >
 <mx:Label text="Create Order" fontSize="10" width="100%" fontWeight="bold"
 color="white" paddingLeft="4"/>
 <mx:Button label="Submit" cornerRadius="0" click="submitRequest()"/>
 <mx:Button label="Cancel" cornerRadius="0" paddingRight="5"
 click="cancelRequest()"/>
 </mx:HBox>

 <mx:Form width="100%">
 <mx:FormItem label="Order Description: " width="100%" fontWeight="bold">
 <mx:TextInput id="descriptionText" width="90%" maxChars="249"
 fontWeight="normal"/>
 </mx:FormItem>
 <mx:FormItem label="Retailer Name: ">
 <mx:Label text="{retailers.getItemAt(0).RETAILER_NAME}"/>
 </mx:FormItem>

564 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 </mx:Form>

 <mx:DataGrid id="dg_inventory" dataProvider="{inventoryItems}" height="100%"
 width="100%" editable="true">
 <mx:columns>
 <mx:DataGridColumn width="5" editable="false">
 <mx:itemRenderer>
 <mx:Component>
 <mx:Canvas width="100%" height="100%">
 <mx:CheckBox click="outerDocument.itemSelected(event)"
 width="18"
 horizontalCenter="0" verticalCenter="0"
 />
 </mx:Canvas>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn dataField="DESCRIPTION" headerText="Description"
 width="100" editable="false"/>
 <mx:DataGridColumn dataField="REQUIRED_QUANTITY" headerText="Required Qty"
 width="25" editable="true" textAlign="center"/>
 <mx:DataGridColumn dataField="QUANTITY" headerText="Available Qty"
 width="25" editable="false" textAlign="center"/>
 <mx:DataGridColumn dataField="UNIT" headerText="Unit" width="20"
 editable="false" textAlign="center"/>
 <mx:DataGridColumn dataField="PRICE" headerText="Price"
 labelFunction="priceFunction" width="20"
 editable="false" textAlign="center" />
 <mx:DataGridColumn dataField="MNF_NAME" headerText="Manufacturer"
 width="25" editable="false"/>
 </mx:columns>
 </mx:DataGrid>
 <mx:Script>
 <![CDATA[
import warehouse.collections.OrdersCollection;
import warehouse.collections.OrderLineItemsCollection;
import com.farata.datasource.dto.UpdatableRetailerOrderDTO;
import warehouse.collections.RetailersCollection;
import warehouse.collections.InventoryItemsCollection;
import com.farata.datasource.dto.UpdatableOrderLineItemDTO;
import com.farata.datasource.dto.OrderLineItemDTO;
import com.farata.datasource.dto.InventoryItemDTO;
import warehouse.orderClasses.OrderStatus;
import mx.rpc.AsyncToken;
import mx.formatters.CurrencyFormatter;
import mx.formatters.NumberBase;
import mx.formatters.NumberFormatter;
import mx.rpc.events.ResultEvent;
import com.farata.datasource.dto.RetailerDTO;
import warehouse.security.ISecurityContext;
import warehouse.security.SecurityContext;
import com.theriabook.remoting.BatchService;
import mx.utils.UIDUtil;
import com.farata.datasource.dto.RetailerOrderDTO;
import mx.controls.CheckBox;

Blending the LiveCycle API with Custom Flex Applications | 565

import mx.events.FlexEvent;
import mx.controls.Alert;
import mx.rpc.events.FaultEvent;
import mx.logging.Log;
import mx.logging.ILogger;
import com.theriabook.rpc.remoting.*;
import com.theriabook.collections.DataCollection;
import mx.collections.ArrayCollection;
import mx.controls.dataGridClasses.DataGridColumn;
import mx.events.CollectionEvent;
import mx.formatters.DateFormatter;

private var logger:ILogger = Log.getLogger("com.farata.datasource.CreateRequest.mxml");

 [Bindable]private var inventoryItems:DataCollection;
 [Bindable]private var retailers:DataCollection;
 [Bindable]private var ordersCollection:DataCollection;

 [Bindable]private var log : ArrayCollection;

private function onCreationComplete() : void {
 inventoryItems = new InventoryItemsCollection();
 inventoryItems.fill();

 var context:ISecurityContext = SecurityContext.instance();
 var userId:String = context.user.USER_ID;

 retailers = new RetailersCollection();
 retailers.fill(userId);
}

internal function itemSelected(event:Event):void{
 var checkBox:CheckBox = event.target as CheckBox;
 var selected:Boolean = checkBox.selected;
 var selectedItem:InventoryItemDTO = dg_inventory.selectedItem as InventoryItemDTO;
 if (!selectedItem)
 return;

 selectedItem.selected = selected;
}

private function isValid():Boolean{

 if (!descriptionText.text){
 Alert.show("Description is empty");
 return false;
 }

 if (retailers.length == 0){
 Alert.show("Retailer not found. Unable to submit this request.");
 return false;
 } else if (retailers.length > 1){
 Alert.show("Retailer is not selected. Please select it before submitting
this request.");
 return false;

566 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

 }

 var isSelected:Boolean = false;
 for (var i:int = 0; i < inventoryItems.length; i++){
 var lineItem:InventoryItemDTO = inventoryItems[i] as InventoryItemDTO;
 if (lineItem.selected){
 isSelected = true;
 var quantity:Number = Number(lineItem.REQUIRED_QUANTITY);
 var quantityAvailable:Number = lineItem.QUANTITY;
 if (isNaN(quantity) || quantity <= 0){
 Alert.show("Required quantity is not specified.");
 return false;
 }

 if (quantity > quantityAvailable){
 Alert.show("Available quantity can not be less than Required.");
 return false;
 }
 }
 }

 if (!isSelected){
 Alert.show("No items selected.");
 }

 return true;
}

private function submitRequest():void{

 if (! isValid())
 return;

 var selectedItems:ArrayCollection = new ArrayCollection;

 var orderId:String = UIDUtil.createUID();
 for (var i:int = 0; i < inventoryItems.length; i++){
 var inventoryItem:InventoryItemDTO = inventoryItems.getItemAt(i) as InventoryItemDTO;
 var selected:Boolean = inventoryItem.selected;
 if (selected){
 var orderLineItem:UpdatableOrderLineItemDTO = new UpdatableOrderLineItemDTO ();
 orderLineItem.LINEITEM_ID = inventoryItem.LINEITEM_ID;
 orderLineItem.ORDER_ID = orderId;
 orderLineItem.QUANTITY = inventoryItem.REQUIRED_QUANTITY;
 orderLineItem.ORDER_TYPE = "retailer";
 selectedItems.addItem(orderLineItem);
 }
 }

 if (selectedItems.length > 0){
 var context:ISecurityContext = SecurityContext.instance();
 var user:Object = context.user;

 var order:UpdatableRetailerOrderDTO = new UpdatableRetailerOrderDTO;
 order.CREATED_AT = new Date;

Blending the LiveCycle API with Custom Flex Applications | 567

 order.CREATED_BY = user.USER_ID;
 order.ORDER_ID = orderId;
 order.STATUS = OrderStatus.STATUS_CREATED;
 order.DESCRIPTION = descriptionText.text;
 order.RETAILER_ID = retailers.getItemAt(0).RETAILER_ID;
 }

 if (selectedItems.length > 0 && order){

 ordersCollection = new OrdersCollection();
 ordersCollection.addItem(order);
 var orderItems:DataCollection = new OrderLineItemsCollection();
 for (i = 0; i < selectedItems.length; i++) {
 orderItems.addItem(selectedItems[i]);
 }

 var batchService:BatchService = new BatchService();
 batchService.registerCollection(orderItems,1);
 batchService.registerCollection(ordersCollection,0);
 var batch:Array = batchService.batchRegisteredCollections();
 batchService.addEventListener(ResultEvent.RESULT, orderSubmitted);
 var token:AsyncToken = batchService.sendBatch(batch);
 batchService.sendBatch(batch);
 }
}

private function orderSubmitted(event:ResultEvent):void{
 var orderId:String = event.token.orderId;
 const workflowAssembler:RemoteObject = new RemoteObject();
 workflowAssembler.destination = "WorkflowAssembler";
 workflowAssembler.addEventListener(
 FaultEvent.FAULT,
 function error(event:FaultEvent):void{
 Alert.show(event.message.toString());
 }
);
 workflowAssembler.addEventListener(ResultEvent.RESULT, processInvoked);

 const token:AsyncToken = workflowAssembler.startProcess(orderId);
}

private function processInvoked(event:ResultEvent):void{
 dispatchEvent(new FlexEvent("back"));
}

private function cancelRequest():void{
 dispatchEvent(new FlexEvent("back"));
}

private function priceFunction(value:Object, column:DataGridColumn):String{
 var formatter:CurrencyFormatter = new CurrencyFormatter;
 return formatter.format(value.PRICE);
}

568 | Chapter 10: Developing Flex Applications for LiveCycle ES (Enterprise Suite)

public function refresh():void{
 onCreationComplete();
}
]]>
</mx:Script>
 </mx:VBox>

Example 10-45. Collection classes used by submitRequest() of CreateRequest.mxml

package warehouse.collections {
 import com.theriabook.collections.DataCollection;
 public class OrdersCollection extends DataCollection {
 public function OrdersCollection(source:Array=null) {
 destination = "com.farata.datasource.RetailerOrder";
 method = "getUpdatableOrders";
 }
 }
}

package warehouse.collections {
 import com.theriabook.collections.DataCollection;
 public class OrderLineItemsCollection extends DataCollection {
 public function OrderLineItemsCollection(){
 destination = "com.farata.datasource.OrderLineItem";
 method = "getUpdatableLineItems";
 }
 }
}

This completes our study of blending the LiveCycle API into a custom Flex application.

Summary
Let’s look back at what have you seen in this chapter. We started with small Flexlets,
complementing the LiveCycle Workspace ES, and ended up with the completely in-
dependent Flex applications that treat LiveCycle ES as yet another service container.

We started with the sample set of users provided by the LiveCycle ES sample installation
and arrived at an enterprise repository of users and groups from our own database.

We have benefited from LiveCycle ES services, but did not stop there, and extended
them with our own. That, in particular, allowed us to perform a decomposition of the
complex business process into a scalable set of simpler processes via events.

We have used a lot of Java. For instance, we used Java to dispatch events. You may
take our example further by building a reusable event dispatching service and then
invoking it, say, from a Flex application. It’s just another service container!

Summary | 569

CHAPTER 11

Printing with Flex

Measuring programming progress by lines of code is like
measuring aircraft building progress by weight.

—Bill Gates

In general, the process of printing from web applications works a little differently com-
pared to printing from the desktop. Web applications have good reason for not allowing
direct access to a user’s printer: malicious websites could immediately start printing
their fliers on your home or corporate printer, offering you anything from pizza delivery
to adult entertainment. That’s why you can’t write a program in JavaScript that would
automatically detect all available printers and send them print jobs. That’s why the user
is forced to manually select the printer via the web browser’s pop-up dialog window.

Existing Flash Player bugs add more issues for Flex developers; for example, the Print
dialog might not report all features of the available printer, and setting such parameters
as tray selection or paper size might not be possible. To put it simply, you may not have
complete control over the user’s printer from an application running in Flash Player.
You may need to adjust your reports to standard printer settings.

Adobe had a product called FlashPaper that tried to mitigate these lim-
itations by adding ActionScript 2 objects to a special control with com-
plete access to the printer. In 2008, however, Adobe discontinued
FlashPaper (http://www.adobe.com/products/flashpaper/eod_faq/),
apparently promoting printing PDF documents using Acrobat instead.

The process of printing from Flash Player consists of starting a single-threaded print
job and adding dynamically created pages to it (i.e., the data that comes from a data-
base). Unfortunately, Flash Player’s virtual machine AVM2 ActionScript timeout is 15
seconds. Accordingly, for both Flex and AIR, the interval between the following com-
mands shouldn’t be more than 15 seconds:

• PrintJob.start() and the first PrintJob.addPage()

571

http://www.adobe.com/products/flashpaper/eod_faq/

• PrintJob.addPage() and the next PrintJob.addPage()

• PrintJob.addPage() and PrintJob.send()

If, at each of these commands, printing the specified page always completed in 15
seconds or less, your application will be able to print a multipage document, although
somewhat slowly. If any of the intervals spans more than 15 seconds, however, your
print job will receive a runtime exception, which turns direct printing from Flash Player
into an unpleasant experience, if application developers don’t handle exceptions prop-
erly. Plus, if the internal thread that started the print job failed, it may be automatically
closed and unable to be recovered properly.

You can read more about handling printing errors in the Adobe
document “Flash Player and Air tasks and system printing” available at
http://tinyurl.com/p76s5p.

You may think that setTimeout() can help break the 15-second barrier for printing, but
it can’t. Printing has to be handled by the same internal AVM2 thread (apparently a
bug), and with setTimeout(), you are in fact spawning a new one. The issue with print-
ing long documents is demonstrated in the Example 11-1. The PrintJob starts and the
method finishPrinting() is called in the same thread and works fine. If you instead
comment out the call to finishPrinting() and uncomment the method setTimeout(),
this printing job will fail: the addPage() will throw an exception, because it runs in a
thread different than PrintJob.

Imagine that a timeout was initiated not by calling the function setTimeout(), but rather
by Flash Player during printing of a multipage document because one of the add
Page() calls took longer than 15 seconds. In this case, addPage() would be called on a
different internal thread than PrintJob.start() and the addPage() operation would fail,
even though Flash Player should’ve known how to process a such situation properly.

Example 11-1. PrintTimeout.mxml—an illustration of printing failure

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">
 <mx:Button label="Print Me" click="printMe()"/>
 <mx:Script>
 <![CDATA[

 private function printMe() :void {
 var pj:PrintJob = new PrintJob();
 pj.start();

 // setTimeout(function() :void { finishPrinting(pj);}, 1);

 finishPrinting(pj);
 }

572 | Chapter 11: Printing with Flex

http://tinyurl.com/p76s5p

 private function finishPrinting(pj:PrintJob): void {
 pj.addPage(this);
 pj.send();
 }
]]>
 </mx:Script>
</mx:WindowedApplication>

Example 11-1 just prints itself, addPage(this), but if it had to print, say, a slow-rendered
DataGrid with a couple of thousand rows, the chances are high that such a program
would time out before the printing job was finished.

There is a bigger problem than the technical restrictions mentioned so far, and it is in
the very approach to printing via the PrintJob API. The process of programming reports
in ActionScript comes down to creating snapshots of components displayed on the
users’ monitors and sending them to the printer. Because screen resolution differs from
printer resolution, however, application developers pursing this method need to create
separate layouts just for printing, which is time-consuming and challenging.

That’s why you should consider creating and printing your reports as PDF files. Besides,
it neatly reinforces this book’s philosophy: minimize the amount of code that business
application developers have to write. In this chapter, you’ll learn how to create XDP-
enabled Flex components that will allow application developers to generate PDF docu-
ments on the client side with minimal coding.

PDF and XDP
PDF stands for Portable Document Format. It was originally created by Adobe but in
July 2008 became an open standard, ISO 32000-1:2008 (see http://www.iso.org/iso/
catalogue_detail?csnumber=51502).

The PDF format is device-independent, but—as opposed to PostScript—it’s not a pro-
gramming language. ISO 32000-1:2008 defines it as “a digital form for representing
electronic documents to enable users to exchange and view electronic documents in-
dependent of the environment in which they were created or the environment in which
they are viewed or printed. It is intended for the developer of software that creates PDF
files (conforming writers), software that reads existing PDF files and interprets their
contents for display and interaction (conforming readers) and PDF products that read
and/or write PDF files for a variety of other purposes (conforming products).”

PDF is a hierarchical structure that represents a collection of pages to be displayed or
printed. Each page contains content objects and resources.

PDF documents can be used for both printing and data-entry purposes. For example,
a bank or insurance company may offer applications for opening new accounts as PDF
form documents to be filled out by the customers.

XDP (XML Data Package) enables storage of PDF content, forms, and data inside the
forms and, of course, processes it as XML. On the downside, XDP format is not

Printing with Flex | 573

http://www.iso.org/iso/catalogue_detail?csnumber=51502
http://www.iso.org/iso/catalogue_detail?csnumber=51502

supported by older versions of Acrobat Reader. The XDP specification is available at
http://partners.adobe.com/public/developer/en/xml/xdp_2.0.pdf.

PDF Generation on the Server
PDF generation is supported by Adobe LiveCycle and LCDS, as well as other server-
side products. Suppose that you have a Flex or AIR window with a number of UI
controls, and you want to create a PDF out of it. One option is to create a snapshot of
the Flex component or container using the class mx.graphics.ImageSnapshot and its
function captureImage(), which can scale the image to a specific resolution and encode
it into a specified image format. You can send an instance of this class via RemoteOb
ject to the server with LCDS installed. LCDS then creates a PDF document (or merges
it with a PDF form) and includes the new image received from the client.

The problem with this approach is that the resulting PDF will not be searchable. For
instance, if a Flex Panel has text fields, you won’t be able to find the text of these fields
in Acrobat Reader if the Panel is embedded as a bitmap.

Such PDFs have limitations on resolution as well (to create a PDF with resolution 300
dpi, you’d need to create a multimegabyte image). Also, printed materials often use
different CSS and metrics from the screen ones. You don’t want to print, say, a back-
ground gradient that looks fine on the monitor, but bad on paper.

To embed forms into PDF documents, Adobe uses the XDP format. If you purchase an
LCDS license, you’ll have the option to use it. You can design forms in Acrobat Designer
and export the data from your Flex view, and LCDS will merge the data and the form
on the server. On the Java side, LCDS adds several JARs in the lib directory of your
web application, which makes the XFAHelper Java class available for your server-side
PDF generation.

After generating the PDF, the server-side program can be:

• Placed as a ByteArray in HTTPSession object

• Saved as a file on the server for future use

• Streamed back to the client marked as a MIME type application/pdf

• Saved in a DBMS field as a BLOB

Depending on the business requirements, the server-side PDF generation might not be
feasible. You might have just disconnected the AIR application, or the server software
may not have any of the technologies supporting PDF creation installed. If the Flex UI
is truly dynamic, that might change the number of displayed components based on
some business criteria; developing an additional UI in Acrobat Designer just for printing
can in these ways become either impossible or time-consuming. The LCDS Developer
Guide describes this process in the document called “Using the PDF Generation Fea-
ture,” available online at http://tinyurl.com/mrjycr.

574 | Chapter 11: Printing with Flex

http://partners.adobe.com/public/developer/en/xml/xdp_2.0.pdf
http://tinyurl.com/mrjycr

Adobe has published an article describing the process of creating PDF
documents using templates: http://www.adobe.com/devnet/flex/articles/
portable_ria.html.

In general, for server-side PDF generation from Adobe Flex applications, you have to
do the following:

• Use Adobe LiveCycle Designer ES, which provides tools for creating interactive
forms and personalized documents (see http://www.adobe.com/products/livecycle/
designer/). This software comes with Acrobat Professional or can be purchased
separately, and is well documented, but it requires someone to create the XDP form
and the data model and establish a process of synchronizing the Flex application
with the server-side LiveCycle.

• Initiate the server-side PDF generation from your Flex application seamlessly.

Although this process provides guaranteed quality and predictable results, it also
requires the double effort of developing XDP forms for printing and Flex forms for
displaying. Besides, LiveCycle Designer is another piece of software that application
developers in your organization may not be familiar with.

LCDS generation with merging data and forms produces good printing quality with
LCDS. The Flex client sends data as XML to the server along with the name of the form
file (template) to be used for merging, as shown in Example 11-2. In this case, the LCDS
layer just needs to process it with the XDPXFAHelper class and return it as a PDF stream
to the browser for displaying.

Only commercial licenses of LCDS support PDF generation.

The ActionScript class FormRenderer sends generated XDP to the server and opens a
web browser’s window to display the PDF when it arrives from the server.

Example 11-2. Class FormRenderer.as

import flash.net.*;
import flash.utils.ByteArray;

public class FormRenderer {
 public static function openPdf(xdp:String, target:String="_blank"):void{
 var req:URLRequest = new URLRequest("/createPDF.jsp");
 req.method = URLRequestMethod.POST;

 var ba :ByteArray = new ByteArray();;
 ba.writeMultiByte(xdp, "iso-8859-1");
 ba.compress();

PDF Generation on the Server | 575

http://www.adobe.com/devnet/flex/articles/portable_ria.html
http://www.adobe.com/devnet/flex/articles/portable_ria.html
http://www.adobe.com/products/livecycle/designer/
http://www.adobe.com/products/livecycle/designer/

 ba.position = 0;
 req.data = ba;
 navigateToURL(req, target);
 }
}

You also need an XDP file with the data and presentation. If you don’t have LiveCycle
Designer, you can make the XDP file programmatically, ensuring that it matches the
printer’s paper size and corporate stationery. XDP documents are XML objects, which
are easily processed in Flex using E4X syntax, for example:

1. Declare a variable of type XML, and initialize it with the required XDP template
deployed on the server. A fragment of the XDP template may look like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xfa generator="AdobeLiveCycleDesigner_V8.0" APIVersion="2.5.6290.0"?>
 <xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/" timeStamp="2007-01-25T10:40:38Z"
 uuid="784f469b-2fd0-4555-a905-6a2d173d0ee1">

 <template xmlns="http://www.xfa.org/schema/xfa-template/2.5/">
 <subform name="form1" layout="tb" restoreState="auto" locale="en_US">
 <pageSet>
 <pageArea name="Page1" id="Page1">
 <contentArea x="0.25in" y="0.25in" w="8in" h="10.5in"/>
 <medium stock="letter" short="8.5in" long="11in"/>
 <?templateDesigner expand 1?></pageArea>
 <?templateDesigner expand 1?></pageSet>

 <subform w="8in" h="10.5in" name="YourPageAttachedHere"/>
 <proto/>
 <desc>
 <text name="version">8.0.1291.1.339988.308172</text>
 </desc>
 </subform>
 </template>

2. Select a Flex UI container or component that you are going to print (a Panel, a
DataGrid, and so on).

3. Query the object from step 2, get its XDP attributes and children, and create the
XML preparing this object for printing. Attach the XML to the template as a page.

Because original Flex components don’t know how to represent themselves in the XDP
format, you’ll need to teach them to do so. This becomes the next task in enhancing
Flex components.

For example, each UI component can implement some interface (e.g. IXdpObject with
the only getter, xmlContent()) that allows it to return its own XDP content or, in the
case of containers, to traverse the list of its child components for their XDP content.
For example, a new panel component (PanelXdp) may have the following structure:

public class PanelXdp extends Panel implements IXdpObject{
 public function get xmlContent():Object{
 // The code to return representation of the panel

576 | Chapter 11: Printing with Flex

 // in the XDP format goes here
 }
}

Repeat the process of attaching XML to the XDP template using E4X until all print
pages are ready. This method of printing from Flex requires less effort for reporting and
creation of dynamic layouts. It might also provide better printing quality and searcha-
bility within the printed document.

Example 11-3 is the server-side part written as a Java ServerSide Page. It uncompresses
the XDP stream received from the client, creates the PDF using XDPXFAHelper, turns it
into an array of bytes, and sends it back to the client as the MIME type "application/
pdf".

Example 11-3. Render.jsp

<%@ page language="java"
 import="java.io.*,
 java.util.*,
 javax.xml.parsers.*,
 org.w3c.dom.Document,
 flex.messaging.*,
 flex.acrobat.pdf.XDPXFAHelper,
 flex.messaging.util.UUIDUtils,
 org.w3c.dom.Document
 "
%><%!
private static void _log(Object o){
 System.out.println(""+o);
}
private String getParam(HttpServletRequest request, String name, String defVal)
throws Exception{
 String val = request.getParameter(name);
 return (val!=null && val.length()>0)?val:defVal;
}
private String getParam(HttpServletRequest request, String name) throws Exception{
 return getParam(request, name, null);
}
private void processRenderRequest(HttpServletRequest request,
 HttpServletResponse response) throws Exception{

 String data = getParam(request, "document");
 String template = getParam(request, "template"); // Security hole, check path
 _log("template="+template);
 _log("data="+data);
 template = FlexContext.getServletContext().getRealPath(template);
 _log("template real="+template);

 // You must have LCDS license to use XDPXFAHelper
 XDPXFAHelper helper = new XDPXFAHelper();
 helper.open(template);
 // Import XFA dataset
 if(data!=null){
 _log("data.length="+data.length());

PDF Generation on the Server | 577

 ByteArrayInputStream bais = new
 ByteArrayInputStream(data.getBytes("UTF-8"));
 DocumentBuilderFactory builderFactory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder builder =
 builderFactory.newDocumentBuilder();
 Document dataset = builder.parse(bais);
 helper.importDataset(dataset);
 } else
 _log("data="+null);

 byte[] content = helper.saveToByteArray();
 _log("content="+content);
 helper.close();
 ServletOutputStream out3 = response.getOutputStream();
 response.setContentType("application/pdf");
 response.setContentLength(content.length);
 out3.write(content);
}
%><%
_log("");
_log("--");
_log("render.jsp");
processRenderRequest(request, response);
%>

The WebORB PDF Generator from Midnight Coders allows you to ei-
ther create XML printing templates on the server or generate them in
Flex clients. To use this solution, you have to install the WebORB
Server. For more details, visit http://www.themidnightcoders.com/prod
ucts/pdf-generator/overview.html.

Now we’ll take a look at how to generate a PDF on the Flex side.

PDF Generation on the Client
AlivePDF is an open source library for generating PDFs in ActionScript on the client
side. It’s offered under the MIT license at http://alivepdf.org; download AlivePDF.swc
and link it to your Flex Builder project. One of the classes included in AlivePDF.swc is
called PDF.

Unless you are developing an AIR application or deploying it for Flash
Player 10 (see the next note), even client-generated PDF content has to
be sent to a server that will just bounce it back (see Example 11-20) to
have the web browser open the Acrobat Reader plug-in.

578 | Chapter 11: Printing with Flex

http://www.themidnightcoders.com/products/pdf-generator/overview.html
http://www.themidnightcoders.com/products/pdf-generator/overview.html
http://alivepdf.org

Basic Printing with AlivePDF
The process of generating PDFs in AlivePDF starts with instantiation of the PDF class,
specifying the print orientation, units of measurement, and the paper size. Then you
create and add pages to the instance of the PDF object, and finally you call the function
savePdf() to turn these pages into a ByteArray and save them to the PDF file on your
filesystem if you use Adobe AIR. If this is a web application written in Flex, the same
savePdf() function sends the ByteArray to the server with the deployed script
create.php (supplied by alivepdf.org), which will return this array of bytes to your web
browser as a PDF document.

Starting from Flash Player 10, the FileReference class allows you to save
files locally. Its function save() opens the pop-up window, allowing the
user to specify the filename for saving the data. In our example, this
eliminates the need for a round trip to the server that does nothing but
bounce this array of bytes. Keep in mind, though, that after saving the
PDF this way, the user will need to complete an extra step to open the
file with Acrobat Reader or any other program.

Example 11-4 shows the process of preparing and saving a PDF file with AlivePDF.

Example 11-4. Basic printing with AlivePDF: test1.mxml

<?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical" horizontalAlign="center" verticalAlign="middle">

 <mx:Button label="Hello World!!!" click="hw()"/>

 <mx:Script><![CDATA[

 import org.alivepdf.fonts.Style;
 import org.alivepdf.fonts.FontFamily;
 import org.alivepdf.saving.Method;
 import org.alivepdf.layout.Size;
 import org.alivepdf.layout.Unit;
 import org.alivepdf.layout.Orientation;
 import org.alivepdf.pdf.PDF;

 private function hw():void{

 var p:PDF = new PDF(Orientation.PORTRAIT, Unit.MM, Size.A4);
 p.addPage();
 p.setFont(FontFamily.ARIAL, Style.NORMAL, 12);
 p.addText("10x10", 10, 10);
 p.addText("100x100", 100, 100);
 p.addMultiCell(50, 8, "Hello World2");

 savePdf(p, "hw.pdf");
 }

PDF Generation on the Client | 579

 private function savePdf(p:PDF, fileName:String):void{

 var ba:ByteArray = p.save(Method.LOCAL);
 var fs:FileStream = new FileStream();
 var f:File = File.desktopDirectory.resolvePath(fileName);
 fs.open(f, FileMode.WRITE);

 try{
 fs.writeBytes(ba);
 } catch (e:*){}

 fs.close();
 }
]]></mx:Script>

</mx:WindowedApplication>

After you click the button Hello World (see the example code), a file called hw.pdf is
created in the AIR desktop directory (see Chapter 9 for details). For example, Fig-
ure 11-1 shows our hw.pdf file, which was saved in the directory C:\Documents and
Settings\Administrator\Desktop.

Figure 11-1. Sample output of the AlivePDF program

580 | Chapter 11: Printing with Flex

The goal here was to give you a taste of the process of preparing the document with
AlivePDF. To investigate the complete set of AlivePDF’s APIs, visit http://AlivePDF.org.

AlivePDF does a good job of creating objects and assembling them into pages, which
are then converted into a PDF format. But it still requires you to prepare (in addition
to the screen version) a second copy of the UI to be printed. It’s not what-you-see-is-
what-you-get (WYSIWYG) programming. This process requires manual allocation and
measurements of each object in the PDF-to-be.

The blog http://alivepdf.bytearray.org is yet another good source of up-
to-date information regarding AlivePDF.

Enhancing AlivePDF
What can be done to improve this process? We still want to use AlivePDF’s printing
engine, but we don’t want to manually write the code specifying styles and measure-
ments as we did in Example 11-4 . In this section, you’ll see how to create components
and containers that are smart enough to present themselves as PDF or XDP objects.

All examples from this section are located in the Flex Builder project
called clientPdfAir (which comes with this chapter; see the Preface for
information on obtaining the sample code) and are self-contained AIR
applications. alivePDF.swc has to be present in the build path of the
project.

The program test2.mxml in Example 11-5 illustrates Flex-to-PDF-object conversion, a
big difference compared to test1.mxml. It uses the ActionScript class AlivePdf
Printer, which is included with the code samples of this chapter. Its addObject()
method converts a given Flex object to corresponding PDF snippets, one at a time. You
don’t need to worry about the sizes, locations, fonts, or styles of these objects. This is
WYSIWYG. Flash Player is a rendering engine here.

Example 11-5. Printing with AlivePDF from an AIR application

<?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:printer="com.farata.printing.pdf.client.*"
 layout="vertical" >
 <mx:Style source="main.css"/>
 <mx:Canvas width="100%" height="100%" backgroundColor="white">
 <mx:Label id="lbl1" text="Hello" x="10" y="10"/>
 <mx:Label id="lbl2" text="World" x="50" y="30" fontWeight="bold"/>
 <mx:Label id="lbl3" text="And" x="150" y="60" fontStyle="italic"
 enabled="false"/>
 <mx:Label id="lbl4" text="Happy" x="70" y="90" fontSize="16"

PDF Generation on the Client | 581

http://AlivePDF.org
http://alivepdf.bytearray.org

 textDecoration="underline"/>
 <mx:Label id="lbl5" text="New Year" x="50" y="140" fontSize="24"
 fontWeight="bold" color="green"/>
 <mx:Button id="btn1" label="Button1" x="70" y="240"/>
 </mx:Canvas>

 <mx:ApplicationControlBar width="100%">
 <mx:Label text="File name:"/>
 <mx:TextInput id="txtFileName" text="hw2.pdf"/>
 <mx:Button label="Save PDF" click="printPdf()"/>
 </mx:ApplicationControlBar>

 <printer:AlivePdfPrinter id="prn" printComplete="viewPdf()"/>
<mx:Script><![CDATA[

 import flash.net.URLRequest;

 private var file:File;

 private function printPDF():void{

 prn.addObject(lbl1);
 prn.addObject(lbl2);
 prn.addObject(lbl3);
 prn.addObject(lbl4);
 prn.addObject(lbl5);
 prn.addObject(btn1);

 file = prn.printToFile (txtFileName.text);
 }

 private function viewPdf():void{
 var req:URLRequest = new URLRequest(file.url);
 navigateToURL(req, "_blank");
}

]]></mx:Script>

</mx:WindowedApplication>

The code in Example 11-5 produces the screen as it’s shown in the AIR runtime, on
the left in Figure 11-2. On the right side, you can see the hw2.swf file produced by this
program and shown in Adobe Acrobat. The fonts in the Acrobat Reader image look
smaller because of the small zoom percentage.

The listings that follow do not include the entire source code of the class AlivePdf
Printer; that comes with the source code of this chapter’s samples. The idea is to have
a set of components that can expose their information in a form suitable for printing.
The method AlivePdfPrinter.addObject(o) calls locateExtension(), which instanti-
ates the appropriate object that can present itself in a form suitable for AlivePDF
(Example 11-6).

582 | Chapter 11: Printing with Flex

Example 11-6. The method AlivePdfPrinter.locateExtension()

private static function locateExtension(o:*):IPdfPrinterExtension{
 if(o is Label)
 return new LabelPdfExtension(/*o*/);
 if(o is PdfPrintDataGrid)
 return new PdfPrintDataGridPdfExtension(/*o*/);
 if(o is DataGrid)
 return new DataGridPdfExtension(/*o*/);
 if(o is Container)
 return new ContainerPdfExtension(/*o*/);
 if(o is UIComponent)
 return new UIComponentPdfExtension(/*o*/);
 return null;
}

After identifying the type of the object to be printed, the object exposes its font and
style information that’s being passed to the AlivePDF’s PDF object for printing. Exam-
ple 11-7 shows the function addObject() from the ActionScript class
com.farata.printing.pdf.client.extensions.LabelPdfExtension.

Figure 11-2. The results of printing with enhanced AlivePDF

PDF Generation on the Client | 583

Example 11-7. The addObject() method in the LabelPdfExtension class

public function addObject(o:*, printer:IAlivePdfPrinter):void{
 var pdf:PDF = printer.pdf;
 var c:Label = Label(o);
 if(c==null) return;
 if(!c.visible)
 return;

 var fontFamily:String = c.getStyle("fontFamily");
 if(fontFamily==null)
 fontFamily = FontFamily.ARIAL;

 var style:String = "";

 if(c.getStyle("fontWeight")=="bold")
 style += "B";

 if(c.getStyle("fontStyle")=="italic")
 style += "I";
 if(c.getStyle("textDecoration")=="underline")
 style += "U";

 var size:int = c.getStyle("fontSize");
 var color:Color = new RGBColor(c.getStyle(c.enabled?"color":"disabledColor"));

 allocateSpace(c, printer);

 pdf.textStyle(color/*, alpha*/);
 pdf.setFont(fontFamily, style, pxToPt(size));

 var ptText:PPoint = mapPoint(c, printer);
 ptText.y.px += c.height;

 pdf.addText(c.text, ptText.x.pt, ptText.y.pt);

 }

Example 11-7’s code gets the styles, font, and text from the Flex Label object and
initializes appropriate properties of the PDF object per the requirements of the AlivePDF
library.

The sample code of this chapter as well as the clear.swc library has several similar
extensions for a number of Flex components (see com.farata.printing.swc), and you
can keep adding more objects to your own business framework of PDF-ready compo-
nents.

These extensions are not subclasses of corresponding Flex components, but rather
utility classes that know how to present the content of components to AlivePDF.

584 | Chapter 11: Printing with Flex

While writing the method addObjects() for your components, keep in
mind that measurements in Flash Player are in pixels and you may need
to convert them into other units required by the AlivePDF API.

If you’d like to see what’s inside the generated hw2.pdf file, just open it with any text
editor; you’ll see something like Example 11-8 (which is just a fragment of the file).

Example 11-8. A fragment of the h2.pdf content

%PDF-1.4
1 0 obj
<</Type /Pages
/Kids [3 0 R
]
/Count 1
>>
endobj
3 0 obj
<</Type /Page
/Parent 1 0 R
/MediaBox [0 0 595.28 841.89]
/Resources 2 0 R
/Rotate 0
/Dur 3
/Contents 4 0 R>>
endobj
4 0 obj
<</Length 780>>
stream
2 J
0.57 w
0 Tr
/GS0 gs
0 Tw 0 Tc 100 Tz 0 TL
BT /F1 7.00 Tf ET
q 0.043137254901960784 0.2 0.23529411764705882 rg BT 25.50 802.14 Td (Hello) Tj ET
Q
0 Tr
/GS1 gs
0 Tw 0 Tc 100 Tz 0 TL
BT /F2 7.00 Tf ET
q 0.043137254901960784 0.2 0.23529411764705882 rg BT 55.50 787.89 Td (World) Tj ET
Q
0 Tr
/GS2 gs
0 Tw 0 Tc 100 Tz 0 TL
BT /F3 7.00 Tf ET
q 0.6666666666666666 0.7019607843137254 0.7019607843137254 rg BT 130.50 764.64 Td
(And) Tj ET Q
0 Tr
/GS3 gs
0 Tw 0 Tc 100 Tz 0 TL
BT /F1 12.00 Tf ET

PDF Generation on the Client | 585

q 0.043137254901960784 0.2 0.23529411764705882 rg BT 70.50 738.39 Td (Happy) Tj ET
70.50 737.19 34.68 0.60 re f Q
0 Tr
/GS4 gs
0 Tw 0 Tc 100 Tz 0 TL
BT /F2 18.00 Tf ET
q 0 0.5019607843137255 0 rg BT 55.50 692.64 Td (New Year) Tj ET Q
/GS5 gs
q 47.25 0 0 16.50 52.50 645.39 cm
/I1 Do Q
endstream
endobj
5 0 obj
<</Type /ExtGState
/SA true
/CA 1
/n 5
/BM /Normal
/ca 1
>>
endobj
...
15 0 obj
<<
/Producer (Alive PDF 0.1.4.6)
/CreationDate (D:200905152226)
>>
endobj
16 0 obj
<<
/Type /Catalog
/Pages 1 0 R
/OpenAction [3 0 R /FitH null]
/PageLayout /SinglePage
>>
endobj
xref
...
trailer
<<
/Size 17
/Root 16 0 R
/Info 15 0 R
>>
startxref
2467
%%EOF

After this chapter was written, a new open source library called purePDF
became available. It's an ActionScript port of a popular Java library
called iText. You can download purePDF at http://code.google.com/p/
purepdf/.

586 | Chapter 11: Printing with Flex

http://code.google.com/p/purepdf/
http://code.google.com/p/purepdf/

Printing Flex Containers
All these extensions for Flex controls are great, but there is another issue to tackle: Flex
views often use containers. For example, you need to be able to generate a PDF for a
DataGrid in two formats. This object should be similar to mx.printing.PrintDataGrid,
but it should support PDF printing rather than working with PrintJob. It should sup-
port pagination, headers, and footers; this is a must for printing multipage
documents.

Or imagine a TabNavigator container from which you need to print the content of each
tab as a separate multipage PDF. The goal is to have a container that can iterate its
children and tell each of them, “Hey, kiddo, print yourself.” When this mission is
accomplished, just implement the same behavior to allow containers (and components)
to expose themselves in the XDP format, too.

Sample extensions for the most complex Flex components, such as DataGrid,
DataGridItemRenderer, and Canvas, are supplied as code samples for this chapter. Use
them as the guide for creation of your own printing extensions.

For example, the application test4.mxml includes the PdfPrintDataGrid component
from clear.swc and outputs the data grid to the file hw4.pdf, as shown in Exam-
ple 11-9 and Figure 11-3.

Figure 11-3. Running test4.mxml (left) generates PDF hw4 (right)

Example 11-9. An AIR application to print a data grid to a PDF file

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:printer="com.farata.printing.pdf.client.*"
 layout="vertical"
 creationComplete="onCreationComplete(event)" >

 <mx:DataGrid id="dg" x="0" y="0"

PDF Generation on the Client | 587

 width="100%" height="100%" >

 <mx:columns>
 <mx:DataGridColumn dataField="name" headerText="Name"/>
 <mx:DataGridColumn dataField="phone" headerText="Phone"/>
 <mx:DataGridColumn dataField="email" headerText="E-mail"/>
 </mx:columns>
 </mx:DataGrid>

 <mx:ApplicationControlBar width="100%">
 <mx:Label text="File name:"/>
 <mx:TextInput id="txtFileName" text="hw4.pdf"/>
 <mx:Button label="Save PDF" click="doSavePdf()"/>
 </mx:ApplicationControlBar>

 <printer:AlivePdfPrinter id="prn" printComplete="viewPdf()"/>

<mx:Script><![CDATA[

import flash.net.URLRequest;
private var file:File;

private function onCreationComplete(evt:*):void{

 var array:Array = [];

 for(var i:int=1; i<=30; i++){
 var obj:Object = new Object();
 obj.name = "User " +i;
 obj.phone = "555-219-227"+i;
 obj.email = "user"+i+"@hello.world";
 obj.active = (i % 2) == 1;
 array.push(obj);

 }
 dg.dataProvider = array;
}
private function printPdf():void{

 prn.addObject(dg);
 file = prn.printToFile(txtFileName.text);
}

private function viewPdf():void{
 var req:URLRequest = new URLRequest(file.url);
 navigateToURL(req, "_blank");
}

]]></mx:Script>
</mx:WindowedApplication>

The line

prn.addObject(dg);

588 | Chapter 11: Printing with Flex

results in invoking the code from Example 11-6, and the DataGridPdfExtension class
shown in Example 11-10 is engaged.

Example 11-10. Class DataGridPdfExtension

package com.farata.printing.pdf.client.extensions{

 import com.farata.printing.PdfPrintDataGrid;

 import com.farata.printing.pdf.client.IAlivePdfPrinter;
 import mx.controls.DataGrid;

 public class DataGridPdfExtension extends BasePdfExtension{

 override public function addObject(o:*, printer:IAlivePdfPrinter):void{

 var c:DataGrid = o as DataGrid;
 var p:PdfPrintDataGrid = new PdfPrintDataGrid();
 p.x = c.x;
 p.y = c.y;
 p.width = c.width;
 p.height = c.height;
 p.columns = c.columns;
 p.dataProvider = c.dataProvider;

 c.parent.addChild(p);
 printer.addObject(p);
 c.parent.removeChild(p);
 }

 }
}

If in Example 11-6 all components were located inside, say, Canvas, and the printing
extension for this container were ready, this code sample would become even shorter
—something like this:

prn.addObject(myCanvas);

The myCanvas component would’ve taken care of its kids.

The good news is that you don’t have to write printing extensions to all components.
The code in Example 11-6 checks to see whether the component is an instance of Label,
DataGrid, or Container.

Part of the sample code in the test3.mxml application has a canvas:

<mx:Canvas id="canvas" width="100%" height="100%"
 backgroundColor="white">

 <mx:Label id="lbl1" text="Hello" x="100" y="10"/>
 <mx:Label id="lbl2" text="World" x="50" y="30" fontWeight="bold"/>
 <mx:Label id="lbl3" text="And" x="150" y="60" fontStyle="italic"
 enabled="false"/>
 <mx:Label id="lbl4" text="Happy" x="90" y="90" fontSize="16"

PDF Generation on the Client | 589

 textDecoration="underline"/>
 <mx:Label id="lbl5" text="New Year" x="80" y="140" fontSize="24"
 fontWeight="bold" color="green"/>
 <mx:Button id="btn1" label="Button1" x="1" y="1"/>
 <mx:Button id="btn2" label="Button2" x="10" y="100"/>

 <mx:HBox x="250" y="130" borderThickness="3" borderColor="blue"
 borderStyle="solid" backgroundColor="yellow">
 <mx:Label text="Inside HBox" color="gray"/>
 </mx:HBox>
</mx:Canvas>

The code to print this Canvas is pretty simple: just pass a reference to the class AlivePdf
Printer, and it’ll figure out how to print its child components:

private function printPdf():void{
 prn.addObject(canvas);
 file = prn.printToFile(txtFileName.text);
}

The function addObject() tries to locate an extension class for Canvas as shown in
Example 11-6, and will use the ContainerPdfExtension, because Canvas is a Container.
Should you want to provide some functionality specific to Canvas, you need to create
CanvasPdfExtension and modify the code in Example 11-6 accordingly.

A fragment of ContainerPdfExtension is shown in Example 11-11.

Example 11-11. The main part of ContainerPdfExtension

package com.farata.printing.pdf.client.extensions{
 public class ContainerPdfExtension extends BasePdfExtension{

 private static var s_offsetLock:int = 0;

 override public function addObject(o:*, printer:IAlivePdfPrinter):void{

 s_offsetLock++;
 var c:Container = Container(o);
 setOffset(c, printer);
 allocateSpace(c, printer);
 drawBackgroundAndBorder(c, printer);

 var len:int = c.numChildren;
 for(var i:int=0; i<len; i++){
 var ch:DisplayObject = c.getChildAt(i);
 printer.addObject(ch);
 }

 s_offsetLock--;
 }

 private function setOffset(o:Container, printer:IAlivePdfPrinter):void{
 if(s_offsetLock==1) {
 var ptLocal:Point = new Point(o.x, o.y);
 var ptGlobal:Point = o.parent.localToGlobal(ptLocal);

590 | Chapter 11: Printing with Flex

 printer.lastOffset.x.px = ptGlobal.x;
 printer.lastOffset.y.px = ptGlobal.y;
 }
 }
 }

}

All other components that the code in Example 11-6 won’t recognize will be printed
as prescribed in the UIComponentPdfExtension as a snapshot of an image
(Example 11-12).

Example 11-12. Printing a Flex object as an image

public function addObject(o:*, printer:IAlivePdfPrinter):void{

 if(!o.visible) return;
 var c:UIComponent = o;
 var pdf:PDF = printer.pdf;
 var rc:PRectangle = new PRectangle();
 rc.left.px = c.x;

 rc.top.px = c.y;
 rc.right.px = rc.left.px+c.width;
 rc.bottom.px = rc.top.px+c.height;

 printer.allocateSpace(rc);
 pdf.addImage(c, rc.left.pt, rc.top.pt, rc.right.pt-rc.left.pt,
 rc.bottom.pt-rc.top.pt);
}

Of course, it’s better not to use a bitmap but instead a PDF representation specific to
a component, which will allow Acrobat Reader to recognize its text content and gen-
erate searchable documents rather than bitmaps.

Extending Flex Components for PDF Generation in XDP Format
In this section, you’ll learn how to enhance standard Flex UI components so that they
can properly present themselves for rendering as PDF-friendly objects in the XML-
based XDP (XML Data Package) format.

The ActionScript code snippet in Example 11-13 shows how you can present a check-
box as an element of the PDF form in XDP format (in XDP, a checkbox is called
checkButton).

We’ll introduce a new interface, IXdpObject, and each of our enhanced UI components
will implement it to return properly prepared XML to represent itself. This will allow
you to turn the entire Flex view into a searchable PDF.

Example 11-13 is an example of implementing the getter xdpContent() defined in the
IXdpObject interface to produce a CheckBox in the XDP format.

Extending Flex Components for PDF Generation in XDP Format | 591

Example 11-13. Representing a CheckBox as an XDP checkButton

// IXdpObject interface implementation
public function get xdpContent():Object {
 var o:XML =
 <field x={convert(x)} w={convert(width)} h={convert(height)}>
 <ui>
 <checkButton allowNeutral="1">
 <border>
 <edge stroke="lowered"/>
 <fill/>
 </border>
 </checkButton>
 </ui>
 <value>
 <text>{value}</text>
 </value>
 <para vAlign="middle" hAlign="center"/>

 <items>
 <text>{onValue}</text>
 <text>{offValue}</text>
 <text></text>
 </items>
 <caption placement="bottom"/>
 </field>;

 return o;
}

private function convert(value:Number) : String {
 return XdpUtil.px2pt(value) + "pt";
}

This code snippet includes a getter, xdpContent, that returns the representation of our
CheckBox in XDP format. It uses a helper function, convert(), to convert the value from
pixels to points.

Note that this code uses binding to insert the onValue and offValue var-
iables that were introduced in Chapter 3 in Example 3-1.

To generate a PDF for a particular Flex view, you need to loop through its children
(every UI control of each container) and get each one’s xdpContent. If it’s not null, add
its value (XDP) to the output file. If it does not have xdpConent, just get an image snap-
shot of this child and add it to the output file.

At the end of this process, you’ll get a mix of images and XDP content. If this is a Flex
application, send this content to the server-side Java Servlet, which will sandwich it
between the PDF header and footer. Voilà! Your PDF file is ready.

592 | Chapter 11: Printing with Flex

Obsessed with the mantra “Developers must write less code,” we at Farata have already
created a number of classes in the package com.farata.printing that allows Flex com-
ponents to expose themselves in a form of XDP.

The sample application shown in Example 11-14 is a rewrite of Example 11-5. It’ll
produce the same output as in Figure 11-2, but this time the document will be encoded
in the XDP format.

Example 11-14. Saving data in XDP format: test_xdp2.mxml

<?xml version="1.0" encoding="utf-8"?>

<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:local="*"
 xmlns:printer="com.farata.printing.pdf.client.*" layout="vertical">

 <mx:Style source="main.css"/>
 <mx:Canvas id="canvas" width="100%" height="100%"
 backgroundColor="white">
 <mx:Label id="lbl1" text="Hello" x="10" y="10"/>
 <mx:Label id="lbl2" text="World" x="50" y="30"
 fontWeight="bold"/>
 <mx:Label id="lbl3" text="And" x="150" y="60"
 fontStyle="italic" enabled="false"/>

 <mx:Label id="lbl4" text="Happy" x="70" y="90" fontSize="16"
 textDecoration="underline"/>
 <mx:Label id="lbl5" text="New Year" x="50" y="140" fontSize="24"
 fontWeight="bold" color="green"/>
 <mx:Button id="btn1" label="Button1" x="70" y="240"/>
 </mx:Canvas>

 <mx:ApplicationControlBar width="100%">
 <mx:Label text="File name:"/>
 <mx:TextInput id="txtFileName" text="hw2.pdf"/>
 <mx:Button label="Save PDF" click="savePdf()"/>
 </mx:ApplicationControlBar>

 <mx:Script>
 <![CDATA[
 import com.farata.printing.PrintOptions;
 import com.farata.printing.pdf.xdp.XdpDocument;
 import com.farata.printing.pdf.buffered.PDFHelper;

 private function savePdf():void{
 saveToFile(txtFileName.text, createXdpContent());
 }

 private function createXdpContent ():ByteArray{

 var xdpDocument:XdpDocument=new XdpDocument();
 xdpDocument.init(new PrintOptions());
 var pdf:PDFHelper=new PDFHelper(xdpDocument);

Extending Flex Components for PDF Generation in XDP Format | 593

 pdf.createPDFPrologue();
 pdf.createPage(canvas, PDFHelper.TYPE_PAGE);
 pdf.createPDFEpilogue();

 return pdf.pdfContent;
 }

 private function saveToFile (file:String, ba:ByteArray):void{

 var fs:FileStream=new FileStream();
 var f:File=File.desktopDirectory.resolvePath(file);
 fs.open(f, FileMode.WRITE);

 try {
 fs.writeBytes(ba);
 } catch(e:*){
 // Process I/O errors here
 }
 fs.close();
 }

]]>
 </mx:Script>
</mx:WindowedApplication>

When you open the generated file h2.pdf in a text editor, notice that it looks different
than the file shown in Example 11-8. The small PDF header and the trailer are there,
but the main content of this file is in XDP format, as shown in Example 11-15.

Example 11-15. A fragment of the h2.pdf content in XDP format

 %PDF-1.7
1 0 obj
<</Type /Catalog /StructTreeRoot 9 0 R /MarkInfo <</Marked true>> /Pages 15 0 R
/AcroForm 16 0 R /NeedsRendering true>>
endobj
2 0 obj
<</Type /Page /MediaBox [0 0 612 792] /Resources 5 0 R /Contents 4 0 R
/StructParent 0 /StructParents 0 /Parent 15 0 R>>
endobj
4 0 obj
<</Length 298>>
stream
BT
/Content <</MCID 0>> BDC
0.0 0.0 0.0 rg
/RelativeColorimetric ri
/T1_0 1.0 Tf
10.0 0.0 0.0 10.0 72.0 720.0 Tm
(Warning: This form is not supported at all with the current version of Acrobat or
Adobe Reader.) Tj
0.0 -1.8 Td
(Upgrade to the latest version for full support.) Tj
0.0 -1.8 Td
EMC

594 | Chapter 11: Printing with Flex

ET
endstream
endobj
5 0 obj
<>
endobj
6 0 obj
<</Type /Encoding /BaseEncoding /WinAnsiEncoding>>
endobj
7 0 obj
<</Type /Font /Subtype /Type1 /BaseFont /Helvetica /Encoding 6 0 R>>
endobj
8 0 obj
<</T1_0 7 0 R>>
endobj
9 0 obj
<</Type /StructTreeRoot /K 10 0 R /ParentTree 13 0 R /ParentTreeNextKey 1 /RoleMap
14 0 R>>
endobj
10 0 obj
<</S /Document /P 9 0 R /K 11 0 R>>
endobj
11 0 obj
<</S /Div /P 10 0 R /K 12 0 R>>
endobj
12 0 obj
<</S /P /P 11 0 R /Pg 2 0 R /K 0>>
endobj
13 0 obj
<</Nums [0 [12 0 R]]>>
endobj
14 0 obj
<</Field /Div /Subform /Sect /Page /Part /Draw /Div>>
endobj
15 0 obj
<</Type /Pages /Kids [2 0 R] /Count 1>>
endobj
16 0 obj
<</Fields [] /XFA 17 0 R>>
endobj
17 0 obj
<< /Length 18 0 R >>
stream
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">
 <template xmlns="http://www.xfa.org/schema/xfa-template/2.5/">
 <subform name="doc1" layout="tb" restoreState="auto" locale="en_US">
 <proto/>
 <desc>
 <text name="version">8.0.1291.1.339988.308172</text>
 </desc>
 <pageSet>
 <pageArea name="Page1" id="Page1">
 <contentArea x="8.47mm" y="8.47mm" w="262.43mm" h="198.94mm"/>
 <medium stock="custom" short="215.87mm" long="279.37mm"
 orientation="landscape"/>

Extending Flex Components for PDF Generation in XDP Format | 595

 </pageArea>
 </pageSet>
 <subform layout="tb" name="Subform1">
 <subform name="Container1" x="6.35mm" y="6.35mm" w="119.58mm" h="70.9mm">
 <draw x="7.5pt" y="7.5pt" w="22.5pt" h="14.25pt">
 <ui>
 <textEdit hScrollPolicy="off" multiLine="0" vScrollPolicy="off"/>
 </ui>
 <value>
 <text>Hello</text>
 </value>
 <para hAlign="left"/>
 <font typeface="Arial" size="7.5pt" weight="normal" posture="normal"
 underline="0">
 <fill>
 <color value="11,51,60"/>
 </fill>

 <border>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 </border>
 </draw>
 <draw x="37.5pt" y="22.5pt" w="24.75pt" h="13.5pt">
 <ui>
 <textEdit hScrollPolicy="off" multiLine="0" vScrollPolicy="off"/>
 </ui>
 <value>
 <text>World</text>
 </value>
 <para hAlign="left"/>
 <font typeface="Arial" size="7.5pt" weight="bold" posture="normal"
 underline="0">
 <fill>
 <color value="11,51,60"/>
 </fill>

 <border>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 </border>
 </draw>
 <draw x="112.5pt" y="45pt" w="18pt" h="14.25pt">
 <ui>
 <textEdit hScrollPolicy="off" multiLine="0" vScrollPolicy="off"/>
 </ui>
 <value>
 <text>And</text>
 </value>
 <para hAlign="left"/>
 <font typeface="Arial" size="7.5pt" weight="normal" posture="italic"

596 | Chapter 11: Printing with Flex

 underline="0">
 <fill>
 <color value="11,51,60"/>
 </fill>

 <border>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 </border>
 </draw>
 <draw x="52.5pt" y="67.5pt" w="37.5pt" h="18pt">
 <ui>
 <textEdit hScrollPolicy="off" multiLine="0" vScrollPolicy="off"/>
 </ui>
 <value>
 <text>Happy</text>
 </value>
 <para hAlign="left"/>
 <font typeface="Arial" size="12pt" weight="normal" posture="normal"
 underline="1">
 <fill>
 <color value="11,51,60"/>
 </fill>

 <border>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 </border>
 </draw>
 <draw x="37.5pt" y="105pt" w="83.25pt" h="26.25pt">
 <ui>
 <textEdit hScrollPolicy="off" multiLine="0" vScrollPolicy="off"/>
 </ui>
 <value>
 <text>New Year</text>
 </value>
 <para hAlign="left"/>
 <font typeface="Arial" size="18pt" weight="bold" posture="normal"
underline="0">
 <fill>
 <color value="0,128,0"/>
 </fill>

 <border>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 <edge presence="hidden"/>
 </border>
 </draw>
 <draw x="18.52mm" y="63.49mm" w="16.67mm" h="5.82mm">

Extending Flex Components for PDF Generation in XDP Format | 597

 <ui>
 <imageEdit/>
 </ui>
 <value>
 <image
contentType="image/png">iVBORw0KGgoAAAANSUhEUgAAAD8AAAAWCAYAAAB3/EQhAAABqElEQVR42uW
YTUsCURSGz76f07bf
EtS2UkioqAgJKaMPERISQkJCqIggF2VItAsRi/5AhS11/BpH8YuTrysb7jj35m7uhQfuOXPmnPvA
LGaGeLgaDZNz+cKIh6esZ4Ff4f1j5ItFvV6Ps88v/Pn1zeWywV5e8IMnfOFNr7k85wtvPBgMtAG+
8Kbr2zvu9/vaAW9KXd2MHgHdgDclL1Pc7Xa1A96UuEhyp9PRDnhT/DzB7XZbmZnZuT/I1Iv20zBN
H3hT7CzOlmUpg8GT4kn1brWy86fpA2+Knsa42Wwqg8GiWJR3QlTjdJ/MLBXgTceRKJumqYz9cON5
e509r1ovip1yssCbwodHw9e9hjIYLIpl8k57mT5uOVngTaH9MNfrdWUwWBTL5J32Mn3ccrLAm4K7
Ia7VasrYH3u3a057e/14zt5TdIb/nB3Am7Z3glytVrUD3rSxucWVSkU74E2BtXUt5eFN/tUAG4ah
HfCmpRXf8CO/rB3wpuOTCN+n01qJwxfeVCz+8LLPz4+ZDJdKJc8DT/jCm/Bvy2q1eC98wPMLi54H
nvDF+gUhlFFaqhacWgAAAABJRU5ErkJggg==</image>
 </value>
 </draw>
 </subform>
</subform></subform>
</template>

...

</xdp:xdp>
endstream
endobj
18 o obj

endobj
xref
0 19
0000000000 65535 f
0000000016 00000 n
0000000151 00000 n
0000000000 65535 f
0000000287 00000 n
0000000635 00000 n
0000000688 00000 n
0000000754 00000 n
0000000838 00000 n
0000000869 00000 n
0000000976 00000 n
0000001028 00000 n
0000001076 00000 n
0000001127 00000 n
0000001166 00000 n
0000001236 00000 n
0000001292 00000 n
0000001335 00000 n
trailer
<</Root 1 0 R /Size 19>>
startxref
%%EOF

598 | Chapter 11: Printing with Flex

The file templates/generic.xdp in com.farata.printing contains the ge-
neric template for XDP generation used for generation of h2.pdf and all
other XDP samples from this chapter.

As you can see from Example 11-15, the values of the text fields (Hello, World, etc.)
are represented as XML text fields, which makes this PDF searchable. Note that the
binary image is also presented in the encoded form as one of the XML elements.

If you are developing not AIR but Flex applications, the client-side code
can generate the entire XML portion of the Flex view components and
send this XML to the server, where, say, Java Servlet puts it between the
required PDF header and trailer and returns the entire document back
to the web browser for printing.

The entire process of generation of this PDF in the XDP format is done by the following
code from Example 11-14:

var xdpDocument:XdpDocument=new XdpDocument();
xdpDocument.init(new PrintOptions());
var pdf:PDFHelper=new PDFHelper(xdpDocument);

pdf.createPDFPrologue();

pdf.createPage(canvas, PDFHelper.TYPE_PAGE);

pdf.createPDFEpilogue();

This code uses the helper components XdpDocument, PrintOptions, and PDFHelper,
which are located in com.farata.printing.swc. The class PrintOptions is just a holder
of such page parameters as orientation, margins, page size, and the like.

The MXML component XdpDocument implements a generic getter xdpContent, intro-
duced in the beginning of this section. The source code of XDPDocument.mxml and a
fragment of PDFHelper.as are shown in Examples 11-16 and 11-17, respectively. But
these constitute just the tip of the iceberg, as they use uses dozens of supporting classes
in the process of creation of the XDP content.

The good news is that unless the XDP format changes, you don’t need to learn all the
nitty-gritty details, as we already did that tedious work of ensuring that the document
is generated as required by the XDP specifications.

Example 11-16. Component XDPDocument.mxml

<?xml version="1.0" encoding="utf-8"?>

<xdp:XdpBaseObject
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:xdp="com.farata.printing.pdf.xdp.*">

Extending Flex Components for PDF Generation in XDP Format | 599

 <mx:XML id="xmlGen" source="/templates/generic.xdp"/>

<mx:Script><![CDATA[

import mx.core.UIComponent;

import com.farata.printing.pdf.buffered.PDFHelper;
 import com.farata.printing.geom.PNumber;
import mx.core.Container;
import com.farata.printing.geom.PSize;
import com.farata.printing.PrintOptions;
import com.farata.printing.geom.PRectangle;
import com.farata.printing.PaperSize;

public static var ns_xdp : Namespace = new
Namespace("http://ns.adobe.com/xdp/");

public static var ns_xfat25 : Namespace = new Namespace(
 "http://www.xfa.org/schema/xfa-template/2.5/");

public static var ns_xci10 : Namespace = new
Namespace("http://www.xfa.org/schema/xci/1.0/");

public static var ns_xfals21 : Namespace = new
Namespace("http://www.xfa.org/schema/xfa-locale-set/2.1/");

public var paperSize : PaperSize;
 public var margins : PRectangle;
public var pageSize : PSize;
public var orientation : String;
public var header:UIComponent;
public var footer:UIComponent;

public function get pages():Array{
 return children;
}

public override function get xdpContent():Object{

 var x:Object = xmlGen.copy();
 var f:Object = x..ns_xfat25::subform.(@name=="doc1")[0];
 var p:XML = <pageSet>
 <pageArea name="Page1" id="Page1">
 </pageArea>
 </pageSet>;

 var contentAreaX:Number = margins.left.px;
 var contentAreaY:Number = margins.top.px;
 var contentAreaH:Number = pageSize.height.px;
 var contentAreaW:Number = pageSize.width.px;

 if (header){
 var xdpHeader:XdpPage = new XdpPage();
 PDFHelper.createXdpPage(xdpHeader, header);

600 | Chapter 11: Printing with Flex

 xdpHeader.x = margins.left;
 xdpHeader.y = margins.top;
 contentAreaY = contentAreaY + header.height;
 contentAreaH = contentAreaH - header.height;

 p.pageArea.appendChild(xdpHeader.xdpContent);
 }

 if (footer){
 var xdpFooter:XdpContainer = new XdpContainer();
 PDFHelper.createXdpPage(xdpFooter, footer);
 xdpFooter.x = margins.left;
 var y:Number = pageSize.height.px + margins.top.px - footer.height;
 xdpFooter.y = new PNumber(y, PNumber.UNIT_PX);
 contentAreaH = contentAreaH - footer.height;

 p.pageArea.appendChild(xdpFooter.xdpContent);
 }

 p.pageArea.contentArea.@x = _pos(new PNumber(contentAreaX, PNumber.UNIT_PX));
 p.pageArea.contentArea.@y = _pos(new PNumber(contentAreaY, PNumber.UNIT_PX));
 p.pageArea.contentArea.@w = _pos(new PNumber(contentAreaW, PNumber.UNIT_PX));
 p.pageArea.contentArea.@h = _pos(new PNumber(contentAreaH, PNumber.UNIT_PX));

 p.pageArea.medium.@stock = "custom";
 p.pageArea.medium.@short = _pos(paperSize.width);
 p.pageArea.medium.@long = _pos(paperSize.height);

 if(orientation==PrintOptions.ORIENTATION_LANDSCAPE)
 p.pageArea.medium.@orientation = "landscape";

 p.setNamespace(ns_xfat25);
 f.appendChild(p);
 f = applyStdData(f);

 return x;
}

public function addPage(p:XdpPage):void{

 addChild(p);
 p.pageNumber = pages.length;
 p.w = pageSize.width;
 p.h = pageSize.height;
}

public function init(opt:PrintOptions):void{

 paperSize = opt.paperSize.copy();
 margins = opt.margins.copy();

 pageSize = opt.pageSize;

Extending Flex Components for PDF Generation in XDP Format | 601

 orientation = opt.orientation;
}
]]></mx:Script>

</xdp:XdpBaseObject>

The ActionScript class PDFHelper has about 300 lines of code; you can see some frag-
ments of it in Example 11-17 . We don’t provide code explanations here, as teaching
the internals of the XDP protocol is not the goal of this chapter.

Example 11-17. Fragments of PDFHelper.as

package com.farata.printing.pdf.buffered{

 public class PDFHelper{

 private static var prefix : Array =[["\%PDF-1.7"+ "\n"," 65535 f"],
 ["1 0 obj"+"\n"+
 "<</Type /Catalog /StructTreeRoot 9 0 R /MarkInfo <</Marked true>> /Pages
15 0 R /AcroForm 16 0 R /NeedsRendering true>>"+"\n"+
 "endobj"+"\n", " 00000 n"],
 ["2 0 obj"+"\n"+
 "<</Type /Page /MediaBox [0 0 612 792] /Resources 5 0 R /Contents 4 0 R
/StructParent 0 /StructParents 0 /Parent 15 0 R>>"+"\n"+
 "endobj"+"\n", " 00000 n"],
 [""," 65535 f"],
 ["4 0 obj"+"\n"+
 "<</Length 298>>"+"\n"+
 "stream"+"\n"+
 "BT"+"\n"+
 "/Content <</MCID 0>> BDC"+"\n"+
 "0.0 0.0 0.0 rg"+"\n"+
 "/RelativeColorimetric ri"+"\n"+
 "/T1_0 1.0 Tf"+"\n"+
 "10.0 0.0 0.0 10.0 72.0 720.0 Tm"+"\n"+
 "(Warning: This form is not supported at all with the current version of
Acrobat or Adobe Reader.) Tj"+"\n"+
 "0.0 -1.8 Td"+"\n"+
 "(Upgrade to the latest version for full support.) Tj"+"\n"+
 "0.0 -1.8 Td"+"\n"+
 "EMC"+"\n"+
 "ET"+"\n"+
 "endstream"+"\n"+
 "endobj"+"\n", " 00000 n"],
 ["5 0 obj"+"\n"+
 "<>"+"\n"+
 "endobj"+"\n", " 00000 n"],
 ["6 0 obj"+"\n"+
 "<</Type /Encoding /BaseEncoding /WinAnsiEncoding>>"+"\n"+
 "endobj"+"\n"," 00000 n"],
 ["7 0 obj"+"\n"+
 "<</Type /Font /Subtype /Type1 /BaseFont /Helvetica /Encoding 6 0
R>>"+"\n"+
 "endobj"+"\n"," 00000 n"],

602 | Chapter 11: Printing with Flex

...

 private var ba:ByteArray = new ByteArray();
 public var xdpDocument:XdpDocument;

 public function PDFHelper(xdpDocument:XdpDocument) {
 this.xdpDocument = xdpDocument;
 }

 public function get pdfContent():ByteArray{
 return ba;
 }

 public function createPDFPrologue():void{
 //write pdf document prefix
 var xref:String ="";

 for (var i:int = 0; i < prefix.length; i++) {
 ba.writeMultiByte(prefix[i][0], "iso-8859-1");
 var str:String = padZeroes(ba.length, 10);
 xref = xref.concat(str + prefix[i][1] + " \n");
 }

 var s:String = xdpDocument.xdpContent.toString();
 s = s.substr(0, s.lastIndexOf("</subform>"));
 ba.writeMultiByte(s, "iso-8859-1");
 }
 public function createPage(obj:Object, type:int):void{
 var page:XdpPage = new XdpPage();
 createXdpPage(page, obj, type);
 ba.writeMultiByte(String(page.xdpContent), "iso-8859-1");
 }

 public function createPDFEpilogue():void{
 var xx:XML = xdpDocument.xdpContent as XML;
 ba.writeMultiByte("</subform>"+"\r"+"</template>"+"\r", "iso-8859-1");
 ba.writeMultiByte(xx..ns_xci10::config[0].toString().replace("
xmlns:xdp=\"http://ns.adobe.com/xdp/\"", "")+"\r", "iso-8859-1");
 ba.writeMultiByte(xx..ns_xfals21::localeSet[0].toString().replace("
xmlns:xdp=\"http://ns.adobe.com/xdp/\"", "")+"\r", "iso-8859-1");
 ba.writeMultiByte("</xdp:xdp>"+"\r", "iso-8859-1");
 ba.writeMultiByte("endstream"+"\r", "iso-8859-1");
 ba.writeMultiByte("endobj"+"\r", "iso-8859-1");
 ba.writeMultiByte("18 o obj " +"\n" + /*streamLength + */"\n" +
"endobj"+"\n", "iso-8859-1");

 //the footer for the pdf document
 var end:String = "xref"+"\n"+ "0 " + 19 +"\n";
 var closing:String = end +
 "0000000000 65535 f"+"\r"+
 "0000000016 00000 n"+"\r"+
...
 "trailer"+"\n"+
 "<</Root 1 0 R /Size " + 19 +">>"+"\n"+
 "startxref"+"\n"+

Extending Flex Components for PDF Generation in XDP Format | 603

 "%%EOF"+"\n";
 ba.writeMultiByte(closing , "iso-8859-1");
 }

 public static function createXdpPage(root:XdpPage, obj:Object,
 type:int = 1):void{

 obj = resolveXdp(obj);
 if (obj is Container){

 var c:Container=obj as Container;
 var count:int=c.numChildren;
 if (type == TYPE_LIST) {
 var page:XdpPage = new XdpPage();
 } else {
 page = new XdpContainer();
 }

 page.x = new PNumber(c.x, PNumber.UNIT_PX);
 page.y = new PNumber(c.y, PNumber.UNIT_PX);
 page.h = new PNumber(c.height, PNumber.UNIT_PX);
 page.w = new PNumber(c.width, PNumber.UNIT_PX);

 root.addChild(page);

 if (obj is FormItem){
 var formItemLabel:Label = (obj as FormItem).itemLabel;
 createXdpPage(page, formItemLabel);
 }

 for(var i:int=0; i < count; i++){

 createXdpPage(page, c.getChildAt(i));
 }
 } else if (obj is IXdpObject){

 root.addChild(obj as IXdpObject);
 } else if (obj is UIComponent){

 var uiComp:UIComponent = obj as UIComponent;
 var xdp:XdpBaseObject = XdpImage.grab(uiComp);
 xdp.x = new PNumber(uiComp.x, PNumber.UNIT_PX);
 xdp.y = new PNumber(uiComp.y, PNumber.UNIT_PX);

 // set the width and hight of UIComponent (i.e. image)
 // for proper image scaling and conversion of pixels
 xdp.w = new PNumber(uiComp.width, PNumber.UNIT_PX);
 xdp.h = new PNumber(uiComp.height, PNumber.UNIT_PX);
 root.addChild(xdp);
 }
 }

}

604 | Chapter 11: Printing with Flex

The code in Examples 11-16 and 11-17 is for illustration purposes only,
because detailed coverage of the XDP generation is out of the scope of
this book. Complete source code of com.farata.printing.swc, however,
is available in the CVS repository of the Clear Toolkit project at
SourceForge.

Example 11-18 shows the source code of test4_xdp.mxml, the modified version of
text4.mxml, but this code generates a PDF in XDP format. The Flex window and PDF
look the same as in Figure 11-3.

Example 11-18. AIR application test4_xdp.mxml

<?xml version="1.0" encoding="utf-8"?>

<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
creationComplete="onCreationComplete(event)">

 <mx:Style source="main.css"/>

 <mx:DataGrid id="dg" x="0" y="0" width="100%" height="100%">
 <mx:columns>
 <mx:DataGridColumn dataField="name" headerText="Name"/>
 <mx:DataGridColumn dataField="phone" headerText="Phone"/>
 <mx:DataGridColumn dataField="email" headerText="E-mail"/>
 </mx:columns>

 </mx:DataGrid>
 <mx:ApplicationControlBar width="100%">
 <mx:Label text="File name:"/>
 <mx:TextInput id="txtFileName" text="hw4.pdf"/>
 <mx:Button label="Save PDF" click="savePdf()"/>
 </mx:ApplicationControlBar>

 <mx:Script>
 <![CDATA[
 import com.farata.printing.PrintOptions;
 import com.farata.printing.pdf.xdp.XdpDocument;
 import com.farata.printing.pdf.buffered.PDFHelper;

 private function doSavePdf():void{
 saveToFile(txtFileName.text , createXdpContent());
 }
 private function createXdpContent():ByteArray {

 var xdpDocument:XdpDocument=new XdpDocument();
 xdpDocument.init(new PrintOptions());
 var pdf:PDFHelper=new PDFHelper(xdpDocument);

 pdf.createPDFPrologue();
 pdf.createPage(canvas, PDFHelper.TYPE_LIST);
 pdf.createPDFEpilogue();

 return pdf.pdfContent;

Extending Flex Components for PDF Generation in XDP Format | 605

 }

 private function saveToFile(file:String, ba:ByteArray):void{

 var fs:FileStream=new FileStream();
 var f:File=File.desktopDirectory.resolvePath(file);

 fs.open(f, FileMode.WRITE);
 try{
 fs.writeBytes(ba);
 }catch(e:*){
 // Error processing goes here
 }

 fs.close();
 }

 private function onCreationComplete(evt:*):void{

 var array:Array=[];
 for(var i:int=1; i <= 300; i++){

 var obj:Object=new Object();
 obj.name="User " + i;
 obj.phone="555-219-227" + i;
 obj.email="user" + i + "@hello.world";
 obj.active=(i % 2) == 1;

 array.push(obj);
 }

 dg.dataProvider=arrat;
 }

]]>
 </mx:Script>
</mx:WindowedApplication>

We decided to keep the name of the code sample as test4_xdp.mxml,
and you can find all other samples (test1 to test5) in the Flash Builder
project clientPdfAir.

The previous example illustrates the printing of 300 rows of data to demonstrate that
the pagination works properly and each page in the PDF file shows the header of the
DataGrid (Figure 11-4).

Embed Your SWF in a PDF
Starting in version 9, Adobe Acrobat Professional includes Flash Player and allows you
to easily drop a .swf or .fla file inside a PDF.

606 | Chapter 11: Printing with Flex

Now you can develop Flash content and embed it into a PDF sales brochure or any
other document. To view this content, users just need the freely available Acrobat
Reader version 9 or later.

Visit http://www.adobe.com/products/acrobat/ for details.

Figure 11-4. The second page of the generated PDF hw5.pdf

Adding Printing to the PharmaSales Application
In Chapter 9, you learned how to create an occasionally connected AIR application. In
this section, you’ll modify it a little bit, armed with new knowledge and printing com-
ponents. That’s right, the Acme Pharm dispatcher should be able to print visitation
data for all salesmen.

On the other hand, each salesman will be able to print the data about his visits to
medical offices without the need to be connected to the server.

Printing for Acme Pharm Dispatchers
You’ll take care of the dispatcher’s needs first. As you might remember from Chap-
ter 9, VisitSchedules.mxml is a web application written in Flex. This means that you
won’t be able to save a generated PDF file on the client’s filesystem and will need to

Adding Printing to the PharmaSales Application | 607

http://www.adobe.com/products/acrobat/

send it to the server, which will just bounce it back so that the web browser will rec-
ognize it as a PDF and do the rest.

The source code of this version of PharmaSales is located in two Flex Builder projects,
air.offline.demo.print and air.offline.demo.web.print. You’ll need to start with the latter
(don’t forget to start MySQL Server and the servlet container first; the example uses
Apache Tomcat). Your web browser should show you the view, similar to that shown
in Figure 11-5.

Figure 11-5. Running VisitSchedules.mxml

Click the Print button and Figure 11-6’s PDF will show up.

Figure 11-6. Generated PDF in VisitSchedules.mxml

The PDF has been generated, and for illustration purposes, we performed a search for
the word “Sandy,” which was successfully found.

608 | Chapter 11: Printing with Flex

The web browser reports that the PDF came from the following URL:

http://localhost:8080/air.offline.demo.web.print/PDFServlet/dg.pdf

You’ll see the code of this Java servlet, PDFServlet, in a little bit, but in the meantime,
take a peek at the Flex code fragment in VisitSchedules.mxml (Example 11-19), which
is invoked by clicking the Print button.

Example 11-19. Flex code fragment for PDF generation

<mx:Button click="openPDF(dg)" label="Print"/>
[Bindable]

 public var collection:DataCollection;

 private function openPDF(uiObject:Object):void{

 var xdpDocument:XdpDocument=new XdpDocument();
 var options:PrintOptions=new PrintOptions();
 options.paperSize=PaperSize.A4;
 options.orientation=PrintOptions.ORIENTATION_LANDSCAPE;

 xdpDocument.init(options);
 var pdf:PDFHelper=new PDFHelper(xdpDocument);

 pdf.createPDFPrologue();
 pdf.createPage(uiObject, PDFHelper.TYPE_LIST);
 pdf.createPDFEpilogue();

 sendToServer(uiObject.id + ".pdf", pdf.pdfContent);
 }

 private function sendToServer(file:String, ba:ByteArray):void{

 var req:URLRequest = new URLRequest("PDFServlet/"+file);
 req.method = URLRequestMethod.POST;

 ba.compress();

 req.data = ba;

 navigateToURL(req, "_blank");
 }

The function openPDF() looks similar to savePdf() from Example 11-18. It’ll generate
a PDF in the XDP format for the DataGrid container. At this point, the generated PDF
is located in memory in the ByteArray object in pdf.pdfContent.

Then, the function sendToServer() compresses this ByteArray and sends it to the Java
servlet,PDFServlet, deployed on the server. The source code of PDFServlet (Exam-
ple 11-20) is located in the folder src/com/Farata/demo/pdf in the Flex Builder project
air.offline.demo.web.print.

Adding Printing to the PharmaSales Application | 609

Example 11-20. PDFServlet.java

package com.farata.demo.pdf;

import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.channels.Channels;
import java.nio.channels.ReadableByteChannel;
import java.util.zip.InflaterInputStream;
import javax.servlet.ServletException;
import javax.servlet.ServletInputStream;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class PDFServlet extends javax.servlet.http.HttpServlet
 implements javax.servlet.Servlet {

 static final long serialVersionUID = 1L;

 // The size of the reading block
 private static final int READ_BLOCK = 8192;

 public PDFServlet() {
 super();
 }

 protected void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 ServletInputStream in = req.getInputStream();
 InflaterInputStream iin = new InflaterInputStream(in);

 byte[] content = readAllFromInputStream(iin);

 resp.setContentType("application/pdf");
 resp.flushBuffer();

 resp.getOutputStream().write(content);
 resp.getOutputStream().close();
 }

 private byte[] readAllFromInputStream(InputStream is) throws IOException {

 // create channel for input stream
 ReadableByteChannel bc = Channels.newChannel(is);

 ByteBuffer bb = ByteBuffer.allocate(READ_BLOCK);

 while (bc.read(bb) != -1) {
 // get new buffer for read
 bb = resizeBuffer(bb);
 }

 bb.flip();

610 | Chapter 11: Printing with Flex

 return bb.array();
 }

 private ByteBuffer resizeBuffer(ByteBuffer in) {
 ByteBuffer result = in;

 if (in.remaining() < READ_BLOCK) {
 // create new buffer
 result = ByteBuffer.allocate(in.capacity() * 2);

 // set limit to current position in buffer and set position to zero.
 in.flip();

 // store he content of original buffer to new buffer
 result.put(in);
 }

 return result;

 }
}

In short, this Java servlet echoes received PDF content from the client, assigns to it the
MIME type "application/pdf", and sends it right back without doing any other
processing.

Start reading this code from the method doPost(), which opens an input stream point-
ing at the request object (HTTPRequest) that arrived from the browser. Because the ar-
rived content has been compressed by the client, the servlet inflates it first and writes
it right back to the response object (HTTPResponse).

All manipulations with buffering in the code above are done for I/O efficiency.

The main takeaway here is that the server-side code didn’t modify the received PDF
object, but just sent it back as PDF content. Now it’s the web browser’s responsibility
to engage its Acrobat Reader plug-in to display the document.

Printing for Acme Pharm Salesmen
Now consider the AIR application that salesmen use on a daily basis, either in connec-
ted or in disconnected mode. In this case, the generated PDF won’t even go to the server
side, but will be saved in the file on the local disk.

You still want to print the list of visits for a particular salesman as a grid, but to make
this report a little fancier, the program should add the name of the salesman as a header
and the logo of Acme Pharm in the footer’s area of the report.

After running the application PharmaSales.mxml from the project
air.offline.demo.print and filtering the data for visits done by Liz Anthony from February
5 to June 7 in 2009, click the Print button. The filtered data will be saved in the file

Adding Printing to the PharmaSales Application | 611

dg.pdf at the local storage directory. Exact file location is displayed in the status bar, as
shown in Figure 11-7.

After the PDF file is created, this AIR application automatically starts the web browser
and opens dg.pdf. Figure 11-8 shows how it looks for the sample data.

The header of dg.pdf shows the date range and the footer—the logo of the company
and some arbitrary text. The header and the footer will be repeated on each page in
case of multipage printing.

Figure 11-7. After clicking the buttons Filter and Print

The header component looks like Example 11-21.

Example 11-21. Header.mxml

<?xml version="1.0" encoding="utf-8"?>

 <mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml" width="594" height="56">

 <mx:Label id="headerLabel" x="10" y="13" text="Visits by Liz Anthony for the
 period from 11/12/08 to 31/16/09" width="565" height="27" fontSize="16"
 fontFamily="Arial" fontWeight="bold"/>

 </mx:Canvas>

612 | Chapter 11: Printing with Flex

yfain11
Cross-Out

yfain11
Replacement Text
02/05/09

yfain11
Cross-Out

yfain11
Replacement Text
06/07/09

Figure 11-8. A generated local file with header and footer: dg.pdf

The footer components are shown in Example 11-22.

Example 11-22. Footer.mxml

<?xml version="1.0" encoding="utf-8"?>

<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml" width="556" height="78"
 xmlns:ns1="com.farata.controls.*">

 <ns1:Image source="@Embed(source='assets/pharma_small.jpg')" x="10" y="10"
 width="75" height="57"/>

 <ns1:Label x="100" y="27" width="446" height="34" text="Acme Pharma - your
 reliable source of drugs" fontSize="19"/>

</mx:Canvas>

Example 11-23 is a code fragment from the PharmaSales.mxml application. It illustrates
what’s happening when the user clicks on the Print button.

Example 11-23. Code fragment for printing a data grid with visits from PharmaSales.mxml

<mx:Canvas height="100%" width="100%">
 <mx:Panel title="Pharma Sales - Salesman" width="100%" height="100%">
 <mx:ControlBar>
 <mx:Label text="Select Date Range:"/>
 <mx:DateField id="dateRangeFrom"
 enabled="{!showAll.selected}"/>
 <mx:DateField id="dateRangeTo"
 enabled="{!showAll.selected}"/>

Adding Printing to the PharmaSales Application | 613

 <mx:CheckBox id="showAll" label="Show all"/>
 <mx:Button label="Filter" click="doFilter()"/>
 </mx:ControlBar>

 <fx:DataGrid toolTip="Double click for details" doubleClick="onDoubleClick()"
 doubleClickEnabled="true" horizontalScrollPolicy="auto" width="100%"
 id="dg" dataProvider="{visitDataCollection}" editable="true" height="100%">
...

 <mx:Button click="openVisitDataCollectionPDF(dg)" label="Print"/>

</mx:Canvas>

 <mx:Script>
 <![CDATA[

 import com.farata.printing.PaperSize;
 import com.farata.printing.PrintOptions;
 import com.farata.printing.pdf.xdp.XdpDocument;
 import com.farata.printing.pdf.buffered.PDFHelper;

 private function openVisitDataCollectionPDF(uiObject:Object):void{

 var xdpDocument:XdpDocument=new XdpDocument();
 var options:PrintOptions=new PrintOptions();
 options.paperSize=PaperSize.A4;
 options.orientation=PrintOptions.ORIENTATION_LANDSCAPE;
 xdpDocument.init(options);

 //Create header text dynamically

 var text:String="";

 var df:DateFormatter=new DateFormatter();
 if (showAll.selected || (!dateRangeFrom.selectedDate &&
 !dateRangeTo.selectedDate)){
 text="All visits by " + username.text;
 } else if (!dateRangeFrom.selectedDate && dateRangeTo.selectedDate){
 text="Visits by " + username.text + " to " +
 df.format(dateRangeTo.selectedDate);
 } else if (dateRangeFrom.selectedDate && !dateRangeTo.selectedDate){
 text="Visits by " + username.text + " from " +
 df.format(dateRangeFrom.selectedDate);
 } else {
 text="Visits by " + username.text + " from " +
 df.format(dateRangeFrom.selectedDate) + " to " +
 df.format(dateRangeTo.selectedDate);
 }

 var header:Header=new Header();
 header.initialize();
 header.headerLabel.text=text;

 xdpDocument.header=header;
 xdpDocument.footer=new Footer();

614 | Chapter 11: Printing with Flex

 xdpDocument.footer.initialize();

 var pdf:PDFHelper=new PDFHelper(xdpDocument);

 pdf.createPDFPrologue();

 pdf.createPage(uiObject, PDFHelper.TYPE_LIST);

 pdf.createPDFEpilogue();

 savePDF(uiObject.id + ".pdf", pdf.pdfContent);
 }

 private function savePDF(file:String, ba:ByteArray):void {

 var fs:FileStream=new FileStream();
 var f:File=File.applicationStorageDirectory.resolvePath(file);

 try{
 fs.open(f, FileMode.WRITE);
 fs.writeBytes(ba);

 var req:URLRequest=new URLRequest(f.url);
 navigateToURL(req, "_blank");
 status="Saved to " + f.nativePath;

 } catch(e:*){
 status=e.message;
 } finally {
 fs.close();
 }

 }
]]>

 </mx:Script>

</mx:WindowedApplication>

The Visit Details window now has the Print button too, as you can see in Figure 11-9.

The produced PDF file looks like Figure 11-10.

Adding Printing to the PharmaSales Application | 615

Figure 11-9. Visit Details with the Print button

Figure 11-10. The generated PDF file details_panel.pdf

There is no reason why a Flex window with Google can’t have the Print button, as
shown in Figure 11-11.

616 | Chapter 11: Printing with Flex

The generated PDF with the map is shown in Figure 11-12.

The PDF files for both the Visit Details and map windows are generated by similar
functions, as shown in Example 11-24.

Example 11-24. Functions for generation of Visit Details and map PDFs

private function openVisitPDF(uiObject:Object):void{

 var xdpDocument:XdpDocument=new XdpDocument();

 var options:PrintOptions=new PrintOptions();
 options.paperSize=PaperSize.A4;
 options.orientation=PrintOptions.ORIENTATION_LANDSCAPE;

 xdpDocument.init(options);
 xdpDocument.footer=new Footer();
 xdpDocument.footer.initialize();

 var pdf:PDFHelper=new PDFHelper(xdpDocument);
 pdf.createPDFPrologue();
 pdf.createPage(uiObject, PDFHelper.TYPE_PAGE);
 pdf.createPDFEpilogue();

 savePDF(uiObject.id + ".pdf", pdf.pdfContent);

Figure 11-11. A Google Maps window with the Print button

Adding Printing to the PharmaSales Application | 617

}

private function openGoogleMapPDF(uiObject:Object):void{

 var xdpDocument:XdpDocument=new XdpDocument();

 var options:PrintOptions=new PrintOptions();
 options.paperSize=PaperSize.A4;
 options.orientation=PrintOptions.ORIENTATION_LANDSCAPE;

 xdpDocument.init(options);
 xdpDocument.footer=new Footer();
 xdpDocument.footer.initialize();

 var pdf:PDFHelper=new PDFHelper(xdpDocument);

 pdf.createPDFPrologue();
 pdf.createPage(uiObject, PDFHelper.TYPE_PAGE);
 pdf.createPDFEpilogue();

 savePDF(uiObject.id + ".pdf", pdf.pdfContent);
}

Figure 11-12. A Google map in a generated PDF

618 | Chapter 11: Printing with Flex

ClearBI: A Web Reporter for Flex
If you want to make more professional-looking reports with such features as adding
formulas, creating totals and subtotals, exporting to Microsoft Excel, and charting,
consider using the ClearBI reporter that will be included in a future version of the Clear
Toolkit framework. To run these reports, end users don’t need anything but Flash
Player–enabled web browsers.

Flex developers use ClearBI’s Designer (an AIR application) to create custom reports
that can either be saved on the local drives or published in a DBMS.

More advanced business users can customize their reports right inside the web browser.
For example, Figure 11-13 depicts a report with grouping by state, and departments
with calculated totals and subtotals.

Figure 11-13. A sample report with grouping

When the user directs a web browser to a deployed ClearBI report player application
(a SWF file; it’ll arrive with an extra toolbar—see the toolbar below the address bar in
Figure 11-13) that allows users to zoom in, export to Microsoft Excel, generate PDFs,
and open a Designer view that allows you to create charts, grouping, filters, sorting,
and format masks; compute fields; and introduce formulas. Figure 11-14 depicts a
Designer view with a formula, converting department codes into titles.

ClearBI: A Web Reporter for Flex | 619

ClearBI Designer can be invoked either by the user inside the web browser, or by any
junior developer as a standalone AIR application (no knowledge of Flex is required).

ClearBI supports user roles and hierarchies to specify who can access specific reports.

Figure 11-14. ClearBI Designer

Summary
In this chapter, you’ve learned how to extend Flex components to give them PDF gen-
eration capabilities. We encourage you to experiment in this area so you can be in full
control of your own set of printable controls that reflect all printing needs of your
enterprise. On the other hand, we offer you our version of such components, which
are included in Clear Toolkit components—ready to use.

The principle of PDF generation on the client described in this chapter has several
advantages:

• You don’t have to create separate templates for further merging with data—
everything is happening at the component level.

• Pagination of the long documents is also taken care of by the client-side code.

• Produced documents are fully searchable.

620 | Chapter 11: Printing with Flex

• If you sent editable components from Flex (e.g., a DataGrid), they will remain ed-
itable in the PDF document, too.

All source code for the examples used in this chapter is located under the Flex Builder
projects PrintingSamples, clientPdfAir, air.offline.demo.print, and
air.offline.demo.web.print. We’ve also included for your convenience the source code
of the package com.farata.printing, which is a part of clear.swc. But to get the up-to-
date version of the code of all components included in this library, visit the SourceForge
repository of the Clear Toolkit framework at https://sourceforge.net/projects/cleartool
kit/.

Wouldn’t you agree that with our smart Flex components, the task of printing became
almost trivial?

Summary | 621

https://sourceforge.net/projects/cleartoolkit/
https://sourceforge.net/projects/cleartoolkit/

CHAPTER 12

Model-Driven Development with
LCDS ES2

A computer is a stupid machine with the ability to do
incredibly smart things, while computer programmers

are smart people with the ability to do incredibly stupid
things. They are, in short, a perfect match.

—Bill Bryson

This chapter introduces you to the model-driven development workflow of LiveCycle
Data Services ES2 (a.k.a. LCDS 3). The authors of this book are huge proponents of
automated code generation wherever possible, and we applaud Adobe for moving in
this direction. We believe that if this “stupid machine” is given the right instructions
in the first place, it can generate smart code over and over again and free “smart pro-
grammers” to make their mistakes elsewhere.

This chapter is not intended to be a detailed tutorial on building a sam-
ple application. Instead, we’ll highlight the key points and provide some
sample configuration files that are important to understanding the proc-
ess of model-driven development with LCDS 3.

If this leaves you hungry for more detail, you can consult several sources
online. For example, at Adobe MAX 2009, Christophe Coenraets dem-
onstrates the entire step-by-step process of model-driven development
with Flash Builder 4 and LCDS 3. You can watch a recording of it at
http://2009.max.adobe.com/online/session/277. A nicely written tutorial
by Justin Shacklette, “Getting Real with LCDS 3,” was published at
O’Reilly’s InsideRIA (http://www.insideria.com/2009/12/getting-real
-with-lcds-3-beta.html and http://www.insideria.com/2009/12/getting
-real-with-lcds-3-part.html).

623

http://2009.max.adobe.com/online/session/277
http://www.insideria.com/2009/12/getting-real-with-lcds-3-beta.html
http://www.insideria.com/2009/12/getting-real-with-lcds-3-beta.html
http://www.insideria.com/2009/12/getting-real-with-lcds-3-part.html
http://www.insideria.com/2009/12/getting-real-with-lcds-3-part.html

Two major features that come with LCDS (but not BlazeDS) are support of RTMP and
Data Management Services (DMS). Until LCDS version 2.6, however, DMS automated
most of the work of Flex developers, but the server-side code had to be written man-
ually. LCDS 3 introduces model-driven development in which not only is the entire
CRUD application creation process automated, but Flash Builder 4 also includes a
Modeler, which enables you to generate such applications just by working with a UML-
like diagram. This chapter provides a high-level overview of this new workflow. In
addition, you can easily find a number of articles and video tutorials online that contain
step-by-step instructions on how to build an application using the LCDS 3 modeling
tools and code generators.

The graphical Modeler tool is used not only in Flash Builder, but also
in Adobe LiveCycle Workbench ES2.

Besides the model-driven workflow, LCDS ES2 offers many other welcome features for
enterprise developers, including:

• Reliable messaging (implemented via AdvancedChannelSet), which guarantees that
no messages are lost in case of network failures. This mode also guarantees that
the messages arrive properly ordered.

• Throttling, which restricts the number of messages that are being sent between the
server and client per second. This is important in network congestion situations to
prevent servers from flooding the clients with messages (the same is true for the
client-to-server data flows).

• An EDGE server, which can be deployed in the enterprise DMZ and can forward
the messages of authenticated clients to other LCDS servers located in the secure
zone behind the DMZ.

• A load-test Java NIO testing tool, which allows Flex developers to emulate heavy
server-side hits by multiple clients.

In this chapter, we’ll talk about model-driven development with LCDS. All features of
LCDS 3 are described in the product documentation, available at http://www.adobe
.com/products/livecycle/dataservices/.

Introduction to Model-Driven Development
LCDS ES2 eliminates the situation in which the client and server code don’t know much
about each other (LCDS 2.6 and earlier) and lots of code has to be written manually
by software developers on both the client and the server sides.

For example, this version of LCDS doesn’t require the manual creation of the same
DTO on both the ActionScript and Java sides. You don’t need to manually create similar

624 | Chapter 12: Model-Driven Development with LCDS ES2

http://www.adobe.com/products/livecycle/dataservices/
http://www.adobe.com/products/livecycle/dataservices/

validators in Flex and Java. You don’t need to implement security in both in the Flex
and Java classes. Now all this can be done at the Model level, abiding by the DRY
principle of software engineering: Don’t Repeat Yourself.

The DRY principle was introduced by Dave Thomas and Andy Hunt in
their book The Pragmatic Programmer (Addison-Wesley Professional.)
It suggests that every piece of knowledge must have a single, unambig-
uous, authoritative representation within a system.

If the code generator and the tool know everything about the data, let them take care
of the mundane task of writing tons of the boilerplate code and free yourself for im-
plementing application-specific functionality.

Starting Model-Driven Development with Flash Builder 4
In the Flash Builder 4/LCDS 3 environment, the process of model-driven development
starts with creating and saving a model. The model file gets deployed and code gener-
ators generate both client and server code, technically creating a CRUD application. In
the next several pages, we’ll highlight some of the milestones of this process.

You start by creating a new Flash Builder 4 project, selecting J2EE as a server-side
technology, and pointing Flash Builder to the Java servlet container (that is, Apache
Tomcat) where LCDS 3 is installed.

While highlighting the major steps of a model-driven workflow, we’ll assume that you
want to populate a DataGrid with the data coming from the server applying the model-
driven workflow. You can do this with Flash Builder’s new Data Services view. Re-
member, by “data service” we mean anything that can return the data.

As long as you know the API from which to get the data—that is, getEmployees()—it
falls into a data service category. We’re going to touch on modeling a new data service,
rather than working with an existing data service (such as SQL or WebService). This
way, you can start the model in the new Data Model perspective, which allows you to
create a model in both Design and Source Code modes.

There is a new XML-based modeling language, which allows you to define the model
for your application, save underlying XML in the file with the extension .fml, and deploy
it on your LCDS 3 server. Typically, you’ll be creating the model in the Design view of
Flash Builder, and the XML code supporting the model will be generated automatically.
But the Source Code view will let you see and manually modify, if need be, the model’s
XML. You can find a detailed explanation of all elements of this XML-based language
at http://help.adobe.com/en_US/LiveCycleDataServicesES/3.0/Modeling/index.html.

Introduction to Model-Driven Development | 625

http://help.adobe.com/en_US/LiveCycleDataServicesES/3.0/Modeling/index.html

Data Sources and RDS
You can open the Modeler by clicking the Model icon in Flash Builder’s Package Ex-
plorer and selecting the Data Model view. Any data modeling tool needs to know where
the data resides, and you have two options here. You can create a model and automat-
ically generate database tables in an empty database, if you have configured the data
source. Alternatively, if you already have a database with tables, the Modeler will in-
trospect the data and build the entities required for the model.

In either case, to work with a relational DBMS using Java, you need to configure JDBC
data sources. We’ve tested this workflow using Apache Tomcat and MySQLServer
DBMS, and our data source configuration to the database test for the user dba with the
password sql looked as shown in Example 12-1.

Example 12-1. Configuring MySQL Server database connection in Tomcat’s file context.xml

<Context priviledged="true" antiResourceLocking="false"
 reloadable="true">
 <!-JOTM -->
 <Transaction factory="org.objectweb.jotm.UserTransactionFactory"
 jotm.timeout="60" />
 <Resource name="jdbc/test" type="javax.sql.DataSource"
 driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql:localhost:3306/test?autoReconnect=true"
 username="dba" password="sql" maxActive="20" maxIdle="10"
 maxWait="-1"
 />
</Context>

Flash Builder’s Modeler will be able to access such data sources with the help of the
server called Remote Development Services (RDS). After installing LCDS 3 in the Java
Servlet container, you’ll need to uncomment the RDS section shown in Exam-
ple 12-2 in web.xml.

Example 12-2. RDSDispatchServlet is your RDS server

<servlet>
<servlet-name>RDSDispatchServlet</servlet-name>
<display-name>RDSDispatchServlet</display-name>
<servlet-class>
 flex.rds.server.servlet.FrontEndServlet
</servlet-class>
<init-param>
 <param-name>useAppserverSecurity</param-name>
 <param-value>false</param-value>
</init-param>
<load-on-startup>10</load-on-startup>
</servlet>
<servlet-mapping id="RDS_DISPATCH_MAPPING">
 <servlet-name>RDSDispatchServlet</servlet-name>
 <url-pattern>/CFIDE/main/ide.cfm</url-pattern>
</servlet-mapping>

626 | Chapter 12: Model-Driven Development with LCDS ES2

Now, when the servlet container with LCDS starts, it’ll launch the RDSDispatchServ
let, which serves as a means of communication with Flash Builder Modeler. This
RDSDispatchServlet tells the Modeler about its configured data sources; in the case of
Apache Tomcat, this is in context.xml. Refer to the documentation of your Java Servlet
container to learn how to configure data sources there.

The RDS server has to be configured in the Preferences panel of Flash Builder, as shown
in Figure 12-1.

Figure 12-2 shows the RDS Data view of the Modeler that successfully connected to
the test database configuration shown in Example 12-1.

If you drag one or more tables from the RDS view onto the Design perspective of the
Modeler, you’ll get the entity model of your data source with all relationships between
them. Figure 12-3 shows how the Employee entity was generated based on the em-
ployee database table.

If you drag one more table department, all primary/foreign key relations defined in
DBMS will turn into associations—lines connecting model entities. An association has
properties (e.g., cardinality), and you can specify whether the association is uni- or
bidirectional.

To assign validation rules to any of the Employee’s properties, right-click on the prop-
erty and enter the validation expression in the Styles panel.

You can also add to an entity so-called variants, which in other software tools are often
called computed fields. Writing expressions for variants requires familiarity with the
syntax of the expression language described in the product documentation. You can
also use the graphical Expression Builder of Flash Builder 4.

If an entity has a unique id property, it’s considered a persistent entity.
In other words, you can save the changes to the entity’s data on some
media on the server side. Find the section <annotation> in the source
code of the generated model; you’ll see that by default, the entity will
be manipulated using Java’s JDBC notation with the help of Hibernate
dialect (HSQLDialect). To change the defaults and use custom classes as
server-side assemblers, refer to the annotations section (http://bit.ly/
6zXkxd) in the Adobe Application Modeling Technology Reference.

If you want to create a new table in DBMS, right-click somewhere in the blank area of
the Model view and select New Entity.

Now you can save and deploy this model (the .fml file) in the LCDS server (this .fml
file will be physically copied to the server). Because the plan is to display the data in a
Flex view that will consist of the DataGrid and a Form, call it masterDetailForm as in
Figure 12-4.

Introduction to Model-Driven Development | 627

http://bit.ly/6zXkxd
http://bit.ly/6zXkxd

Note the group of radio buttons in Figure 12-4. If you are building the model from an
existing database, the Unchanged option is selected. When you need to modify existing
database entities, choose Update; to create new ones, choose Create/Recreate.

After deploying the model, Flash Builder, with help of Fiber, generates code on both
the server and the client sides. On the server side, it generates a service with a number
of methods based on the properties of the deployed entities. It also generates destina-
tions, assemblers, endpoints, and whatever else you wrote manually in earlier versions

Figure 12-1. RDS configuration in Flash Builder 4

628 | Chapter 12: Model-Driven Development with LCDS ES2

of LCDS; the difference is that Flash Builder does not create any custom Java classes
on the disk. On the client side, Flash Builder deploys the model in the .model directory
of your Flash Builder project and generates ActionScript classes acting as proxies for
the service operations.

Figure 12-2. RDS view in Flash Builder Modeler

Figure 12-3. A one-entity data model: Employee

Introduction to Model-Driven Development | 629

What Is Fiber?
Fiber is a code name for a number of technologies that support model-driven develop-
ment. Used in Flash Builder 4 and other Adobe technologies. Fiber consists of:

• A modeling language

• The generator of the code to be interpreted during runtime

• Tools for model creation and manipulation

• A runtime (built into LCDS) that knows how to process model behavior and
persistence

Fiber allows Flex applications to work with different types of services (DataService,
WebService, HTTPService, RemoteObject). The wrapper classes that support these serv-
ices as well as their supporting classes are packaged in the Flex library fiber.swc.

Based on the deployed model (a .fml file), Fiber generates in-memory destinations and
assemblers for the services. You won’t find .java or .class files created by Fiber. The
LCDS server interprets the generated code in memory during runtime.

Figure 12-5 depicts the service EmployeeService with a number of generated methods.
It’s easy to guess that the method getAll() is for retrieval of all employees from the
database table Employee.

Drag the getAll() method from the Data Services view onto the DataGrid in the Design
view, and you’ll see that the DataGrid will display the right-column names as defined
in the entity Employee. Run the application, and the DataGrid will be populated with
data from the database. No coding has been required.

Figure 12-4. Deploying the data model

630 | Chapter 12: Model-Driven Development with LCDS ES2

Another way of binding the data service to the grid is the menu option
Bind to Data in the right-click menu of the DataGrid.

What Has Been Generated?
What would you do after seeing the view shown in Figure 12-5? Chances are good that
a Java developer would immediately try to find the generated Java class
EmployeeService. But she wouldn’t find it, because the Modeler generated Java access
code in memory. So how does the whole thing work? This data service has been gen-
erated from your deployed model in the server’s memory.

LCDS 3 includes a popular object-relational mapping framework called Hibernate,
which is responsible for the data retrieval and persistence, but the code for the
EmployeeService itself is generated and interpreted during the runtime in memory only.

On one hand, it’s great: now even people who don’t know Java can use LCDS. On the
other hand, you are now completely dependent on the quality of this generated code.
If the Java sources of the data service existed and something went wrong, you (as the
Java developer) could debug and fix it. Because LCDS 3 was architected differently,
you are at mercy of the software engineers who created these code generators.

Figure 12-5. Generated data service: EmployeeService

Introduction to Model-Driven Development | 631

In the 1990s, the authors of this book had a very positive experience with the client/
server tool PowerBuilder from Sybase, which was architected similarly. We didn’t see
the generated code, but everything worked fine there. We hope that the quality of the
generated LCDS code will be as good as it was in PowerBuilder.

On the client side, although the Flex code has been generated, you’ll be able to find
classes for the DTOs and the ActionScript stubs that are required to support all CRUD
operation communicating with the server-side methods from the data service. Gener-
ated DTOs are split into a superclass and its descendant; the superclass can be regen-
erated by the Modeler as often as needed, while the subclass, the descendant, is a
placeholder for the custom code of an application developer.

Creating Master/Detail/Search View
The function getAll() populated the grid. To make this exercise a bit more complica-
ted, you can add a Master/Detail view and search functionality to this view. When an
employee is selected (say, David Scott in Figure 12-6), you want to populate the form
with detailed information on this person. This form should be editable and support
data persistence (for example, the ability to update, delete, and add a new employee)
on the server side.

Right-click on the Employee entity in the Design view of the Modeler. Note the section
Data Types above the function names (see Figure 12-5). Because the Employee entity
has the data from only one table, you’ll see Employee as the only data type there. In a
more generic case, you might have several data types there.

Right-click on the Employee data type and select the menu Generate Form. The re-
sulting pop-up window asks you to select either Flex Form or Model Driven Form. If
you select Flex Form, the generated code will contain only basic Flex form attributes;
this form can be used in non-LCDS 3 applications.

You can also select the Model Driven Form option so that the code generator can use
the extended attributes of the model (such as validations and associations). In either
case, you’ll see newly generated form next to the DataGrid. The form has the same fields
as the Employee entity. Switch to the source code perspective and bind it to the Data
Grid by adding to the <forms> tag the following property:

valueObject="dataGrid.selectedItems as Employee"

where dataGrid is an id of the DataGrid with employees.

Run the application and you’ll see that selecting a row in the DataGrid shows all the
data about this employee, as seen in the form in Figure 12-6.

If the entity Employee had an association with the entity Department, the generated
form would contain a drop-down populated with departments. As you may remember,
in order to achieve the same functionality with BlazeDS, we had to come up with the
idea of resources (see Example 3-10), but in LCDS 3 using associations is even simpler.

632 | Chapter 12: Model-Driven Development with LCDS ES2

The generated form displays all required form items in one column. The good news is
that you can customize the template used for the form generation to make it as fancy
as needed. Fiber uses templates generated by a template engine called FreeMarker
(http://freemarker.org), and you can tweak the form’s template as you wish.

Try to add a new employee using the form shown earlier. Clicking the Add button
makes a server call to save a new row in the underlying database table.

Queries in this Modeler are called filters. Defining a filter on the entity serves the same
purpose as, say, writing a Select statement against an RDBMS. One entity can have
multiple filters, which makes sense, because you need to be able to retrieve more than
one data set (for example, show all employees or show only employees from New York)
on the same data entity.

Of course, you don’t always want to display all the data. What if you’d like to filter the
data based on some criterion? For example, you may want to find all employees who
have specific letters in their names. In the SQL world, you’d use the like keyword for
this.

The generated function getByEmpLName() shown in Figure 12-5 can help only if you
know the exact last name you want, but not when you want to search just by a couple
of letters.

Figure 12-6. Master/detail view

Introduction to Model-Driven Development | 633

http://freemarker.org

To specify more complex filters, just open the properties sheet of the model by going
back to the Data Model view, clicking the Employee model and referring to the panel
in the bottom left, and creating a new filter as shown in Figure 12-7. In this case, we
want to find a particular text pattern in both first (empFname) and last (empLname) names.
The Flex code provides the argument searchModel, which contains the text to search for.

Figure 12-7. Adding a filter query

Java EE developers may recognize the jpql prefix in the Query expression. Yes, this is
the Java Persistence Query Language used in the Java persistence framework to define
queries over entities independent of the syntax of the particular database you store the
data in.

You could’ve specified the search criteria in the Criteria Expression field shown in
Figure 12-7, but JPQL allows you to create a lot more complex queries, which are also
called pass-through filters. To get familiar with the expression syntax for filters, refer
to the online manual “Application Modeling Technology Reference,” which is available
at http://help.adobe.com/en_US/livecycle/9.0/lc_ds_list.html.

The DMS tab from Figure 12-7 enables you to configure pagination,
which is a useful feature for large result sets. The LCDS server will feed
you the data in chunks based on the configured number of records in
the page and the size of the visible portion of the UI control, that is,
DataGrid.

The Modeler generates an appropriate function with a call responder for the filter de-
fined earlier. The rest is simple. Add a button and a text field (say, MySearchText) on
the top of the view as shown in Figure 12-8.

On the click event of the button, make the call to the newly generated filter function
passing "%" + MySearchText.text + "%" as an argument to the filter expression defined
in Figure 12-7.

Don’t forget to modify the dataProvider of the DataGrid to use the lastResult not from
the getAll() method as it was done originally, but from the method generated for the

634 | Chapter 12: Model-Driven Development with LCDS ES2

http://help.adobe.com/en_US/livecycle/9.0/lc_ds_list.html

filter expression. With Fiber, the result returned by the service call is placed into the
property lastResult of the corresponding class CallResponder. The dataProvider of
your DataGrid should get the data there.

Summary
Overall, the model-driven development workflow with LCDS 3 is a great move toward
automation of creating data-driven enterprise RIA, but it is a work in progress.

After reading the first chapter of this book, you most likely got the feeling that we don’t
see too much value in introducing MVC frameworks in a Flex RIA. By creating the
Fiber architecture and this new model-driven design workflow, Adobe may be sending
a similar message. Of course, you can use the generated view with Flex/LCDS/DBMS
in conjunction with the MVC framework of your choice, but does it make much sense?

In this chapter, we’ve reviewed just one aspect of LCDS 3—model-driven development
—but LCDS 3 has a number of other great improvements that will definitely make it a
valuable addition to any enterprise application built with Flex and Java EE. As a matter
of fact, now you don’t even have to know Java to create LCDS-based applications.

Figure 12-8. Adding a search with filter criteria

Summary | 635

Epilogue
The book is over. We tried to discuss the most important subjects that Flex/AIR prac-
titioners face while working on an enterprise RIA. We tried not to just give you better
Flex components, but to explain how you can build similar or better ones for your
enterprise-wide framework. We shared with you some not-so-obvious techniques for
establishing communication between a Flex or an AIR client and the server-side
systems.

We spent time explaining how to customize the networking protocols used in Flex/
Java communications. We did this even though most of you can happily develop Flex
RIA without bothering much about what’s traveling over the wire. But if and when you
are facing a challenge that requires changing the way Flex and Java communicate, this
book will help in making your project a success.

Adobe software engineers did a great job designing the Flex framework, but what’s
more important is that they left all the doors open. Step in and enhance, extend, im-
prove, and add more stuff to this great product as you see fit. Don’t be afraid.

The authors of this book would really appreciate your feedback. Please send your con-
structive critique and praises of this book our way.

— Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky

636 | Chapter 12: Model-Driven Development with LCDS ES2

Index

Symbols
@ (at sign), adding to binding expression, 138
@Embed meta tag, 328

A
ABC (ActionScript Byte Code), 435–436
AbstractServiceInvoker class (Mate), 28
acceptance testing (see functional testing)
accessibility of Flex RIAs, 211
Action Message Format protocol (see AMF

protocol)
ActionScript

Array objects, 24
DTOs (data transfer objects), 85
inserting logging code into, using Log4Fx,

200
PureMVC framework (see PureMVC

framework)
XYZ class, 67

ActionScript 3
private constructors, not supported, 18

ActionScript Byte Code (ABC), 435–436
ActionScriptAdapter, 219
adapter, messaging, 219
addEventListener() fimctopm, 433
ADL (AIR Debug Launcher), 444
Adobe

appeal to designers and developers, 178
Application Modeling Technology

Reference, 627
Data Services Stress Testing Framework,

195
Developer's Connection website

integration of Flex, BlazeDS, Hibernate,
and MySQL Server, 208

Flash Builder, 180
Adobe AIR (see AIR)
Adobe BlazeDS (see BlazeDS)
ADT (AIR Developer Tool), 444
aggregation of content, 327
AIR (Adobe Integrated Runtime), xiv, 441–

490
application to print data grid into PDF file,

587–589
data synchronization with

OfflineDataCollection, 478
differences from Flex, 443
HelloWorld in, 444–449
integrating with Google Maps, 486–489
native windows, 449
PharmaSales application, 461–478

adding printing to, 607–619
printing with AlivePDF from AIR

application, 581
resources for further information, 490
test4_xdp.mxml application, 605–606
version 1.5, limitations of, 441
version 2.0, improvements in, 442
working with files, 450–460

commonly used directories, 450
local databases, 454–460
reading and writing to files, 452–454

.air files, 448
AJAX

Flex AJAX Bridge (FABridge), 186
increased number of simultaneous HTTP

requests handled by web
browsers, 269

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

637

RIAs developed with, 270
AlivePDF, 578

basic printing with, 579–581
enhancing, 581–587
resources for further information, 581

AlivePDFPrinter class, 581
AMF (Action Messaging Format) protocol, 194,

263
in BlazeDS application supporting Jetty

NIO, 280
client-side serialization and, 268
custom serialization and, 320–323
HTTP batching with, 272
implementations for data-intensive

applications, 388
importance of, 265

performance of AMF, 266
third-party networking solutions, 324
using AMF message headers, 308–311

AndyNailsService class (example), 557
annotations (Java), 88
Ant build tool

automation of script creation, 198
simplifying development of scripts, using

soft links, 182
Apache Ant (see Ant build tool)
Apache Tomcat server

configuring MySQL database connection in
context.xml file, 626

NIO implementation of servlet container
implementing Comet techniques,
282

version 6, 46
creating new instance in Eclipse JEE IDE,

47
AppController objects (Cairngorm

framework), 10
creating command class instance, 11
implementation in Café Townsend, 11

Application class, 64
application descriptor file, 444
application domains, 339, 344–349

parent and child, 345
sandboxes and, 363

application ID (AIR), 446
Application Loaders Project, 370
application modularization (see

modularization; modules)
Application objects

application.parameters, 187
createChildren() method, 390
creation by Flex Player, 389

ApplicationDomain container, 389
applicationDomain property (ModuleLoader),

345
ApplicationDomain.currentDomain property,

345, 362
applications

advantage over modules, 361
sibling domains and multiversioning, 362–

379
startup and preloaders, 389–407

LightweightPreloader application, 390–
398

main SWF talks to
LightweightLoader.swf, 398–
404

supporting logout functionality, 404–
407

ApplicationStartupCommand class
(PureMVC), 33

APPLICATION_COMPLETE event, 24
applyValue() method, 125
AppModelLocator objects (Cairngorm

framework), 10
architects (Flex), 177
Array objects (ActionScript), 24
ArrayCollection objects, 13

DataCollection subclass, 55
storing form data, 142

artwork
converting into Flex components, 179
creation in Illustrator or Photoshop, 178

AS3corelib, 204
as3flickrlib, 205
as3syndicationlib, 205
ASDoc, 209
Assembler pattern, 290–295

EmployeeAssembler.java class (example),
291

server-side push with Assembler class
(example), 311

asSQL library, 204
Astra Web API, 204
asynchronous events, 550–559

defining, 551
dispatching, 553
starting process on, 554–559

638 | Index

asynchronous mode (AIR files), 450
asynchronous token pattern, 91–93
AsyncMessage objects, 216

message body and header, 223
AsyncToken class, 92
authentication

Live Cycle ES, User Management, 529
user of LightweightPreloader, 397

authentication providers, custom, for
LiveCycle ES, 530–533

automation tools in Flex applications, 410
away3D, 205

B
BatchMember objects, 306
BatchService class, 306
Bindable meta tag, 67, 73, 86
BitmapAsset class, 328
black-box testing (see functional testing)
BlazeDS, xiv, 215, 219, 263, 442

(see also messaging layer, customizing of
LCDS or BlazeDS)
adding blazeds.war to project, 49
deep data synchronization, 302–307

batching remote calls, 306
nested DataCollections, 302–306

Developers Guide, 219
integrating with Hibernate framework, 207
integration with Java Spring framework,

206
LCDS versus, 264
networking architecture, 277–283

setting BlazeDS messaging to use Jetty
NIO API, 279

setting up example BlazeDS application
on Jetty, 278

sending client’s heartbeats, 217–218
sending server messages, 216
stress or performance testing of RIAs, 194
version 3.0, 46

bootstrap class loading, 375–379
bootstrapping libraries as applications, 357–

361
Borland, SilkPerformer and SilkTest, 195
BSS (business style sheets), 114, 127
build path and compile options, simplfying

configuration process, 182
build scripts, 197

automation of Ant script creation, 198

continuous integration of, 199
Maven build tool, 198

business process example, vacation request,
492

business process management (BPM), 491
byte code verifier, 435
byte code, transfer in dynamic loading, 329
ByteArray objects, 328

data serialization, 268

C
cacheAsBitmap property, 438
Café Townsend application, 3

Cairngorm framework, 7–18
adding new employees to list, 18
AppController implementation, 11
application file, 10
Command class implementation, 12
Delegate implementation, 14
EventDispatcher, display() method, 11
LoadEmployeesEvent class (example),

11
ModelLocator implementation, 16
Services implementation, 14

Caringorm framework
Multi-View Contact Management

application, 9
Clear Toolkit framework, 45–57

Eclipse Dynamic Web project with CDB
facets, 47

installing software for CRUD example,
46

employee list without frameworks, 5
introduction to, 3
Mate framework, 21–27

EmployeeParser.as, 24
fragment of EmployeeList.mxml, 26
fragment of MainEventMap.mxml, 22
ModelMap.mxml, 26
result handlers, 24

PureMVC framework, 30–42
ApplicationFacade.as file, 32
ApplicationMediator class, 40
ApplicationStartupCommand

(example), 33
CafeTownsend.mxml application file,

30
EmployeeProxy class code fragment, 35
LoadEmployeesDelegate class, 36

Index | 639

mediator class, EmployeeListMediator,
36

ModelPrepCommand class (example),
34

ViewPrepCommand class, 39
sizes of SWF files using different

frameworks, 60
with validators, 162–167

Cairngen open source code generator, 19
Cairngorm framework, 2, 7

Café Townsend application, 7
adding new employee to list, 18
AppController implementation, 11
application file, 10
CairngormEventDispatcher, dispatch()

method, 11
Command class implementation, 12
Delegate implementation, 14
LoadEmployeeEvent class (exmaple),

11
ModelLocator implementation, 16
Services implementation, 14
View, EmployeesList.mxml, 15

deciding whether to use, 19, 59
documentation and example application, 7
pros and cons of, 20
singletons, 64

CairngormEventDispatcher objects, 10
elminating need to import into each view,

11
Canvas class, 589
casting

in sibling domains, 375
not allowed across sibling domains, 372

CDB (see Clear Data Builder)
ChangeObject class, 139
channels (see communication channels)
Charles HTTP proxy and monitor, 203
CheckBox controls

creating centered CheckBox, 118
creating self-centering CheckBox, 118
creating value-aware CheckBox, 116–118
enabled property, 119
representing as XDP format, 591
selected property, 114

CheckBoxProtected class, 119
child application domain, 345
chrome and transparency of <mx:Window>

component, 450

class definitions in dynamic loading, 329
class factory design pattern, 93–112

ClassFactory class, 94–97
creating UIStaticClassFactory (example),

97–103–112
dynamically building item renderers for

DataGrid, 100
classes

bootstrap class loading, 375–379
JIT compilation and, 436

ClassFactory class, 94–97
generator property, 96
limitations of, 96
newInstance() method, 96
properties property, 96

Clear Data Builder (CDB), 44
creating Eclipse Dynamic Web project with

CDB facets, 47–57
generation of SQL for ActionScript DTOs,

305
Clear Toolkit, 3, 43–58

Café Townsend application, 45–58
Eclipse Dynamic Web project with CDB

facets, 47
installing software for CRUD example,

46
components, 44
Flash Builder plug-in for Log4Fx, 200
NIOBlaze package, 281
pros and cons, 57

clear.swc component library, 115
creating centered CheckBox, 118
creating protected CheckBox, 119
creating value-aware CheckBox, 116
test application for value-aware CheckBox,

117
ClearBI, web reports for Flex, 619
client heartbeat messages

heartbeat adapter, 219–221
sending, 217–218
testing client heartbeat, 221–222

client messages
guaranteed delivery of, 244
keeping in order, 253–257
ReliableClientMessage class (example),

244
resending channel guaranteeing delivery,

247–250
server acknowledging the endpoint, 246

640 | Index

testing guaranteed delivery, 251–253
testing ordered delivery of, 257–261

ClientGeoCoder objects, 487
clients

PDF generation on, 578–591
closures, 433
code coverage, 195
code execution performance, 439
collections

storing form data, 142
ColumnRecord DTO (example), 101
com.farata components package, 116
com.farata.controls package

ComboBoxBase class, 122–127
com.farata.rtmp.components project, 261
com.farata.rtmp.components.demo project,

261
ComboBox controls

dataField property, 125
resource property, 129
upgrading, 121–127

ComboBoxBase class, 122–127
dataField property, 122
keyField property, 122
value property, 125

Comet, 271
description of, 273

Command class, 8, 15
Command pattern

Cairngorm framework, advantages of, 20
server as command center, 314–320

commitProperties() function, 125, 150
communication channels, 223

building custom acknowledging channel,
225–228

channel definition to test ordered delivery of
client messages, 257

defined by BlazeDS, 277
RemoteStreamingChannel (example), 318
resending channel for client messages, 247–

250
serializing channel, 238–244

communication protocols, 263
RIA performance and, 388

compc compiler, 196
compilers

compiler.accessible option, 212
information about, 435
JIT (just-in-time), 435–436

mxmlc and compc, 196
component developers, 177
component libraries

clear.swc, 115
component explorer, Flex de Tour, 205
frameworks versus, 1
listing of some open source libraries, 204

components, converting artwork into, 179
ConcurrentHashMap class, 228
-config suffix in project file, 421
containers, 273

(see also servlet containers)
as mediators, 76
printing Flex containers, 587–591

continuous integration, 199
Controller class (PureMVC), 29

automatic initialization of instance, 32
Coordinated Universal Time (UTC), 320
CreateRequest.mxml application (example),

564–569
creationComplete event, 343
Creative Commons license, 9
CruiseControl framework, 199
CSS (Cascading Style Sheets)

compiling CSS file to .swf, 330
example file, 329
minimizing update in runtime, 438
modularization, 386

CSSStyleSelector class, 131
currentDomain property, 355, 362

ApplicationDomain class, 345
custom solution components (LiveCycle ES),

543–550
handleApprovedOrder(), 546–550
initializeProcessVariables(), 544–546

D
DAOs (data access objects)

Assembler and DAO classes, 290–295
data access automation, 284–302

Assembler and DAO classes, 290–295
ChangeObject (example), propagating

changes between server/client,
288–290

custom serialization and AMF, 320–323
data push in, 311–313
DataCollection class (example), 295–302
deep data synchronization with BlazeDS,

302–307

Index | 641

DTOs (data transfer objects), 284–287
security appliances, 323–324
server as command center, 314–320
third-party networking solutions for AMF,

324
using AMF message headers, 308–311

data binding, 67
Bindable and Managed meta tags, 73
binding a form to a DataGrid row, 138
in DataFormItem control, 144
two-way, in Flex 4, 138
updating UI in Cairngorm framework

applications, 20
data communication protocols, 194
data forms, 138–151

DataForm component, 139–143
DataFormItem component, 143–151
validation (see validation)

Data Management Services (DMS), 624
data push in data access, 311–313

receiving pushed data on the client, 312
server-side push with Assembler class

(example), 311
data service components (LiveCycle ES), 499
Data Services Stress Testing Framework, 195
data styling, 127
data synchronization

AIR, 461
OfflineDataCollection class, 478–486

data transfer objects (see DTOs)
data transfer performance of protocols,

comparing, 266
data-intensive applications, AFM

implementations for, 388
databases

data synchronization between local and
remote, 478–486

local.db fle in PharmaSales application,
472

PharmaSales application in AiR, 461
databases, local, 454–460

administrator tool to work with SQLite
objects, 457

connecting to, 455
creating a table, 456
inserting into a table, 456
querying, 458
running WorkingWithDB application, 458–

460

DataCollection class (example), 45, 55, 295–
302

batching remote calls to perform updates,
306

nested DataCollections, 302–306
requestsCollection, 510

dataFieldChange event
in ComboBoxBase control, 126

DataForm class, 139–143, 510
code fragment using (example), 150
dataProvider property, 142
readOnly property, 142

DataFormItem class, 143–151
code fragment using (example), 150
dataField property, 144
itemEditor property, 149
validators, 150

DataFormItemEditor objects, 144
DataFormValidation example application,

153–157
DataGrid components

Clear Toolkit component library, 55
embedding validation rules, 162–169
itemRenderer property, 168
using class factory to dynamically build item

renderers for, 100
DataGridColumn class, 131

embedded validators, 168
labelFunction property, 136
with resources, 134–137

dataProvider property, 142
DataService classes, DTOs and, 85
DataServices ES, 498
Date objects, 320
dates and time (non-UTC), custom serialization

and AMF, 320–323
debugger

view of validation errors, 157
Delegate class, 8

implementation in Cairngorm Café
Townsend application, 14

Dependency Injection design pattern, 27
design patterns, 63–112

asynchronous tokens, 91–93
class factory, 93–112
data transfer object (DTO), 81–91
mediator, 74–81
proxy, 67–74
singleton, 64–67

642 | Index

designers and developers of RIAs, 178
designopers and devigners, 180
developer's workstation, 180

IDE choices for enterprise Flex developers,
180

preparing for teamwork, 181
dictionaries

maintained by custom resending channel,
247

digital certificates, 446
Digital Primates, dpHibernate library, 208
directories, commonly used in AIR, 450
directory service provider (custom), LiveCycle

ES, 533–536
DMS (Data Management Services), 624
documentation, project, 208

UML diagrams, 211
using ASDoc, 209

domains, application (see application domains)
DownLoadProgressBar class, 390
DownloadProgressBar class, 400
dpHibernate library, 208
DSDD (different sandbox different domain),

363, 373–374
DTO2Fx utility, 44, 88
DTOs (data transfer objects), 73, 81–91

automated updates and synchronization,
284–287

ColumnRecord (example), 101
custom ChangeObject propagating changes

between server and client, 288–
290

for data exchange between Java and
ActionScript classes, 88

DTO with nested data collection, 304
IHierarchicalDTO interface, 305
recommendations for DTOs

communicating with remote
subsystem, 86

saved in local storage (PharmaSales
example), 471

dynamic typing, 406
DynamicApplication class, 64
DynamicEvent class, 171

E
EAR (enterprise application archive), 519
Eclipse Dynamic Web project, creating using

CDB facets, 47–57

Eclipse IDE
creating a new server, 463
Flash Builder as plug-in, 180
for PharmaSales AIR application, 462

EDGE server, 624
EmailValidator objects, 156
endpoints

acknowledging the endpoint, 246
communication channels on server side,

223
CustomAMFEndpoing.java (example), 310
defined, 219, 277
extending to return information from

MessageAckEvent, 244
NIO messaging, adding to BlazeDS, 279
NIO, adding to BlazeDS application in Jetty

installation, 280
SerializingRTMPEndpoint class (example),

254–257
services hosted by LiveCycle ES, 498
testing custom SerializingRTMPEndpoint,

257–261
testing guaranteed delivery from client, 251

Ensemble, Tofino 2, 180
enterprise application archive (EAR), 519
enterprise Flex projects, 175–213

developer's workstation, 180–182
embedding .swf files into HTML pages,

183–185
interacting with HTML and JavaScript,

185–188
staffing, 176–180
testing Flex RIA, 188–196

enterprise framework, building, 113–174
upgrading existing Flex components, 114–

127
enterprise framework, developing

data forms, 138–151
minimizing number of custom events, 169–

174
resources as properties of UI controls, 127–

137
validation, 151–169

entity beans (Java), 207
Event class

clone() method, 169
COMPLETE event, 404
COMPLETE value, 342, 343
NETWORK_CHANGE event, 467

Index | 643

preventDefault property, 171
EventDispatcher class

sharedEvent object, 507
EventMap MXML components, 21
EventMap objects (Mate), 28
events, 550

(see also asynchronous events)
adding and removing event listeners, 433
Cairngorm versus Mate frameworks, 22
LiveCycle ES, 492
LiveCycle Workspace ES, 507
minimizing number of custom events, 169–

174
portlet-portal communication via

sharedEvents, 367
shared event dispatcher, 372
using to communicate with loaded modules,

342–344
EventsHelper class (example), 553
external linkage, 408
ExternalInterface class, 186

FABridge versus, when to use, 186

F
FABridge (Flex AJAX Bridge), 186
Facade class (PureMVC), 29

creation of instance, ApplicationFacade, 32
Facebook ActionScript API, 204
Fiber, 630
File class, 450

applicationDirectory property, 451
applicationStorageDirectory property, 451
static constants for commonly used

directories, 451
file paths, 451
FileReference class, 579
files, working with in AIR, 450–460

commonly used directories, 450
local databases, 454–460
reading and writing to files, 452–454

FileStream class, 450
openAsync() and open() methods, 452

Flash
PureMVC framework, 29

Flash Builder, 180
adding .swf file to HTML, 183
AIR project creation wizard, 444
compilation of modules, 333
Modeler, 626

NetworkingSamples project, 268
Patterns and Patterns_lib projects, 63
plug-in version, 46
profiler, 436
starting model-driven development with

version 4, 625
version 4 release, improvements in, 181

Flash Catalyst, 178
Flash Creative Studio version 4 or above, 179
Flash Player

actions preceding loading of Flex
application, 389

data communication using AMF, 265
execution of application requests, 92
Garbage Collector (GC) process, 433
new capabilities in version 10, 275
printing from, 571
secure cross-domain communication, 371
support of signed RSLs in versions 9 and 10,

351
flashVars variables, 186
Flex

how AIR differs from, 443
Flex AJAX Bridge (FABridge), 186
Flex applications for LiveCycle ES, 491–569

architecture of LiveCycle ES, 497–501
blending LiveCycle API with custom Flex

applications, 560–569
invoking LiveCycle process on server,

561–563
starting process instance from Flex app,

563–569
business example, warehouse processes,

520–527
process orchestration, 526
UI of manufacturer, 525
UI of retailer, 521
UI of supplier, 524

enabled for Workspace ES, 501–519
controlling view state of Flexlet, 504
conversion between Flexlet and

Workspace, 504–509
Flexlet code walkthrough, 509–519
Flexlet mapping for user activity, 504
Form variable declaration and process

initiation, 502
extending LiveCycle with custom services,

529–550

644 | Index

custom providers for users and group
repository, 529–543

custom solution components, 543–550
process orchestration with asynchronous

events, 550–559
running Workspace from Adobe source

files, 519
VacationRequest flexlet, 496
warehouse processes under the hood, 528

Flex architects, 177
Flex Builder

application paths, 349
Flex de Tour component explorer, 205
Flex framework

EmployeeList using, 5
Flex framework RSL, 411–416
Flex frameworks, 1–62

Cairngorm, 2, 7
Café Townsend application, 7–18
deciding whether to use, 19
pros and cons of, 20

choosing among, 59
Clear Toolkit, 43–58

Café Townsend application, 45–57
pros and cons, 57

frameworks versus component libraries, 1
Mate, 21–29

Café Townsend application, 21–27
pros and cons of, 27

others, 61
upgrading existing components, 114

Flex portals (see portals)
flex-mojos (Maven plug-ins), 198
FlexApplicationBootstrap class, 360
Flexcover project, 195
FlexEvent class

APPLICATION_COMPLETE event, 390
CREATION_COMPLETE event, 390
ENTER_FRAME event, 390
INITIALIZE event, 390
PREINITIALIZE event, 390

Flexlets, 495
code walkthrough, 509

complete code of
SimpleVacationRequest, 514–
519

namespaces and variables, 510
reading data from process and enterprise

datastore, 511

writing data to process and enterprise
datastore, 513

controlling view state of reusable Flexlet,
504

conversion for Workspace, 504
mapping for user activity, 504

FlexLib, 204
FlexModuleFactory class, 336
FlexMonkey unit testing framework, 190
FlexPMD tool, 196
FlexServerLib, 204
FlexSession class, 254
FlexUnit4 unit testing framework, 189
Form class, 138
Form variable, declaration and process

instantiation, 502
FormConnector objects, 507, 510

setSubmitData() method, 508, 513
setSubmitDataInvalid() method, 508

FormEvents objects, 507
formInitialData event, 512
FormItem objects, 144
FormRenderer class, 575
forms, 138

(see also data forms)
embedding into PDF documents, 574

frameworks, 3
(see also Flex frameworks)
choosing among, 59
component libraries versus, 1
PureMVC framework, 29–43

FreeMarker template engine, 633
FrontController class, 8, 18

pros and cons of, 19
functional testing, 192
Fx2Ant utility, 44

optimizing library linking with, 416

G
garbage collection, deferred, 437
garbage collector (GC) process, 433

opportunistic garbage collector, 434
GDS (Granite Data Services), 325
Genuitec, MyEclipse, 180
GeocodingEvent.GEOCODING_SUCCESS,

487
Google Maps API, 204

integration with AIR and Flex, 486–489
tutorial, 486

Index | 645

Gorilla Logic, FlexMonkey unit testing
framework, 190

Granite Data Services (GDS), 325
groups provider (custom), LiveCycle ES, 536–

540
guaranteed delivery of client messages, 244

testing, 251–253
guaranteed delivery of server messages, 222–

225
testing, 233–236

GUI developers, 176

H
Hall, Cliff, 3
handleApprovedOrder() method, 546–550
HashMap class, 228
heartbeats, client (see client heartbeat

messages)
HelloWorld application (AIR), 444–449
Hibernate framework, 207–208
HP, QuickText Professional, 192
HTML

embedding .swf files, 183–185
interacting with, 185–188
rendering of, AIR versus Flex, 443

HTTP
management of connections, 269–274
performance, AMF versus, 265

HTTP web services, 263
HTTPRequest objects

RTMP or BlazeDS versus, 388
HTTPS protocol, 323
HTTPService objects, 5, 8
HttpServiceInvoker, 24
Hudson continuous integration server, 200

I
I/O performance, 438
IApplicationFacade interface, 65
IBatchTransactionServiceSupport interface,

307
IBM

RAD 7.5 IDE, 180
Rational Functional Tester, 192
Websphere, 181

IDEs
choices for enterprise Flex developers, 180

IFactory interface, 96

IFlexModuleFactory interface, 336, 355
IGreeting interface, 339

example of module implementing, 340
IHierarchicalDTO interface, 305
Illustrator, 178
Image class, 327–329, 333

descendant of SWFLoader, 333
logoClass variable, 328

images, 327
embedding, 328
printing Flex object as image, 591
runtime loading of image bytes, 328
separating transfer of byte code from loading

into stage, 328
ImageSnapshot class, captureImage() method,

574
IModuleInfo interface, 335
-includes compiler option, 350
InfoWindowOptions class, 487
initializeProcessVariables() method, 544–546
InsideRIA blog, 461, 623
integration testing, 189
integration, continuous, 199
IntelliJ IDEA 9, 180
invalidateProperties() function, 125, 150
isDataValid() function, 157
item renderers

building dynamically for DataGrid using
class factory, 100

creating using ClassFactory, 96
IUID interface, 286
IValidatorListener interface, 168
IViewCursor iterator, 126
IXdpObject interface, 576, 591

J
Java

annotations, 88
as server-side platform, Flash Builder as

Eclipse plug-in, 180
BlazeDS, integration with Java Messaging

and communication with POJOs,
264

Comet implementations, 273
DTOs for data exchange between Java and

ActionScript classes, 88
Flex/Java Dynamic Web Project, 47–57

Java DTO and data access classes, 52

646 | Index

Hibernate framework, integrating with,
207–208

JDK 1.5 or later, 46
nonblocking I/O (see NIO)
servlet containers (see servlet containers)
Spring framework, integrating with, 205
WebORB AMF implementation, 325

Java EE developers, xiv
Java Enterprise Edition (see JEE)
Java Messaging Protocol, BlazeDS integration

with, 264
Java Server Page (JSP), 577
Java Spring framework, 27
Java VM

data communication with Flash Player,
AMF protocol, 265

JavaScript
interaccting with, 185–188

JDBS data sources, 626
JEE (Java Enterprise Edition), 277

integrating Flex into legacy JEE portals,
381

JetBrains, IntelliJ IDEA 9, 180
Jetty servers, 273

NIO API, setting BlazeDS messaging to use,
279

NIO performance, with BlazeDS, 279
setting up example BlazeDS application on,

278
JIT (just-in-time) compilation, 435–436

using for better code execution
performance, 439

JMSAdapter, 219
JSP (Java Server Page), 577
junction utility, 182

L
labelFunction property (DataGridColumn),

136
LCDS (LiveCycle Data Services), 219, 263

(see also messaging layer, customizing of
LCDS or BlazeDS)
AIR data synchronization solution, 461
BlazeDS versus, 264
data access automation, 284
ES 2.6 Developer Guide, 219
QoS improvements at protocol level, 388
reliable messaging in version 3.0, 216
sending client’s heartbeats, 217–218

sending server messages, 216
version 3.0, xiv

LCDS (LiveCycle Data Services) ES2, model-
dirven development with, 623–635

creating master/detail/search view, 632–
635

data sources and RDS, 626–631
starting with Flash Builder 4, 625
what was generated, 631

libraries, 349–361
bootstrapping as applications, 357–361
creating library project and mapping to Flex

Build Path, 349
linking Flex libraries, 408
loading of, 361
optimization of linkage with FX2Ant, 416
RSLs under -libraries compiler option, 352–

357
linkage type for applications, 197
linking Flex libraries, 408
links

default link type merged into code, 349
RSL link type, auto extraction of RSL SWF,

350
List-based components

customizing appearance using ClassFactory
and item renderers, 96

LiveCycle Data Services (see LCDS)
LiveCycle Data Services ES 2.6, stress testing of,

195
LiveCycle Designer ES, 575
LiveCycle ES, developing applications for, 491–

569
architecture of LiveCycle ES, 497

custom services, 499
endpoints, 498
tools, 500

blending LiveCycle with custom Flex
applications, 560–569

invoking LiveCycle process on server,
561–563

starting process instance from Flex app,
563–569

business example, warehouse processes,
520–527

process orchestration, 526
UI of manufacturer, 525
UI of retailer, 521
UI of supplier, 524

Index | 647

business process example, vacation request,
492

extending LiveCycle with custom services,
529–550

custom providers for users and group
repository, 529–543

custom solution components, 543–550
Flex applications enabled for Workspace,

501–519
controlling view state of reusable Flexlet,

504
conversion between Flexlet and

Workspace, 504–509
Flexlet mapping for user activity, 504
Form variable declaration and process

initiation, 502
walkthrough of Flexlet code, 509–519

Flexlet, vacation request, 496
process orchestration with asynchronous

events, 550–559
running Workspace from Adobe source

files, 519
warehouse processes under the hood, 528
Workspace, 494

LiveCycle Workspace ES, 495
load testing, 194

BlazeDS application supporting Jetty NIO
API, 281

Java NIO testing tool, 624
Loader class, 333

loaderContext property, 362
use by ModuleManager, 334, 335
using with RSLs, 350

loaderContext property (SWFLoader), 362–
365

listing of possible combinations, 363
loading portlets across web domains, 363
loading portlets from same web domain,

364
possible combinations, 363

loaderInfo property, 346
loadingForCompatibility property

(SWFLoader), 374
local cache, 455
LocalConnection objects, requesting

immediate garbage collection, 434
Log4Fx, 44, 200–203

remote logging with, 202
logging client heartbeat messages, 220

LoginEvent.ON_LOGIN, 404
LoginPreloader class (example), 400–404
logout functionality, 404–407

M
machine-independent representation (MIR),

435
Managed meta tag, 73
MapQuest Platform, 204
MaskedTextInput, 103
master/detail/search view, 632–635
Mate framework, 21–29

Café Townsend application, 21–27, 22
fragment from MainEventMap.mxml,

22
model, EmployeeManager, 25
ModelMap.mxml, 26
view, fragment from

EmployeeList.mxml, 26
deciding whether to use, 59
pros and cons of, 27

Math class, random() method, 229
Maven build tool, 198
McLeod, Alistair, 7
mediator classes in PureMVC, 36
mediator design pattern, 74
memory consumption, monitoring, 436
memory leaks, 433–435

closures, 433
opportunistic garbage collector, 434

memory, using more efficiently, 439
merge-in linkage, 409
message headers, AMF (see AMF)
message sequence number, 226
MessageAckEvent class, 217, 244

ACKNOWLEDGE value, 247
MessageAgent class, 247
MessageBroker objects, 216
messaging classes, bootstrap class loading,

375
messaging layer, customizing of LCDS or

BlazeDS, 215–261
acknowledging endpoint, 246
building custom acknowledging channel,

225–228
guaranteed delivery of client messages, 244
guaranteed delivery of server messages,

222–225
guaranteeing order of messages, 236–244

648 | Index

heartbeat adapter, 219–221
order of client messages, 253–257
ReliableClientMessage class, 244
resending channel for client messages, 247–

250
resending messages with QoSAdapter

(example), 228–232
sending client’s heartbeats, 217–218
sending server messages, 216
testing guaranteed delivery, 233–236
testing guaranteed delivery of client

messages, 251–253
testing ordered delivery of client messages,

257–261
tresting client heartbeat, 221–222

MessagingAdapter class, 220
Microsoft Active Accessibility (MSAA), 211
Microsoft Visual Studio, Tofino plug-in, 181
Microsoft, design and development tools for

RIAs, 179
MIR (machine-independent representation),

435
Mixin meta tag, 318
mixins array, 355

from compiler generated SystemManager
for LibraryDemo (example), 357

Model class (PureMVC), 29
automatic initialization of instance, 32

model-driven development with LCDS ES2,
623–635

creating master/detail/search view, 632–
635

data sources and RDS, 626–631
starting with Flash Builder 4, 625
what was generated, 631

Model-View-Controller (see MVC pattern)
ModelLocator class, 9

Cairngorm framework, 7
disadvantages of, 19
getModelLocator() method, 27
implementation in Café Townsend, 16
updating of model by Command class, 15

ModelPrepCommand class (PureMVC), 34
modularization, 327–333

basic, images, 327
brief overview, 196
Flex portals and, 327
Loader and URLLoader, 333
planning for, 386

runtime style modules, 329–333
Module class, 333
module proxy, 335
ModuleLoader class, 196

applicationDomain property, 345
loading modules, 333

ModuleManager class
delegation of loading to Loader, 333
preloading modules, 335–339

modules
application domains and, 344–349
applications versus, 361
bootstrapping by classes implementing

IFlexModuleFactory, 355
communicating with, 339–344
loading with ModuleLoader, 333
preloading with ModuleManager, 335–339

Mozilla Firefox
SQLite Manager add-on, 457

MSAA (Microsoft Active Accessibility), 211
MultiCore version of PureMVC, 42
multimedia solutions, integrating, 275
MVC (Model-View-Controller) pattern

Cairngorm framework, 7
frameworks based on, xiv, 1
use in PureMVC framework, 29

mx.core package, 425
mx.messaging.messages package, 375
<mx:Application> tag, 390, 444
<mx:Module> tag, 196
<mx:ViewStack> tag, 57
<mx:Window> tag, 449
<mx:WindowedApplication> tag, 444, 449
MXML

documenting with ASDoc, in Flex 4 release,
211

EventMap component, 21
Singleton.mxml application (example), 65
tags in Mate framework, 21
two-phased applications, 357
ViewStack tag in Café_Townsend_CDB

application, 57
mxmlc compiler, 196
MyEclipse (Genuitec), 180
MySQL, 461
MySQL Community Server, 46
MySQL Server, 45, 462

configuring, 49

Index | 649

configuring database connection in Tomcat,
626

DDL script to create sample pharma
database, 462

visit_schedule table, 464
mysql utility, 463

N
namespaces

AIR (Adobe Integrated Runtime), 445
Flex application for LiveCycle ES

Workspace, 510
native windows (AIR), 449
NativeApplication objects, 467
Neoload by Neotys, 194

stress testing BlazeDS application
supporting Jetty NIO API, 281

.Net
server-side, communication with Flash

Player, 265
WebORB AMF implementation, 325

NetConnection objects, 272, 274
duplex open connections with server, 275

network availability, detecting, 466–470
network simulators, 387
networking solutions, open source, 263–326

AMF and client-side serialization, 268
BlazeDS networking architecture, 277–283
BlazeDS versus LCDS, 264
data access automation, 284–302
HTTP connection management, 269–274
importance of AMF protocol, 265
streaming, 274

NIO (nonblocking I/O), 278
BlazeDS messaging using Jetty NIO API,

279
load-test Java NIO testing tool, 624
performance test for Jetty and BlazeDS,

279
nonblocking I/O (see NIO)
Notification class, body property, 30
notifications in PureMVC, 29, 43

O
object-relational mapping (ORM), 207
ObjectProxy class, 68

DTOs wrappted in, 85

using, MyPersonProxy application
(example), 70

using, PersonProxy.mxml application
(example), 68

Observer design pattern, 138
OfflineDataCollection class, 478–486
onCreationComplete() event handler, 511
onFormInitialData() event handler, 512
onFormSubmitDataRequest() event handler,

513
onRequestsCollectionSync() method, 514
open source networking solutions (see

networking solutions, open source)
Operation class, 308
order of messages

keeping client messages in order, 253–257
keeping server messages in order, 236–244
testing ordered delivery of client messages,

257–261
ORM (object-relational mapping), 207

P
packages, preparing for deployment of AIR

application, 446
papervision3d, 205
parent application domain, 345
PDF (Portable Document Format), 573

generation in XDP format, 591–607
generation on client, 578–591
generation on server, 574–578

PDF class, 578
PDFHelper class, 599, 602–605
performance improvements, 385–440

application startup and preloaders, 389–
407

dealing with memory leaks, 433–435
fast applications and arrival of data at user

machines, 387
JIT and implications, 435–436
optimizing RSL loading, 417–432
planning for modularization, 386
planning for RIAs, checklist for, 437
using Flash Builder profiler, 436
using resource shared libraries (RSLs), 407–

416
performance or stress testing software, 194
PharmaSales application (AIR), 461–478

adding printing, 607–619
printing for dispatchers, 608–611

650 | Index

printing for salesmen, 611–619
data synchronization with

OfflineDataCollection, 478–486
database model, 461
detecting nework availability, 466–470
for dispatchers, 462–466
Google Maps integration, 486–489
installing, 462
after salesman logs on, 470–478
for salespeople, 466

Photoshop, 178
PHP

AMFPHP, 325
server-side environments, communication

with Flash Player, 265
WebORB AMF implementation, 325

pluggable protocols, 271
policy file cross-domain.xml, 371
port application parameter, 187
portals, 327–333

basic modularization, images, 327
bootstrap class loading, 375–379
event-based communication with portlets,

367
Flex portals and modularization, 327
integrating Flex into legacy JEE portals,

381–384
OptimizedPortal application using custom

RSLLoader, 427
runtime style modules, 329–333

ControlBar of example portal, 331
sample portal, 379

portlets, 327
dynamic styling, 331
loading, 362–365

across web domains, 363
default, same sandbox child domain

(SSCD), 366–372
for multiversioning, 372
forced loading into current sandbox,

363
from same web domain, 364

precompiler, 435
Preloader class, 390
preloaders

LightPreloader application, 390–398
LightweightPreloader application

authenticating user from ActionScript,
397

background of logon view, 391
BitmapLoginButton (example), 396
Flex Builder project, 391
LoginButtonOver (example), 397

main SWF talks to
LightweightPreloader.swf, 398–
404

LoginPreloader and
UnprotectedDownloadProgre
ssBar, 400–404

MainApplication.mxml, 398–400
PrintDataGrid class, 587
printing errors, 572
printing with Flex, 571–621

adding printing to PharmaSales application,
607–619

ClearBI, web reports for Flex, 619
extending Flex components to generate PDF

in XDP, 591–607
PDF generation on client, 578–591

basic printing with AlivePDF, 579
enchancing AlivePDF, 581–587
printing Flex containers, 587–591

PDF generation on server, 574–578
PrintOptions class, 599
Process Management ES, 498
Producer class, powered with Timer, 217
profiler (Flash Builder), 436
properties versus styles, 130
PropertyInjector objects (Mate), 26
proteced keyword, 427
proxy classes in PureMVC, linking data models

with service, 34
proxy design pattern, 67–74
publish/subscribe applications, breaking loose

from request/response model, 275
PureMVC framework, 3, 29–43

Café Townsend application, 30–42
ApplicationMediator class, 40
ApplicationStartupCommand.as file, 33
CafeTownsend.mxml application file,

30
EmployeeProxy class code fragment, 35
LoadEmployeesDelegate class, 36
mediator class, EmployeeListMediator,

36
ModelPrepCommand class (example),

34
ViewPrepCommand class, 39

Index | 651

deciding whether to use, 59
pros and cons, 42

Python
Comet implementations, 273
PyAMF, 325
server-side, communication between Flash

Player and, 265

Q
QA testing (see functional testing)
QoSAdapter class (example), 224

resending messages, 228–232
quality of service (QoS), 224, 388

control of QoS in client communications,
271

not provided by HTTP, 272
QuickText Professional (QTP) by HP, 192

R
RAD 7.5 (IBM), 180
RadView Software, WebLoad 8.3, 195
Rational Functional Tester (IBM), 192
RDS (Remote Development Services), 626–

631
RDSDispatchServlet, 626
server configuration in Flash Builder 4, 627

Real Time Messaging Protocol (see RTMP)
Red5 server, 325
references

direct references to module variables and
methods, 339

garbage collecting, 433
JIT compilation and, 436
ReferenceCommunicationDemo

application, 341
unreleased, 341
weak versus strong, 343

registerClassAlias() function, 85
reliable messaging, 624
remote calls

batching, 306
RPC (remote procedure call), 314

remote logging with Log4Fx, 202
remote procedure call (see RPC)
RemoteClass meta tag, 85, 88

data serialization information, 268
RemoteLogReceiver.mxml application, 201
RemoteObject objects, 15, 45, 56, 72

DTOs, serialization and deserialization, 85
use in DataCollection example, 295, 300

RemoteSite project, 367
removeEventListener() function, 433
reports, producing with ClearBI, 619
request/response model

breaking free from, using Comet, 271
breaking free from, using streaming, 274

requestsCollection variable, 510
resender thread, 228

Resender class (example), 231
resending adapter, QoSAdapter.java

(example), 228–232
resending channel

for client messages, 247–250
testing client resending channel, 251–253

resource shared libraries (see RSLs)
ResourceBase class, 131

itemEditor property, 144
resourceProps and resourceStyles

properties, 133
resources

advantages of, 137
as UI control properties, 127–137

DepartmentComboResource (example),
129

StateComboBoxResource (example),
128

compilation into separate .swf file, 134
using with DataForm and DataFormItem

components, 150
Rest, performance and, 265
ResultEvent.token property, 93
RIAs (rich Internet applications), 6

new development skills required, 178
performance improvement checklist, 437
testing Flex RIA, 188–196

accessibiity, 211
application modularization, 196
build scripts and continuous integration,

197
code coverage, 195
functional testing, 192
integrating with Java Spring framework,

205
integration with Hibernate framework,

207–208
load testing, 194
logging with Log4Fx, 200–203

652 | Index

project documentation, 208
unit and integration testing, 189

RIATest, 193
Rose, Jon, 206
RPC (remote procedure call), 314

reverse, 314
RSL linkage, 409
RSLItem class, 425

url property, 427
RSLListLoader class, 425

modified (example), 425–427
RSLs (resource shared libraries), 407–416

Flex framework RSL, 411–416
linking, 408
optimizing loading, 417–432

creating modules with test harness, 417–
422

shell application with custom RSL
loader, 422–432

performance issues, 386
RSLs (runtime shared libraries), 349

RSL link type, auto extraction of RSL SWF,
350

under -libraries compiler option, 352–357
rsls property, 355
RTMP (Real Time Messaging Protocol), 194,

264
building acknowledging channel for, 225–

228
custom serializing channel for, 238–240
support by LCDS, 624
two-directional socket, 274

RTMPChannel class, 223
Ruby

RubyAMF, 325
server-side environments, communication

with Flash Player, 265
Ruby on Rails, WebORB AMF

implementation, 325
runtime shared libraries (see RSLs)

S
sandboxes, 363–365

different sandbox different domain (DSDD),
373–375

forced loading of portlet into current
sandbox, 363

possible variations in loaderContext
property, 363

same sandbox child domain (SSCD), 366–
372

same sandbox different domain
with bootstrap class loading, 379

same sandbox different domain (SSDD),
374

security appliances, 323–324
security domains (see sandboxes)
security policies

policy file cross-domain.xml, 371
security sandboxes (see sandboxes)
Security.allowDomain, 374
serialization

AMF and client-side serialization, 268
custom serialization and AMF, 320–323

serializing channel, 238–244
SerializingRTMPChannel (example), 238
testing, 240

serializing RTMP endpoint, 254–257
server messages

custom acknowledging channel for, 225–
228

guaranteed delivery of, 222–225
guaranteed order of delivery, 236–244
resending with QoSAdapter, 228–232
sending from LCDS or BlazeDS, 216
testing guaranteed delivery of, 233

ServerConfig class, 323
servers

monitoring of PharmaSales server, 470
PDF generation on, 574–578

serverURL application parameter, 187
Service Level Agreement (SLA), 387
service-level agreement (SLA), 194
ServiceLocator objects (Cairngorm

framework), 15
servicemonitor.swc library, 468
Services objects (Cairngorm framework), 10

implementation in Café Townsend, 14
servlet containers, 280

in Jetty, 273
separation from implementation of server-

side services in BlazeDS, 277
SetValue.execute() method, 504
SharedEventDispatcher class, 373
sharedEvents objects, 507
SharedObject API, 398
SharedObject class, 454
sibling domains and multiversioning, 362–379

Index | 653

bootstrap class loading, 375–379
default portlet loading, same sandbox child

domain, 366–372
loading portlets for multiversioning, 372–

375
scenarios for loading portlets, 362–365

SilkPerformer and SilkTest by Borland, 195
SimpleButton class, 396
singleton design pattern, 64–67
singletons

use in PureMVC framework, 29
SLA (Service Level Agreement), 387
SLA (service-level agreement), 194
SOAP, 263

performance, comparison with other
protocols, 265

SocketMonitor class, 468
soft links, 182
Sounders, Steve, performance tuning of

websites, 267
SPI (Service Provider Interface), LiveCycle ES,

529
Spring Beans, 206
Spring framework (Java), 27

integrating with, 205
Sprite class, 396, 404
SQL (Structured Query Language)

generation for ActionScript DTOs, 305
ORM (object-relational mapping) tools and,

207
SQL injection attacks, 192
SQLConnection objects, 455, 456
SQLEvent class

ERROR event, 455
OPEN event, 455

SQLite, 455–460
documentation, 460
in PharmaSales application, 461
visit schedule in PharmaSales application,

464
SQLite Manager, 457
SQLResult objects, 457
SQLStatement objects, 456, 457
SSCD (same sandbox child domain), 363, 366–

372
SSDD (same sandbox different domain), 363,

374
bootstrap class loading, 379

SSL

security appliances, 323
SSSD (same sandbox same domain), 363
staffing, enterprise Flex projects, 176–180

designopers and devigners, 178
Flex architects, 177
GUI and component developers, 176

STARTUP notification (PureMVC), 33
startup time, 437
streaming, 274

AMF channel, using to deliver server time,
314–320

use cases for, 275
stress or performance testing software, 194
StringValidator objects, 156
strong reference, 343
style modules, 329–333

dynamic style loading with StyleManager,
330

StyleManager class, loadStyleDeclarations()
method, 330

styles versus properties, 130
subapplications, 197

Flexlets, 495
portlets, 327

SupplierOrderProcessData class (example),
555

.swc files, 196
library linking and, 409
mapping of library compiled by third party,

349
.swf files, 196

applications, modules, and libraries, 361
compiling CSS file to, 330
embedding into HTML pages, 183–185
embedding into PDF, 607
frames, 390
library project, 349
linking for libraries, 409
main application .swf talks to

LightweightPreloader.swf
(example), 398–404

SWFLoader class, 333
content property, 374
loaderContext property, 362–365

loading portlets across web domains,
363

loadingForCompatibility property, 374
trustContent property, 371, 374

SWFObject class, 183

654 | Index

HTML wrapper generated by, 184
.swz files, 411
symbolic links, 182
synchronous mode (AIR files), 450
System class, 467

gc() method, 435
totalMemory property, 437

SystemManager class, 360, 389
compiler-generated descendant in

LibraryDemo, 355
downloading of required RSLs, 411
generated for OptimizedPortal (example),

423–425
mixins array from compiler-generated, in

LibraryDemo, 357
systemManager property (Application), 390

T
TaskManager endpoint, 499
test harness, creating modules with, 417–422
TestField controls, in LightweightPreloader

application, 396
testing

client heartbeat, 221–222
guaranteed delivery of client messages, 251–

253
guaranteed delivery of server messages,

233–236
ordered delivery of client messages, 257–

261
testing Flex RIA, 188–196

accessiblity, 211
application modularization, 196
build scripts and continuous integration,

197
code coverage, 195
functional testing, 192
integrating with Hibernate framework, 207–

208
integrating with Java Spring framework,

205
load testing, 194
logging with Log4Fx, 200–203

remote logging, 202
project documentation, 208
unit and integration testing, 189

Text Layout Framework, 205
ThreadLocal objects (Java), 310
throttling, 624

Timer class, 217
Tofino 2 (Ensemble), 180
Tomcat server (see Apache Tomcat server)
Transfer Object Assembler (J2EE), 290
Transient meta tag, 305, 321
transparency of <mx:Window> component,

450
trustContent property (SWFLoader), 371, 374
Twitter ActionScript API, 204

U
UI controls

in Clear Toolkit 3.2.1, 44
resources as properties of, 127–137

UI performance, 438
uid property, 286
UML diagrams, 211
Unit testing, 189
url property

used in registration at Google for Maps API
key, 487

URLLoader objects, 328
request ot URL authenticating user, 398

URLMonitor class, 468
available property, 470
listening to StatusEvent, 470

URLRequest objects, 398
user experience designers, 177

for next-generation web applications, 178
User Management ES, 529
users and groups repository (LiveCycle ES),

custom providers for, 529–543
authentication provider, 530–533
directory service provider, 533–536
groups provider, 536–540
users provider, 540–543

UserService.assignTask() method, 504
UTC (Coordinated Universal Time), 320

V
vacation request FLexlet, 496
vacation request, busines process example,

492
validateAll() function, 143
validation, 151–169

DataFormValidator example application,
153–157

Index | 655

embedding validation rules into DataGrid,
162–169

having convenient means on the client, 152
ValidationRule class, 158–161

ValidationRule class, 158
substitute() method, 161

Validator class, 151
doValidation() method, 160
validateAll() function, 143

validators
accessing inside form, 139
embedded in data form, 143
instantiating in DataFormItem, 150

value objects (VOs) (see DTOs)
variables

Flex application enabled for LCES
Workspace, 510

version control repositories, developers’ tools
and, 182

View class (PureMVC), 29
automatic initialization of instance, 32

views
PureMVC, UI component and mediator

class, 36
ViewStack components

UI portion of PharmaSales application, 472
visual assertions, 191
Visual Flex Unit, 191

W
WAN problems with RIAs, 387
Ward, James, 206, 266
warehouse processes, business example, 520–

528
weak reference, 343
web browsers

forcing GC, 434
garbage collection, 434
hack to increase performance, 270
increased number of simultaneous HTTP

requests handled, 269
other ways to increase performance, 271

Web Content Accessibility Guidelines 1.0
(World Wide Web Consortium),
211

WebKit, 443
WebLoad 8.3 (RadView Software), 195
WebORB PDF Generator, 578
WebORB, implementations of AMF, 325

Websphere, 181
Webster, Steven, 7
Window class, nativeWindow property, 449
Windows systems, implementing soft links,

182
workflow software, 491

X
XDP (XML Data Package), 574

creating XDP file on server, 576
embedding forms in PDF documents, 574
PDF generation in XDP, 591–607
representing Flex components in, 576

server-side part written as JSP, 577
sent to server by FormRenderer, 575

XdpDocument.mxml component (example),
599–602

XDPXFAHelper class, 577
XFAHelper class, 574
XML Data Package (see XDP)
XMLListCollection objects

storing form data, 142

Y
YouTube API, 205

656 | Index

About the Authors
Yakov Fain is a managing director at Farata Systems, a company that provides con-
sulting services in the field of development of enterprise Rich Internet Applications. A
certified Adobe Flex instructor and developer as well as the leader of the Princeton Java
Users Group, he has authored several technical books and dozens of articles on software
development. Sun Microsystems awarded Yakov the title of Java Champion, which is
presented to only 100 people worldwide. Yakov also holds a BS and an MS in Applied
Math. You can reach Yakov at yfain@faratasystems.com and follow him on Twitter:
@yfain.

Dr. Victor Rasputnis is a managing director at Farata Systems. He spends most of his
time providing architectural design, implementation management, and mentoring to
companies migrating to Flex and J2EE technologies. Victor has authored several books
and dozens of technical articles. A certified Adobe Flex instructor and developer, Victor
holds a PhD in Computer Science. You can reach Victor at
vrasputnis@faratasystems.com.

Anatole Tartakovsky is a managing director at Farata Systems. He spent more than
20 years developing complex distributed systems. In the last 10 years, his focus has
been on creating frameworks and business applications for dozens of enterprises rang-
ing from Wal-Mart to Wall Street firms. Anatole has authored a number of books and
articles on AJAX, Flex, XML, the Internet, and client-server technologies. He holds an
MS in Mathematics. You can reach Anatole at atartakovsky@faratasystems.com.

Colophon
The animals on the cover of Enterprise Development with Flex are red-crested wood-
quails (Rollulus roulroul), more commonly known today as crested wood partridges or
Roul-roul partridges. The birds live in small flocks in the lowland rainforests of Myan-
mar, Thailand, Malaysia, Sumatra, and Borneo. They forage on the ground for fruit,
seeds, and insects, and often follow wild pigs through the forest to feed on any leftovers.
If disturbed, these plump birds can fly for short distances, but, as is common in many
quail species, tend to run instead.

Male and female red-crested wood-quails have vastly different appearances. Males
sport a white spot at the base of the bristling red crested head for which the bird is
named, as well as iridescent blue-green plumage and a dark blue underbelly. In contrast,
the female is pea green, with brown wings and a gray head. Both have red feet, red skin
around the eyes, and black bills.

The red-crested wood-quail nests on the forest floor in a dome-like construction of
leaves and twigs which completely conceals its eggs and the nesting female. Unusually
for a galliform (fowl-like) species, the chicks are fed bill-to-bill by their parents rather
than pecking their food from the ground. This bird’s call is a plaintive whistled si-ul,

mailto:yfain@faratasystems.com
http://twitter.com/yfain
mailto:vrasputnis@faratasystems.com
mailto:atartakovsky@faratasystems.com

most often heard at dawn. In 2004, the red-crested wood-quail was listed as a near
threatened species due to heavy logging activity in Southeast Asia.

The cover image is from The Riverside Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Who Is This Book For?
	How the Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments
	Technical Editor Bios

	Chapter 1. Comparing Selected Flex Frameworks
	Frameworks Versus Component Libraries
	Introducing Café Townsend
	Employee List Without Frameworks

	Cairngorm
	Café Townsend with Cairngorm
	To Use or Not to Use Cairngorm?
	Report Card: Cairngorm

	Mate
	Report Card: Mate

	PureMVC
	Café Townsend with PureMVC
	Report Card: PureMVC

	Clear Toolkit
	Café Townsend with Clear Toolkit
	Installing the software for the CRUD example
	Creating an Eclipse Dynamic Web Project with CDB facets

	Report Card: Clear Toolkit

	Final Framework Selection Considerations
	References

	Chapter 2. Selected Design Patterns
	Singleton
	Proxy
	Mediator
	Data Transfer Object
	Asynchronous Token
	Class Factory
	A Class Factory from the Flex Framework
	Creating UIStaticClassFactory
	Creating UIClassFactory

	Chapter 3. Building an Enterprise Framework
	Upgrading Existing Flex Components
	Introducing Component Library clear.swc
	Creating a Value-Aware CheckBox
	Creating a Centered CheckBox
	Creating a Protected CheckBox
	Upgrading ComboBox

	Resources as Properties of UI Controls
	Styles Versus Properties
	The Base Class for Resources
	DataGrid with Resources

	Data Forms
	The DataForm Component
	The DataFormItem Component

	Validation
	Sample Application: DataFormValidation
	The ValidationRule Class Explained
	Embedding Validation Rules into a DataGrid

	Minimizing the Number of Custom Events
	Summary

	Chapter 4. Equipping Enterprise Flex Projects
	Staffing Considerations
	GUI and Component Developers
	Flex Architects
	Designopers and Devigners

	Flex Developer’s Workstation
	IDE Choices
	Preparing for Teamwork

	Embedding .swf Files into HTML Pages
	Adding a .swf to HTML with SWFObject

	Interacting with HTML and JavaScript
	The ExternalInterface Class
	Flex AJAX Bridge
	The flashVars Variable

	Testing Flex RIA
	Unit and Integration Testing
	FlexUnit4
	FlexMonkey
	Visual Flex Unit

	Functional Testing
	Load Testing
	Code Coverage

	Application Modularization from 30,000 Feet
	Build Scripts and Continuous Integration
	Automation of Ant Script Creation
	Maven Support
	Continuous Integration

	Logging with Log4Fx
	Remote Logging with Log4Fx

	A Grab Bag of Component Libraries
	Integrating with the Java Spring Framework
	Integrating with the Hibernate Framework
	Project Documentation
	Program Documentation with ASDoc
	UML Diagrams

	Accessibility of Flex RIA
	Summary

	Chapter 5. Customizing the Messaging Layer of LCDS or BlazeDS
	Flex Messaging Unleashed
	Server Messages: Shooting in the Dark
	Sending the Client’s Heartbeats
	Heartbeat Adapter
	Testing the Client Heartbeat
	Guaranteed Delivery of Server Messages
	Building a Custom Acknowledging Channel
	Resending Messages with QoSAdapter
	Testing Guaranteed Delivery
	When Message Order Matters
	SerializingChannel

	Guaranteed Delivery of Client Messages
	The ReliableClientMessage Class
	Acknowledging the Endpoint
	Resending Channel Guarantees Delivery
	Testing Guaranteed Delivery from the Client
	Keeping Client Messages in Order
	Testing Ordered Delivery of Client Messages
	Summary

	Chapter 6. Open Source Networking Solutions
	BlazeDS Versus LCDS
	Why Is AMF Important?
	AMF Performance Comparison

	AMF and Client-Side Serialization
	HTTP Connection Management
	The Hack to Increase a Web Browser’s Performance
	Other Ways of Increasing a Web Browser’s Performance
	What Is Comet?

	Putting Streaming to Work
	The Networking Architecture of BlazeDS
	Setting Up a BlazeDS Sample Application on Jetty
	Setting BlazeDS Messaging to Use the Jetty NIO API
	NIO Performance Test
	The Theory

	Data Access Automation
	Data Transfer Objects
	ChangeObject
	Assembler and DAO Classes
	DataCollection Class

	Deep Data Synchronization with BlazeDS
	Nested DataCollections
	Batching Remote Calls

	Using AMF Message Headers
	Data Push in Data Access
	A Server as a Command Center
	Reverse RPC
	Extending the Protocol

	Custom Serialization and AMF
	Security Appliances
	Third-Party Networking Solutions
	Summary

	Chapter 7. Modules, Libraries, Applications, and Portals
	Flex Portals and Modularization
	Basic Modularization: Image
	Runtime Style Modules
	Real Actors: Loader and URLLoader
	Loading Modules with Module Loader
	Preloading Modules with ModuleManager
	Communicating with Modules
	Introducing Application Domains
	Paying Tribute to Libraries
	RSLs: “Under”-Libraries
	Bootstrapping Libraries as Applications

	Sibling Domains and Multiversioning
	Four Scenarios of Loading Portlets
	Default Portlet Loading: Same Sandbox Child Domain
	Loading Portlets for Multiversioning
	Bootstrap Class Loading

	Sample Flex Portal
	Integrating Flex into Legacy JEE Portals
	Summary

	Chapter 8. Performance Improvement: Selected Topics
	Planning for Modularization
	It Takes Two to Perform
	Application Startup and Preloaders
	Dissecting LightweightPreloader.swf
	The Main SWF Talks to LightweightPreloader.swf
	Supporting Logout Functionality

	Using Resource Shared Libraries
	How to Link Flex Libraries
	Flex Framework RSL

	Optimizing RSL Loading
	Creating Modules with Test Harness
	Creating a Shell Application with a Custom RSL Loader

	A Grab Bag of Useful Habits
	Dealing with Memory Leaks
	Closures
	Opportunistic garbage collector

	JIT Benefits and Implications
	Using the Flash Builder Profiler
	Performance Checklist
	Startup time
	UI performance
	I/O performance
	Memory utilization
	Code execution performance

	Summary

	Chapter 9. Working with Adobe AIR
	How AIR Is Different from Flex
	HelloWorld in AIR
	Native Windows
	Working with Files
	Commonly Used Directories
	Reading and Writing to Files
	Working with Local Databases
	Creating a database file

	PharmaSales Application
	Installing PharmaSales
	The PharmaSales Application for Dispatchers
	The PharmaSales Application for Salespeople
	Detecting Network Availability
	After the Salesman Logs On

	OfflineDataCollection
	Integrating with Google Maps

	Summary

	Chapter 10. Developing Flex Applications for LiveCycle ES (Enterprise
 Suite)
	Business Process Example: Vacation Request
	Meet LiveCycle Workspace ES
	Meet the Flexlet: Vacation Request
	LiveCycle ES Architecture in a Nutshell
	Endpoints
	Custom Services
	Tools

	Creating Flex Applications Enabled for LiveCycle Workspace ES
	Form Variable Declaration and Process Instantiation
	Flexlet Mapping for User Activity
	Controlling the View State of the Reusable Flexlet from the Process
	Workspace: Flexlet Conversation Basics
	LiveCycle FormConnector
	Which data should you trust more: Enterprise data or LiveCycle internal data?

	Flexlet Code Walkthrough
	Namespaces and variables
	Reading data from the process and enterprise data store
	Writing data to the enterprise data store and the process

	Running Workspace from Adobe Sources
	Business Example: Warehouse Processes
	User Interface of the Retailer
	User Interface of the Supplier
	User Interface of the Manufacturer
	Introducing Process Orchestration

	The Warehouse Processes Under the Hood
	Extending LiveCycle with Custom Services
	Custom Providers for the User and Group Repository
	Creating custom authentication providers
	Creating a custom directory service provider
	Creating a custom groups provider
	Creating a custom users provider

	Custom Solution Components
	Implementation of initializeProcessVariables()
	Implementation of handleApprovedOrder()

	Orchestrating Processes with Asynchronous Events
	Defining Events
	Dispatching Events
	Starting the Process on an Asynchronous Event

	Blending the LiveCycle API with Custom Flex Applications
	Invoking a LiveCycle Process on the Server
	Starting a Process Instance from the Flex Application

	Summary

	Chapter 11. Printing with Flex
	PDF Generation on the Server
	PDF Generation on the Client
	Basic Printing with AlivePDF
	Enhancing AlivePDF
	Printing Flex Containers

	Extending Flex Components for PDF Generation in XDP Format
	Adding Printing to the PharmaSales Application
	Printing for Acme Pharm Dispatchers
	Printing for Acme Pharm Salesmen

	ClearBI: A Web Reporter for Flex
	Summary

	Chapter 12. Model-Driven Development with LCDS
 ES2
	Introduction to Model-Driven Development
	Starting Model-Driven Development with Flash Builder 4
	Data Sources and RDS
	What Has Been Generated?
	Creating Master/Detail/Search View

	Summary
	Epilogue

	Index

